锁相环的频率合成器课程设计
- 格式:doc
- 大小:99.58 KB
- 文档页数:7
锁相环的频率合成器院系:信息工程学院班级:09通三姓名:谭长明学号:2009550824指导老师:蒋近摘要:二十一实际,随着社会科技的发展与进步,具有高稳定性和准确度的频率源已经成为通信、雷达、仪器仪表、高速计算机及导航系统的主要组成部分。
高性能的频率源可通过频率合成技术获得。
随着大规模集成电路的发展,锁相式频率合成技术占有越来越重要的地位。
由一个或几个高稳定度、高准确度的参考频率源通过数字锁相频率合成技术可获得高品质的离散频率源。
关键字:分频锁相环晶振计数器鉴相器一.设计要求1.1 根据设计框图设计出具体的实现电路1.2 频率稳定度至少达到10-5/月的稳定度;1.3 输出频率从1KHz-999KHz预置可调;1.4 焊接系统电路并调试二.设计原理2.1 锁相环原理锁相环(PLL)是构成频率合成器的核心部件。
主要由相位比较器(PD)、压控振荡器(VCO)、环路滤波器(LP)和参考频率源组成。
锁相环是一种利用外部输入的参考信号控制环路内部振荡信号反馈控制电路。
他的被控制量是相位,被控对象是压控振荡器。
如图1所示,如果锁相环路中压控振荡器的输出信号频率发生变化,则输入到相位比较器的信号相位θv(t)和θR(t)必然会不同,使相位比较器输出一个与相位误差成比例的误差电压Vd(t),经环路滤波器输出一个缓慢变化的直流电压Vc(t),来控制压控振荡器输出信号的相位,使输入和输出相位差减小,直到两信号之间的相位差等于常数。
此时,压控振荡器的输出信号频率和输入信号频率相等,且环路处于锁定状态。
2.2 锁相环频率合成器原理如图2所示,锁相环频率合成器是由参考频率源、参考分频器、相位比较器、环路滤波器、压控振荡器、可变分频器构成。
参考分频器对参考频率源进行分频,输出信号作为相位比较器参考信号。
可变分频器对压控振荡器的输出信号进行分频,分频之后返回到相位比较器输入端与参考信号进行比较。
当环路处于锁定时有f1=f2,因为f1=fr/M ,f2=fo/N ,所以有fo=Nfr/M 。
数字锁相环的频率合成器设计摘要:近几年来,无线通讯获得飞速发展。
随着其应用领域的不断扩张,市场对低功耗、低造价、高性能、高集成度的收发机的需要也越来越高。
在无线通信收发机中包含一个很重要的模块,频率合成器,它通过产生一系列与参考信号具有同样精度和稳定度的离散信号,为频率转换提供基准的本地震荡信号。
频率合成器设计的优劣直接影响到无线通信收发机的性能、成本,故其实现方式一直是一个挑战。
而本次课程设计仅考虑方案的实用性,即是实验室环境的局限性以及电子器件的价格等因素。
关键词:数字锁相环,分频,频率合成器一、选题的背景与意义随着数字电路技术的发展,数字锁相环在调制解调、频率合成、FM 立体声解码、彩色副载波同步、图象处理等各个方面得到了广泛的应用。
数字锁相环不仅吸收了数字电路可靠性高、体积小、价格低等优点,还具有对离散样值的实时处理能力,已成为锁相技术发展的方向。
锁相环是一个相位反馈控制系统,在数字锁相环中,由于误差控制信号是离散的数字信号,而不是模拟电压,因而受控的输出电压的改变是离散的而不是连续的。
本文主要介绍了仿真技术的概念、特点、发展情况及其在控制系统的应用;分析了MATLAB/SIMULINK的功能及如何在MATLAB语言提供的仿真环境SIMULINK 下实行控制系统的仿真,并对数字锁相环进行仿真。
利用计算机对控制系统进行仿真与分析,是研究控制系统的重要手段;MATLAB软件、MCGS组态软件可成功地用于控制系统的仿真、分析及监控,在科研、生产和教学等领域具有广泛的应用前景和推广价值,从上面两方面看来,本课题数字锁相环技术的matlab/simulink仿真具有一定的研究价值。
