用数学归纳法求证Fn中Aa所占的比例
- 格式:docx
- 大小:172.83 KB
- 文档页数:4
中考数学比例与相似的应用与推理总结数学题目中常常会涉及到比例与相似的应用与推理,这是中考数学中的一个重要考点。
在此总结了比例与相似的相关知识与应用,并提供相应的解题思路与方法。
一、比例的概念与性质比例是多个量之间的一种对应关系,是数学中常用的一种关系。
比例具有以下性质:1. 定义性质:如果两个比例相等,则称这两个比例成等比例。
2. 反比例性质:如果两个比例成反比例,即一个比例的值增大,另一个比例的值减小,它们的乘积保持不变。
二、比例的应用比例的应用十分广泛,特别是在数学题目的计算和解决中。
以下是比例的几个常见应用场景:1. 求比例缩放:根据给定的比例关系,计算物体在不同尺寸下的实际数值。
2. 比例的类似图形计算:根据相似三角形比例,求解相关尺寸或长度。
3. 比例的利用:根据给定的比例关系,计算未知量的值。
4. 比例的证明与推理:利用已知的比例关系,推导出新的比例性质。
三、相似的概念与性质相似是指两个图形形状相似、对应的边成比例的关系。
相似具有以下性质:1. 定义性质:如果两个图形相似,则它们对应的角相等,对应的边成比例。
2. 相似比例:两个相似图形的任意两条对应边的比值都相等。
四、相似的应用相似也是一个常用的数学应用概念,在解决问题和计算中具有重要作用。
以下是相似的几个常见应用场景:1. 相似三角形:基于相似三角形的定理,推导和计算图形的相应边长和角度。
2. 相似多边形:根据多边形的相似性质,计算未知边长或角度的值。
3. 相似图形的面积与体积:利用相似图形的定理,求解未知图形的面积或体积。
五、比例与相似的推理与证明比例与相似的推理与证明在中考数学中占有一定的比重,需要我们掌握以下几个重要的推理和证明方法:1. 利用比例的性质推导和证明:根据已知比例的性质,推导出新的比例关系。
2. 利用相似三角形的性质与定理:根据相似三角形的定理,推导和证明相关图形的性质。
3. 利用比例与相似的应用求解未知量:通过比例与相似的应用,解决未知量的计算问题。
常见递推数列通项的九种求解方法(1)高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。
是一类考查思维能力的好题。
要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。
类型一:an1解决方法累加法af(n)(fn可以求和)n例1、在数列an中,已知a1=1,当n2时,有anan12n1n2,求数列的通项公式。
解析:anan12n1(n2)a2a11aa332a4a35上述n1个等式相加可得:anan12n1∴ana1n21ann2评注:一般情况下,累加法里只有n-1个等式相加。
【类型一专项练习题】1、已知a11,anan1n(n2),求an。
2、已知数列an,a1=2,an1=an+3n+2,求an。
,a11,求数列{an}的通项公式。
3、已知数列{an}满足an1an2n14、已知{an}中,a13,an1an2n,求an。
11某5、已知a1,an1an(nN),求数列an通项公式.226、已知数列an满足a11,an3n1nan1n2,求通项公式an?7、若数列的递推公式为a13,an1an23n1(nN某),则求这个数列的通项公式8、已知数列{an}满足an1an23n1,a13,求数列{an}的通项公式。
9、已知数列an满足a111,an1an2,求an。
2nn,2,3,)10、数列an 中,a12,an1ancn(c是常数,n1,且a1,a2,a3成公比不为1的等比数列.(I)求c的值;(II)求an的通项公式.11、设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4);当n4时,f(n)(用n表示).n(n1)n(3n1)31答案:1.an2.an3.ann214.an2n15.an2222n1313n16.an7.an123n18.an3nn19.an10.(1)2(2)ann2n22n2n2n211.(1)5(2)2类型二:an1f(n)an(f(n)可以求积)累积法解决方法例1、在数列an中,已知a11,有nan1n1an,(n2)求数列an 的通项公式。