二、研究内容与拟解决的主要问题本设计从模拟锁相环研究出发,掌握锁相环的基本工作原理,了解环路失锁、捕获、跟踪过程及环路锁定条件等。
掌握数字锁相环的工作原理,并用MATLAB语言对该系统进行设计,给出数字锁相环电路各个主要模块的设计过程及仿真结果,得到该系统的顶层电路。
集成电路课程设计一-锁相环CD4046设计频率合成器学号:110800316 姓名:苏毅坚指导老师:罗国新2011年1月锁相环CD4046设计频率合成器实验目的:设计一个基于锁相环CD4046设计频率合成器范围是10k〜100K,步进为1K设计和制作步骤:确定电路形式,画出电路图。
计算电路元件参数并选取元件O组装焊接电路。
调试并测量电路性能。
确定电路组成方案原理框图如下,锁相环路对稳定度的参考振动器锁定,环内串接可编程的分频器,通过改变分频器的分配比N,从而就得到N倍参考频率的稳定输出。
晶体振荡器输出的信号频率n,经固定分频后(M分频)得到基准频率fi,,输入锁相环的相位比较器(PC)。
锁相环的VCO输出信号经可编程分频器(N分频)后输入到PC的另一端,这两个信号进行相位比较,当锁相环路锁定后得到:n/M=fF=f2/N 故f2=N『l (Fl为基准频率)当N变化时,就可以得到一系列的输出频率f2o设计方法(一)、振荡源的设计用CMOS与非门和1M晶体组成1MHz振荡器,如图14。
图中Rf使F1工作于线性放大区。
晶体的等效电感,Cl> C2构成谐振回路。
C1、C2可利用器件的分布电容不另接。
Fl、F2、F3 使用CD4049o(二)、N分频的设计N分频采用CD40103进行分频。
CD40103是BCD码8位分频器。
采用8位拨码开关控制分频大小。
输入的二进制大小即为分频器N分频。
图中RP1为1K排阻(三)、1KHZ标准信号源设计(即M分频的设计)根据4518的输出波形图,可以看出4518包含二分频、四分频、十分频,用二片CD4518 (共4个计数器)组成一个1000分频器,也就是三个十分频器,这样信号变为2Khz.再经过双D触发器,这样就可把2MHz的晶振信号变成500hz 的标准信号。
如下图所示:(四)4046锁相环的设计锁相环4046为主芯片。
电路图如下:500Hz信号从14脚输入。
3脚4脚接N分频电路,即40103分频电路。
信息科学与技术学院通信原理课程设计课题名称:数字频带通信系统的建模与设计学生姓名:王太程2011508199学院:信息科学与技术学院专业年级:电子信息工程2011级指导教师:钟福如讲师完成日期:二○一四年七月十日目录第0章引言 (2)第1章 (4)1.1 设计任务要求及方案论证 (4)1.1.1 任务要求 (4)1.1.2 锁相环频率合成的原理 (4)1.1.3锁相环频率的合成与应用(调制与解调) (6)1.1.4锁相环在调制中的应用 (7)1.1.5 锁相环在解调中的应用 (8)1.1.6 锁相环在频率合成电路中的应用 (9)1.2 仿真工具SYSTEMVIEW简介 (9)1.3 电路的设计与调试 (10)1.3.1 三环式锁相环频率合成电路 (10)第2章 (12)2.1 仿真的结果及分析 (12)第3章 (14)参考文献 (15)第0章引言锁相环(Phase Lock Loop),简称PLL,是一种利用外部输入的参考信号控制环路内部振荡信号反馈控制电路。
他的被控制量是相位,被控对象是压控振荡器。
如果锁相环路中压控振荡器的输出信号频率发生变化,则输入到相位比较器的信号相位θv(t)和θR(t)必然会不同,使相位比较器输出一个与相位误差成比例的误差电压Vd(t),经环路滤波器输出一个缓慢变化的直流电压Vc(t),来控制压控振荡器输出信号的相位,使输入和输出相位差减小,直到两信号之间的相位差等于常数。