人教版高二上学期数学(选择性必修二)《4.4数学归纳法》同步测试题带答案一、单选题1.利用数学归纳法证明不等式1111()2321nf n ++++<-(2n ≥,且*n ∈N )的过程,由n k =到1n k =+时,左边增加了( ) A .12k -项 B .2k 项 C .1k -项D .k 项2.用数学归纳法证明:()()()1221121n n n ++++=++,在验证1n =成立时,左边所得的代数式是( )A .1B .13+C .123++D .1234+++3.用数学归纳法证明等式()()()3412332n n n +++++++=()N,1n n ∈≥时,第一步验证1n =时,左边应取的项是( ) A .1B .12+C .123++D .1234+++4.用数学归纳法证明:11112321nn ++++<-,()N,1n n ∈≥时,在第二步证明从n k =到1n k =+成立时,左边增加的项数是( ) A .2kB .21k -C .12k -D .21k +5.已知n 为正偶数,用数学归纳法证明1111111122341242n n n n ⎛⎫-+-+⋅⋅⋅+=++⋅⋅⋅+ ⎪-++⎝⎭时,若已假设n k =(2k ≥,k 为偶数)时命题为真,则还需要再证( ) A .1n k =+时等式成立 B .2n k =+时等式成立 C .22n k =+时等式成立 D .()22n k =+时等式成立6.现有命题:()()()11*1112345611442n n n n n ++⎛⎫-+-+-++-=+-+∈ ⎪⎝⎭N ,用数学归纳法探究此命题的真假情况,下列说法正确的是( ) A .不能用数学归纳法判断此命题的真假 B .此命题一定为真命题C .此命题加上条件9n >后才是真命题,否则为假命题D .存在一个无限大的常数m ,当n m >时,此命题为假命题 二、多选题7.用数学归纳法证明不等式11111312324++++>++++n n n n n 的过程中,下列说法正确的是( ) A .使不等式成立的第一个自然数01n = B .使不等式成立的第一个自然数02n =C .n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++ D .n k =推导1n k =+时,不等式的左边增加的式子是()()12223k k ++8.用数学归纳法证明不等式11111312324++++>++++n n n n n 的过程中,下列说法正确的是( ) A .使不等式成立的第一个自然数01n = B .使不等式成立的第一个自然数02n =C .n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++ D .n k =推导1n k =+时,不等式的左边增加的式子是()()12223k k ++三、填空题9.在运用数学归纳法证明()121*(1)(2)n n x x n +-+++∈N 能被233x x ++整除时,则当1n k =+时,除了n k =时必须有归纳假设的代数式121(1)(2)k k x x +-+++相关的表达式外,还必须有与之相加的代数式为 . 10.用数学归纳法证明:()()122342n n n -+++++=(n 为正整数,且2n)时,第一步取n = 验证. 四、解答题11.用数学归纳法证明:()*11111231n n n n +++>∈+++N 12.数学归纳法是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立.证明分为下面两个步骤:1.证明当0n n =(0n ∈N )时命题成立;2.假设n k =(k ∈N ,且0k n ≥)时命题成立,推导出在1n k =+时命题也成立.用模取余运算:mod a b c =表示“整数a 除以整数b ,所得余数为整数c ”.用带余除法可表示为:被除数=除数×商+余数,即a b r c =⨯+,整数r 是商.如7321=⨯+,则7mod31=;再如3703=⨯+,则3mod73=.当mod 0a b =时,则称b 整除a .现从序号分别为0a 1a 2a 3a …n a 的1n +个人中选出一名幸运者,为了增加趣味性,特制定一个遴选规则:大家按序号围成一个圆环,然后依次报数,每报到m (2m ≥)时,此人退出圆环;直到最后剩1个人停止,此人即为幸运者,该幸运者的序号下标记为()1,f n m +.如()1,0f m =表示当只有1个人时幸运者就是0a ;()6,24f =表示当有6个人而2m =时幸运者是4a ;()6,30f =表示当有6个人而3m =时幸运者是0a . (1)求10mod3;(2)当1n ≥时 ()()()()1,,mod 1f n m f n m m n +=++,求()5,3f ;当n m ≥时,解释上述递推关系式的实际意义;(3)由(2)推测当1212k k n +≤+<(k ∈N )时,()1,2f n +的结果,并用数学归纳法证明.参考答案1.B【分析】根据给定条件,探讨n 从k 变到1k +不等式左边增加的部分即可得解. 【详解】当(2,N )n k k k *=≥∈时,不等式左边为11112321k++++- 当1n k =+时,不等式左边为11111111232122121k k k k +++++++++-+-增加的项为111111122121221221k k k k k k k++++=++++-++-,共有2k 项. 故选:B 2.C【分析】根据题意结合数学归纳法分析判断.【详解】当1n =时212113n +=⨯+=,所以左边为123++. 故选:C. 3.D【分析】由数学归纳法的证明步骤可得答案. 【详解】由数学归纳法的证明步骤可知: 当1n =时,等式的左边是1234+++. 故选:D . 4.A【分析】列出增加的项,即可得解.【详解】从n k =到1n k =+成立时,左边增加的项为12k 121k + (1121)k +- 因此增加的项数是21012k k --+=.故选:A . 5.B【分析】直接利用数学归纳法的证明方法分析判断即可.【详解】由数学归纳法的证明步骤可知,假设n k =(2k ≥,k 为偶数)时命题为真 还需要再证明下一个偶数,即2n k =+时等式成立. 故选:B 6.B【分析】直接用数学归纳法证明可得答案.【详解】①当1n =时,左边1=,右边1=,左边=右边,即1n =时,等式成立; ①假设()*1,n k k k =≥∈N 时,等式成立即1111123456(1)(1)442k k k k ++⎛⎫-+-+-++-=+-+ ⎪⎝⎭则当1n k =+时 121211123456(1)(1)(1)(1)(1)(1)442k k k k k k k k ++++⎛⎫-+-+-++-+-+=-++-+ ⎪⎝⎭211(1)1442k k k +⎛⎫=+-+-- ⎪⎝⎭ 2111(1)442k k ++⎛⎫=+-+ ⎪⎝⎭即当1n k =+时,等式成立. 综上,对任意n +∈N 等式1111123456(1)(1)442n n n n ++⎛⎫-+-+-++-=+-+ ⎪⎝⎭恒成立 所以ACD 错误. 故选:B . 7.BC【分析】根据数学归纳法逐项分析判断. 【详解】当1n =时,可得113224<;当2n =时,可得111413342424+=>; 即使不等式成立的第一个自然数02n =,故A 错误,B 正确; 当n k =时,可得1111123k k k k k++++++++; 当1n k =+时,可得11111232122k k k k k k ++++++++++;两式相减得:()()1111212212122k k k k k +-=+++++ 所以n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++,故C 正确,D 错误;故选:BC. 8.BC【分析】根据数学归纳法逐项分析判断. 