此时,压控振荡器的输出信号频率和输入信号频率相等,且环路处于锁定状态。
锁相环是构成频率合成器的核心部件。
主要由相位比较器(Phase Discriminator)、压控振荡器(Voltage Control Oscillator)、环路滤波器(Loop Filter)组成。
锁相环路是一个能跟踪输入信号相位的闭环自动控制系统。
锁相环路系统在各个领域都有很多的用途,发展将势不可挡。
锁相环路在宇宙飞行目标的跟踪、遥测和遥控、电视接收机、电动机转速控制、自动跟踪调谐等领域都有更好的发展。
基于锁相环的频率合成器的设计班级:姓名:学号:指导老师:一、课题名称:基于锁相环的频率合成器的设计二、设计基本内容:频率合成是以一个或少量的高准确度和高稳定度的标准频率作为参考频率,由此导出多个或大量的输出频率,这些输出的准确度与稳定度与参考频率是一致的。
在通信、雷达、测控、仪器表等电子系统中有广泛的应用,频率合成器有直接式频率合成器、直接数字式频率合成器及锁相频率合成器三种基本模式,前两种属于开环系统,因此是有频率转换时间短,分辨率较高等优点,而锁相频率合成器是一种闭环系统,其频率转换时间和分辨率均不如前两种好,但其结构简单,成本低。
并且输出频率的准确度不逊色与前两种,因此采用锁相频率合成。
三、系统框图:CD4046是通用的CMOS锁相环集成电路,其特点是电源电压范围宽(为3V-18V),输入阻抗高(约100MΩ),动态功耗小,在中心频率f0为10kHz 下功耗仅为600μW,属微功耗器件。
晶振100kHz100分频1kHzCD4046计数器输出四、原理图如下:4049做为振荡器和驱动,产生100kHz的频率输入4518,然后进行100分频,把输出信号送入CD4046锁相环,CD4046的输出信号送入三个CD4522计数器进行分频,计数器的输出信号再送入CD4046做为比较信号。
五、焊接后的实物图:由于没有交板子的的时候没有注意拍照片,所以没有实物图。
六、实验所记录的数据与理论值:可以发现我所焊接的锁相环有些误差。
次数理论频率实际频率1 105kHz 105.3kHz2 226kHz 226.2 kHz3 125kHz 125.5 kHz4 385kHz 385.6 kHz5 656kHz 656.1 kHz6 672kHz 672.2 kHz7 123kHz 123.8 kHz七、用示波器所记录的波形:1)105kHz时的波形:2)226kHz时的波形3)125kHz时的波形八、心得体会:经过将近两天的焊接和调试,终于完成了此次锁相环的设计任务。
锁相与频率合成技术实验讲义桂林电子科技大学通信实验中心实验一锁相环实验一、实验原理锁相环路实质是一个负反馈的相位差自动调节系统。
1、锁相环路的构成图1 锁相环基本框图1(1)鉴相器鉴相器是相位差转换成电压的变换器(θe / V变换器、相差/电压变换器),它把两个信号U2(t)和U1(t)的相位进行比较,产主对应于两个信号相位差θe的误差电Ud(t)。
图2(a) 鉴相器模型23图2(b )异或门鉴相曲线 图2(c )数字比相器的鉴频鉴相曲线4如图2(c )的数字比相器,其特性可以理解为:① 对于相位跳变信号,如f1输入已调2PSK 信号,f2输入载波信号,则鉴相器的输入输出信号为:图3 f 1 :PSK 信号图4 f 0: 载波信号图5 f 1 与f 0 的相差θe图6 鉴相器的输出电压Ud②对于频率跳变信号,如f1输入已调2FSK信号,由高低频率f H、f L组成,f2输入f L信号,则鉴相器的输入输出信号为:图7 f1:FSK信号图8 f0:FSK的f L信号图9 f1与f0 的相差θe5(2)环路滤波器环路滤波器的作用是滤除误差电压Ud(t)中的进行积分,以保证环路所要求的性能,增加系统的稳定性。