【详解】当1n =时,可得113224<;当2n =时,可得111413342424+=>; 即使不等式成立的第一个自然数02n =,故A 错误,B 正确; 当n k =时,可得1111123k k k k k++++++++; 当1n k =+时,可得11111232122k k k k k k ++++++++++; 两式相减得:()()1111212212122k k k k k +-=+++++ 所以n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++,故C 正确,D 错误;故选:BC.9.()22133(2)k x x x -+++【分析】按数学归纳法写出证明过程即可得答案.【详解】设当n k =时 ()121*(1)(2)k k x x k +-+++∈N 能被233x x ++整除所以1n k =+时 221(1)(2)k k x x +++++()12211(1)(2)(2)k k x x x x +-=+++++()1212211(1)(1)(2)(33)(2)k k k x x x x x x x +--=+++++++++ ()1212211[(1)(2)](33)(2)k k k x x x x x x +--=++++++++因此必须有代数式()22133(2)k x x x -++⋅+. 故答案为:()22133(2)k x x x -++⋅+10.2【分析】利用数学归纳法证明的步骤一:取证明的命题对象中的最小自然数,即可得出. 【详解】用数学归纳法证明:()()122342n n n -+++++=(n 为正整数,且2n ≥)时第一步取2n =验证. 故答案为:2. 11.证明见解析【分析】利用数学归纳法的证明步骤进行证明即可. 【详解】①当1n =时,左边11113123412=++=>,左边>右边,不等式成立; ①假设n k =时不等式成立,即11111231k k k +++>+++ 则当1n k =+时,左边()()111112313231311k k k k k =+++++++++++ ()()1111111123113231311k k k k k k k ⎛⎫=+++-+++ ⎪++++++++⎝⎭ ()()()22616111211132343191889189k k k k k k k k k ⎡⎤++>++-=+->⎢⎥+++++++⎢⎥⎣⎦即当1n k =+时,不等式也成立. 由①①可知,原不等式成立. 12.(1)10mod31= (2)()5,33f =,答案见解析(3)()()1,221mod 2kf n n ⎡⎤+=+⎣⎦,证明见解析【分析】(1)用模取余法可求结论;(2)由()()()6,35,33mod60f f =+= ()5,35f < 可求()5,3f ;从1n +个人中选出一个幸运者时,幸运者的序号下标为()1,f n m +,从n 个人中选出一个幸运者时,幸运者的序号下标为(),f n m ,后者的圆环可以认为是前者的圆环退出一人而形成的,可推得结论; (3)取1,2,3,4,5,6,7n =时,分别求得()2,20f = ()3,22f = …… ()8,20f =;可得当1212k k n +≤+<(k ∈N )时()()1,221mod 2k f n n ⎡⎤+=+⎣⎦,进而利用数学归纳法证明即可.【详解】(1)因为10331=⨯+,所以10mod31=. (2)因为()()()6,35,33mod60f f =+=,且()5,35f < 所以()5,336f +=,故()5,33f =.当n m ≥时,递推关系式的实际意义:当从1n +个人中选出一个幸运者时,幸运者的序号下标为()1,f n m + 而从n 个人中选出一个幸运者时,幸运者的序号下标为(),f n m .如果把二者关联起来,后者的圆环可以认为是前者的圆环退出一人而形成的 当然还要重新排序,由于退出来的是1m a -,则原环的m a 就成了新环的0a 也就是说原环的序号下标要比新环的大m ,原环的n a 就成了新环的n m a -. 需要注意,新环序号n m a -后面一直到1n a -,如果下标加上m ,就会超过n . 如新环序号1n m a -+对应的是原环中的0a ,…,新环序号1n a -对应的是原环中的2m a -. 