环路滤波器常用的类型有RC积分滤波器,无源比例积分滤波器,有源比例积分滤波器。
(3)压控振荡器VCO的技术指标:中心频率、频率变化范围、频率稳定度、相位噪声、压控线性度、压控灵敏度。
图11 压控振荡器控制电压/ 输出频率(Uc-ωO)特性曲线6同步带与捕获带同步带的测量方法:环路锁定之后,缓慢提高信号源的输入频率,直到输入输出频率不相等,测出Δωh H ;用同样方法测量Δωh L ,环路锁定之后,降低信号源的输入频率,直到输入输出频率不相等,测出ΔωL 。
图20 PLL同步带范围78同步带的测量方法:由于频率太低引起环路失锁之后,缓慢提高信号源的输入频率,直到输入输出频率不相等,测出Δωp H ;用同样方法测量Δωp L 。
基于单片机的锁相环频率合成器设计1. 引言在现代通信系统和电子设备中,频率合成器是一个非常重要的电路模块,用于产生稳定的高精度时钟信号。
锁相环频率合成器是一种常用的频率合成器,它通过锁相环技术来实现输入信号与输出信号之间的频率转换。
本文将重点研究基于单片机的锁相环频率合成器设计。
2. 锁相环原理2.1 相位比较器相位比较器是锁相环中最基本的模块之一,它用于比较输入信号与反馈信号之间的相位差。
常见的相位比较器有两种类型:数字型和模拟型。
数字型相位比较器采用数字逻辑电路实现,具有高速度和稳定性;而模拟型相位比较器采用模拟电路实现,具有更高精度。
2.2 低通滤波器低通滤波器用于滤除输出信号中的高频噪声,并提供平稳且稳定的控制电压给振荡器。
在锁相环中,低通滤波器通常采用RC滤波网络或者积分放大电路来实现。
2.3 振荡器振荡器是锁相环中的核心部件,它产生稳定的输出信号,并通过反馈回路与相位比较器进行相位比较。
常见的振荡器类型有晶体振荡器、LC振荡器和压控振荡器等。
在本设计中,我们选择晶体振荡器作为基准信号源。
3. 设计流程3.1 系统框图设计首先,我们需要进行系统框图设计,确定锁相环频率合成器的基本结构和各个模块之间的连接方式。
在本设计中,系统框图主要包括相位比较器、低通滤波器、数字控制模块和输出模块。
3.2 相位比较器设计根据系统需求和性能指标,选择合适的相位比较器类型,并进行电路设计和参数选取。
在本设计中,我们选择数字型相位比较器,并采用逻辑门电路实现。
3.3 低通滤波器设计根据系统要求和频率范围选择合适的低通滤波网络或者积分放大电路,并进行电路参数计算与仿真分析。
在本设计中,我们选择RC滤波网络作为低通滤波器。
3.4 数字控制模块设计设计数字控制模块,用于控制锁相环频率合成器的工作状态和频率设置。
在本设计中,我们选择单片机作为数字控制模块的核心芯片,并通过编程来实现频率设置和状态控制。
3.5 输出模块设计设计输出模块,用于输出锁相环频率合成器产生的稳定时钟信号。
基于单片机的锁相环频率合成器设计毕业设计目录摘要 ...................................................................................................... 错误!未定义书签。
Abstract ..................................................................................................... 错误!未定义书签。