也就是说,得用新环的序号下标加上m 再减去()1n +,才能在原环中找到对应的序号 这就需要用模取余,即()()()()1,,mod 1f n m f n m m n +=++. (3)由题设可知()1,20f =,由(2)知:()()()2,21,22mod22mod20f f =+==; ()()()3,22,22mod32mod32f f =+==; ()()()4,23,22mod44mod40f f =+==; ()()()5,24,22mod52mod42f f =+==; ()()()6,25,22mod64mod64f f =+==; ()()()7,26,22mod76mod76f f =+==; ()()()8,27,22mod88mod80f f =+==;由此推测,当1212k k n +≤+<(k ∈N )时 ()()1,221mod 2k f n n ⎡⎤+=+⎣⎦.下面用数学归纳法证明:1.当0112n +==时()()01,2021mod 2f ==,推测成立;2.假设当12k n t +=+(k ∈N ,t ∈N 且02k t ≤<)时推测成立即()()2,222mod 22k k kf t t t ⎡⎤+=+=⎣⎦.由(2)知()()()()21,22,22mod 21k k kf t f t t ++=++++()()22mod 21k t t =+++.(①)当021k t ≤<-时 ()()21,222221mod 2k k kf t t t ⎡⎤++=+=++⎣⎦; (①)当21k t =-时 ()21,20kf t ++=,此时1212k k t +++= 即()()1112,222mod 2k k k f +++=.故当121k n t +=++时,推测成立.综上所述,当1212k k n +≤+<(k ∈N )时 ()()1,221mod 2kf n n ⎡⎤+=+⎣⎦.推测成立.【点睛】思路点睛:关于新定义题的思路有:(1)找出新定义有几个要素,找出要素分别代表什么意思;(2)由已知条件,看所求的是什么问题,进行分析,转换成数学语言; (3)将已知条件代入新定义的要素中; (4)结合数学知识进行解答.。
小六比例知识点总结一、比例概念比例是两个相对量之间的对应关系。
比例取决于两个数或两个量之间的关系,可以用数学符号表示为 a:b,也可以用"比"的形式表示为 a与b成比例。
其中,a称为比例的第一项或分子,b称为比例的第二项或分母。
例如:如果一个正方形的一条边是3cm,另一条边是6cm,则这两条边的比例是3:6或者1:2。
二、比例的表示方法1. 冒号表示法:比例a:b或者a/b通常用冒号表示为a:b。
2. 分数表示法:比例a:b还可以表示为a/b的分数形式。
3. 百分数表示法:比例a:b还可以表示为a%:b%的百分数形式。
例如:如果一个正方形的一条边是3cm,另一条边是6cm,那么这两条边的比例可以表示为3:6、1:2,也可以表示为1/2的分数形式,或者表示为50%:100%的百分数形式。
三、比例的性质1. 相等比例:如果两个比例a:b和c:d中,a与b的比值等于c与d的比值,即a/b=c/d,那么这两个比例是相等的。
2. 反比例:如果两个比例a:b和b:c中,a与c的乘积等于b的平方,即a*c=b的平方,那么这两个比例是反比例的。
四、比例的比较1. 比较大小:比较两个比例的大小可以通过交叉相乘法进行,即a/b与c/d比较时,计算a*d和b*c的大小。
2. 比较增减:比较两个比例之间的增减关系时,可以通过增减因子,即计算(b-a)/a与(d-c)/c的大小关系,来判断比例的增减情况。
五、比例的变化1. 比例的变化:比例中的两个量都按照一定比率的增减变化时,可以通过比例的性质进行分析和计算。
2. 比例的合成:如果两个比例a:b和c:d中,b和c相等,那么可以通过合并比例来得到新的比例a:(b+d)。
3. 比例的分解:如果一个比例a:b可以分解成两个部分,即a=c+m,b=c+n,则可以通过比例的分解来求解未知量。
六、应用问题1. 比例的运用:在现实生活中,比例广泛应用于各个领域,如商业、金融、工程、建筑等。
中考数学中的比例与比较大小解题技巧总结在中考数学中,比例与比较大小是一个常见的解题类型。