1绪论 .. (1)1.1 设计背景及意义 (3)1.2 锁相环频率合成器综述 (3)2基于单片机的锁相环频率合成器方案设计与论证 (4)2.1 课题研究的内容与要求 (4)2.2 方案的设计与选择 (4)2.3 设计原理 (5)2.3.1 锁相环基本原理 (6)2.3.2 锁相频率合成器的基本原理 (8)3 基于单片机的锁相环频率合成器设计方案 (10)3.1 硬件系统的设计 (10)3.1.1 74HC4046 (10)3.1.2 CD4522 (15)3.1.3 LCD1602 (16)3.1.4 AT89C51单片机 (18)3.2 软件系统设计 (22)3.2.1 软件系统主程序流程图 (22)3.2.2 键盘扫描流程图 (23)3.2.3 脉冲计数流程图 (24)4 电路仿真 (25)4.1 仿真软件介绍 (25)4.1.1 proteus (25)4.1.2 Keil编译软件 (26)4.2 硬件电路仿真 (27)4.2.1 锁相环模块 (27)4.2.2 4522分频器模块 (28)4.2.3 单片机模块 (29)4.2.4 显示及按键模块 (30)结论 (31)致谢 (32)参考文献 (33)附录 (34)附录A High Speed Digital Hybrid PLL Frequency Synthesizer (34)Abstract (34)INTRODUCTION (34)DH-PLL synthesizer (35)Simulation results and discussion (36)Conclusion (37)REFERENCES (37)附录B 高速数字混合锁相环频率合成器 (37)摘要 (38)1简介 (38)2.DH-PLL合成器 (38)3 仿真结果与讨论 (39)4 结论 (39)参考文献 (40)附录C 程序代码 (40)附录D 仿真结果 (44)1绪论锁相环路(PLL)是一个能够跟踪输入信号相位的闭环自动控制系统,它在无线电技术的各个领域得到了很广泛的应用。
基于cd4046锁相环的数字频率合成器电路设计1. 介绍在当今的数字电子领域,频率合成器扮演着至关重要的角色,它可以将一个基础频率信号合成出多个频率信号,广泛应用于收音机、数字通信、无线电、雷达等领域。
本文将重点讨论基于cd4046锁相环的数字频率合成器电路设计,以及CD4046的基本工作原理和性能特点。
2. 基础原理CD4046作为一种锁相环集成电路,它由相位比较器、环路滤波器和振荡器组成。
在频率合成器中,CD4046可以将输入信号频率合成成另一个输出频率信号,并且具有较高的信号锁定能力。
其基本工作原理是根据输入信号频率与振荡器输出信号频率之间的差值,不断调节振荡器输出频率,直至二者频率相同,从而实现信号的合成。
3. 设计步骤(1) 确定合成频率范围:根据实际需求确定所需合成频率范围,进而选择合适的分频倍数和振荡器参数。
(2) 选择振荡器电路:根据合成频率范围选择合适的振荡器电路和频率合成器芯片,CD4046是目前较为常用的选择之一。
(3) 进行电路仿真:使用电路仿真软件对设计电路进行仿真和调试,确保电路工作稳定和合成频率准确。
(4) 调节环路参数:根据实际需求调节环路参数,如环路带宽和环路增益,以实现更精准的频率合成效果。
4. 性能分析CD4046锁相环具有较高的抗干扰能力和频率稳定性,能够在一定程度上抵抗外部环境干扰和波动。
其响应速度较快,能够实现快速锁定输入信号频率,并且具有较高的合成精度和稳定性,适用于多种频率合成场景。
5. 个人观点在设计数字频率合成器时,选择合适的频率合成器芯片对电路性能起着至关重要的作用。
CD4046锁相环作为一种可靠的集成电路芯片,具有较高的性能和稳定性,是设计高质量数字频率合成器的重要选择之一。
在实际应用中,需要根据具体需求合理设计振荡器电路和调节环路参数,以实现更加精准和稳定的频率合成效果。
总结:本文对基于CD4046锁相环的数字频率合成器电路设计进行了全面评估和探讨,介绍了其基本工作原理、设计步骤、性能分析和个人观点,并对其在数字频率合成器设计中的重要性进行了强调。
锁相环的频率合成器
院系:信息工程学院
班级:09通三
姓名:谭长明