正确运用比例和比较大小的解题技巧,可以帮助我们更好地理解和解决各类与比例相关的问题。
本文将总结一些在中考数学中常用的比例与比较大小解题技巧。
一、比例的基本概念比例是指两个或多个具有相同或者成比例关系的数之间的比较。
在比例中,我们经常遇到以下几种形式:1. 分数形式:如a:b,表示a与b之间的比值关系;2. 冒号形式:如a比b大,用a:b表示;3. 百分数形式:如a%表示a/100。
百分比可以直接转换为分数形式进行比较。
在比例中,我们要注意比例单位的统一,保持一致,便于进行比较与计算。
比例的相等性质是我们解决问题的基础。
二、比例解题技巧1. 比例的计算比例一般包括已知比例和未知比例两种情况。
在已知比例的情况下,我们可以使用比例关系进行计算。
例如,如果已知甲乙两个数的比例为a:b,乙数为x,我们可以通过求解等式(a/b) = (x/乙数)来计算甲数。
2. 混合运算在一些比例问题中,我们需要进行混合运算。
这时,我们可以先根据已知比例通过计算得到一个未知数,然后利用这个未知数继续进行计算和比较。
3. 倒数比例倒数比例是指两个数的乘积等于一个常数的情况。
在解题过程中,我们可以通过求解等式a×b = c来计算和比较各个数的值。
4. 逆向计算在一些比例问题中,我们可以利用逆向计算的方法来求解未知数。
例如,如果已知甲乙两个数的比例为a:b,乙数为x,我们可以通过求解等式(a/b) = (乙数/x)来计算甲数。
三、比较大小解题技巧在解题过程中,我们常常需要比较大小,确定两个或多个数之间的大小关系。
以下是一些常用的比较大小解题技巧:1. 分数形式比较大小当进行分数比较时,我们可以将两个或多个分数的分子和分母进行相乘,然后进行比较。
例如,对于两个分数a/b和c/d,我们可以计算(ad)和(bc)的值,并比较大小。
2. 小数形式比较大小对于小数的比较,我们可以通过将小数转化为分数形式,然后按照分数比较的方法进行比较。
浅谈模型和模型构建在生物教学中的应用中学生物学的教学应努力将模型和模型构建应用于课堂教学之中,以提高学生的科学素养和科学探究能力。
构建生物学模型有助于学生系统地、完整地学习和理解新知识,同时有助于学生运用生物学模型去解决生物学问题。
一.高中生物学课程中的模型所谓"模型”,是指模拟原型(所要研究的系统的结构形态或运动形态)的形式,它不再包括原型的全部特征,但能描述原型的本质特征。
模型一般可分为物理模型,概念模型和数学模型两大类。
1.物理模型以实物或图画形式直接表达认识对象的特征,这就是物理模型。
在高中生物课程中经常使用的实物模型如反映生物体结构的标本;模拟模型如细胞结构模型、被子植物花的结构模型,各种组织器官的立体结构模型,沃森和克里克制作的著名的DNA双螺旋结构模型等。
2.概念模型概念模型是指以文字表述来抽象概括出事物的本质特征的模型;是人们抽象出生物原型某些方面的本质属性而使对象简化,便于研究而构思出来的。
例如呼吸作用过程图解、细胞分裂过程模型、物质出入细胞模型、光合作用过程图解、激素分泌调节模型、动物个体发育过程模型,食物链和食物网等模型。
这类模型使研究对象简化。
3.数学模型数学模型是指用符号,公式,图像等数学语言表现生物学现象,特征和状况。
如有丝分裂过程中DNA含量变化曲线、酶的活性随pH变化而变化的曲线、种群基因频率、同一植物不同器官对生长素浓度的反应曲线、孟德尔豌豆杂交实验中9:3:3:1的比例关系等。
生物学教学实践证明,构建生物学模型有助于学生系统地、完整地学习和理解新知识,同时有助于学生运用生物学模型去解决生物学问题。
二.模型和模型构建在教学中的应用1.新授课中,应尽可能运用实物、标本、图片、模式图等模型。
“形象大于思维”,新授课中,生物学中有大量概念及概念间的内在关系需要理解。
学生刚接触某一知识,就会面临尽快记住并理解之间联系等诸多困难。
出示模型既体现生物学学科特点,同时可以帮助学生认识事物原貌,有助于学生记忆、整理、理解和运用所学知识。