学号:2009550824
指导老师:蒋近
摘要:二十一实际,随着社会科技的发展与进步,具有高稳定性和准确度的频率源已经成为通信、雷达、仪器仪表、高速计算机及导航系统的主要组成部分。
高性能的频率源可通过频率合成技术获得。
随着大规模集成电路的发展,锁相式频率合成技术占有越来越重要的地位。
由一个或几个高稳定度、高准确度的参考频率源通过数字锁相频率合成技术可获得高品质的离散频率源。
关键字:分频锁相环晶振计数器鉴相器
一.设计要求
1.1 根据设计框图设计出具体的实现电路
1.2 频率稳定度至少达到10-5/月的稳定度;
1.3 输出频率从1KHz-999KHz预置可调;
1.4 焊接系统电路并调试
二.设计原理
2.1 锁相环原理
锁相环(PLL)是构成频率合成器的核心部件。
主要由相位比较器(PD)、压控振荡器(VCO)、环路滤波器(LP)和参考频率源组成。
锁相环是一种利用外部输入的参考信号控制环路内部振荡信号反馈控制电路。
他的被控制量是相位,被控对象是压控振荡器。
如图1所示,如果锁相环路中压控振荡器的输出信号频率发生变化,则输入到相位比较器的信号相位θv(t)和θR(t)必然会不同,使相位比较器输出一个与相位误差成比例的误差电压Vd(t),经环路滤波器输出一个缓慢变化的直流电压Vc(t),来控制压控振荡器输出信号的相位,使输入和输出相位差减小,直到两信号之间的相位差等于常数。
此时,压控振荡器的输出信号频率和输入信号频率相等,且环路处于锁定状态。
2.2 锁相环频率合成器原理
如图2所示,锁相环频率合成器是由参考频率源、参考分频器、相位比较器、环路滤波器、压控振荡器、可变分频器构成。
参考分频器对参考频率源进行分频,输出信号作为相位比较器参考信号。
可变分频器对压控振荡器的输出信号进行分频,分频之后返回到相位比较器输入端与参考信号进行比较。
当环路处于锁定时有f1=f2,因为f1=fr/M ,f2=fo/N ,所以有fo=Nfr/M 。
只要改变可变分频器的分频系数N ,就可以输出不同频率的信号。
2.3设计框图:
三.提供材料:
3.1 数字琐相环CD4046
3.2 8421编码开关
3.3 晶体振荡器100KHz
3.4 反相器CD4049
3.5 计数器CD4518,CD4522等
四.锁相环频率合成器的设计
4.1 集成锁相环CD4046介绍
单片集成锁相环CD4046采用CMOS 电路工艺,特点是电源电压范围宽(3~18 V),输入阻抗高(约100 M Ω),动态功耗小。
在电源电压VDD=15 V 时最高频率可达1.2 MHz ,常用在中、低频段。
CD4046内部集成了相位比较器Ⅰ、相位比较器Ⅱ、压基准频率产生电
路 鉴相器 低通滤波器 压控振荡器
可预置分频
电路
控振荡器以及线性放大器、源跟随器、整形电路等。
相位比较器Ⅰ采用异或门结构,使用时要求输入信号占空比为50%。
当两路输入信号的高低电平相异时,输出信号为高电平,反之,输出信号为低电平。
相位比较器Ⅰ的捕捉能力和滤波器有关,选择合适的滤波器可以得到较宽的捕捉范围。
相位比较器Ⅱ由一信号的上升沿控制,他对输入信号的占空比要求不高,允许输入非对称波形,具有很宽的捕捉范围。
相位比较器Ⅱ的输出和两路输入信号的频率高低有关,当14脚的输入信号比3脚的比较信号频率低时,输出为逻辑"0",反之则输出逻辑"1"。
如果两信号的频率相同而相位不同,当输人信号的相位滞后于比较信号时,相位比较器Ⅱ输出的为正脉冲,当相位超前时则输出为负脉冲。
而当两个输入脉冲的频率和相位均相同时,相位比较器Ⅱ的输出为高阻态。
压控振荡器需要外接电阻R1,R2和电容C1。
R1,C1是充放电元件,电阻R2起到频率补偿作用。
VCO的振荡频率不仅和R1,R2以及C1的取值有关,还和电源电压有关,电源电压越高振荡频率越高。
CD4046引脚和外围电路图如图3所示。
4.2 设计实例
本设计中参考频率源选用COMS石英晶体多谐振荡器产生2MHz的矩形脉冲信号,电路如图4所示。
可变分频器由集成四位二进制同步加法计数器74LS161来完成。
这里采用4片74LS161通过预置数的方法来实现可变分频。
为提高工作速度可采用图5所示接法。
利用同步方案最高可实现65 536分频。
预制值=65 536-N。
经过可变分频后获得的信号是窄脉冲信号,在输出端可利用74LS74对该信号进行二分频,以便获得方波信号,从而满足相位比较器I的占空比的要求。
此时实际分频系数变为2N。
参考分频器与可变分频器采用同样的电路,目的在于通过设置不同的分频系数M,以实现不同的频率间隔的需求。
4.3.拨盘开关式1——999KHZ
频率合成器
1、单片CD4522频率合成器。
CD4522是可预置数的二一十进制1/N减计数器。
其中D1-D4是预置端,Q1—Q4是计数器输出端,其余控制端的
功能如下:
PE(3)=“1”时D1—D4值置进计数器
EN(4)=“0”且CP(6)时,计数器(Q1—Q4)减计数;
CF(13)=“1”且计数器(Q1—Q4)减到“0”时,QC(12)=“1”
Cr(10) =“1”时,计数器清零。
单片4522分频器
拨盘开关为BCD码开关,如当数据窗口显示“3”时则A和“1”“2”相连;当显示“5”时,则A和“1”“4”相连,其余类推。
4个100K
电阻用来保证当拨盘开关为某脚不和A相连,也就是悬空时,为低电平。
工作过程是这样的:设拨盘开关拨到“N”,当某时刻PE(3)=“1”,
单片4522分频
则N置到IC内的计数器中,下一个CP来时,计数器减计数变为N-1,……,一直到第N个CP来时,计数器为0。
这时由于CF(13)=“1”,∴QC(12)=“1”,
也即PE(3)=“1”又恢复到开始状态,开始一个新的循环。
很显然,每来个N 个CP,QC(12)就会出现一个高电平,也就是QC(12)应是CP的N分频信号。
实验步骤:如图18连好,让拨盘开关分别为1,2,……9,用示波器观察CP(6)和QC(12)的波形。
(2)单片CD4522频率合成器
用图18电路代替图17中4017部分,组成1-9KHz频率合成器
4.4 用三片4522组成1——999HHZ频率合成器
如图,最终应做到拨盘开关的数值是多少,VCO输出信号的频率就是多少KHz。
4.5 电路的调试
在调试的过程中需注意R1,R2,C1的选取,选取不同的R1,R2,C1并合理设置可变分频系数N,就可获得不同频率范围的输出信号,同时根据所需情况注意选取合适的滤波器,设置不同的前置分频系数即可改变频率间隔。
五.结语
电路由于频率范围和频率间隔可根据具体需要进行调节,且输出信号频率具有高稳定性和准确性,可广泛作为离散信号源来使用,也可用于集成。
此外,如用单片机对分频器的置数端进行控制,可更加方便地实现频率的调整
通过本次实验,使自己对锁相环的工作原理及其应用有了较深的理解,锁相环应用愈广,锁相环是在无线电发射中使频率较为稳定的一种方法。
很重要的一点是,通过实验提高了发现问题,首先是对实验原理和一些芯片有了一些基本了解,运用理论知识解决实际问题的能力。
在实验过程中出现了许多小问题,开始是电路完全不通,通过用万用表测试,发现其中焊接电路的虚焊和短接,重新焊接与连线,初步测试时有方波但是输出频率都是1Mhz,不符合要求,老师开始告诉我们测试输出电路和锁相环,发现没有问题,在研究之后更换芯片,输出频率大体是正确的,但是调拨码开关时,个位和十位基本正确,到了百位出现很大误差,班上同学基本出现这样的问题,不过可能是专业知识不扎实或者电路本身原因,设计最终只能出这样的结果。
但还是对自己比较满意,也学到了很多。