第四讲 用数学归纳法证明不等式讲末综合检测(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.用数学归纳法证明不等式1+123+133+…+1n 3<2-1n (n ≥2,n ∈N +)时,第一步应验证不等式( )A .1+123<2-12B .1+123+133<2-13C .1+123<2-13D .1+123+133<2-14解析:选A.第一步验证n =2时不等式成立,即1+123<2-12.2.设S (n )=1n +1n +1+1n +2+…+1n 2,则( )A .S (n )共有n 项,当n =2时,S (2)=12+13B .S (n )共有n +1项,当n =2时,S (2)=12+13+14C .S (n )共有n 2-n 项,当n =2时,S (2)=12+13+14D .S (n )共有n 2-n +1项,当n =2时,S (2)=12+13+14解析:选D.S (n )的项数应为n 2-(n -1)=n 2-n +1,S (2)=12+13+14,故选D.3.设f (n )=1n +1+1n +2+1n +3+ (12)(n ∈N +),那么f (n +1)-f (n )等于( ) A .12n +1 B .12n +2 C .12n +1+12n +2 D .12n +1-12n +2解析:选D.因为f (n )=1n +1+1n +2+ (12), 所以f (n +1)=1n +2+1n +3+…+12n +12n +1+12n +2, 所以f (n +1)-f (n )=12n +1+12n +2-1n +1=12n +1-12n +2.4.k 棱柱有f (k )个对角面,则k +1棱柱的对角面个数f (k +1)为( )A .f (k )+k +1B .f (k )+kC .f (k )+k -1D .f (k )+k -2解析:选C.当k 棱柱变为k +1棱柱时,新增的一条侧棱与和它不相邻的k -2条侧棱确定k -2个对角面,而原来的一个侧面变为对角面,所以共增加k -1个对角面.5.已知数列{a n }中,a 1=1,a 2=2,a n +1=2a n +a n -1(n ∈N +),用数学归纳法证明a 4n 能被4整除,假设a 4k 能被4整除,然后应该证明( )A .a 4k +1能被4整除B .a 4k +2能被4整除C .a 4k +3能被4整除D .a 4k +4能被4整除解析:选D.由假设a 4k 能被4整除,则当n =k +1时,应该证明a 4(k +1)=a 4k +4能被4整除.6.设0<θ<π2,a 1=2cos θ,a n +1=2+a n ,则猜想a n 等于( )A .2cos θ2nB .2cos θ2n -1C .2cos θ2n +1D .2sin θ2n解析:选 B.因为a 1=2cos θ,所以a 2=2+2cos θ=22cos2θ2-1+1=2⎪⎪⎪⎪⎪⎪cos θ2.又因为0<θ<π2,所以0<θ2<π4,所以a 2=2cos θ2,所以a 3=2+2cos θ2=2cos θ4=2cos θ22,故猜想a n =2cos θ2n -1.7.F (n )是一个关于自然数n 的命题,若F (k )(k ∈N +)真,则F (k +1)真,现已知F (7)不真,则有①F (8)不真; ②F (8)真; ③F (6)不真; ④F (6)真; ⑤F (5)不真; ⑥F (5)真. 其中真命题是( ) A .③⑤ B .①② C .④⑥D .③④解析:选A.因为F (k )(k ∈N +)真,则F (k +1)真的逆否命题是:F (k +1)不真,则F (k )不真,从而可结合数学归纳法的原理知:当F (7)不真时,F (6)不真,F (5)亦不真,故③⑤是真命题.8.用数学归纳法证明:“n 3+(n +1)3+(n +2)3(n ∈N +)能被9整除”,要利用归纳假设证n =k +1时的情况,只需展开( )A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)3解析:选A.当n =k +1时,证明“(k +1)3+(k +2)3+(k +3)3能被9整除”.由归纳假设,n =k 时,k 3+(k +1)3+(k +2)3能被9整除,所以只需将(k +3)3展开.9.数列{a n }的前n 项和S n =n 2a n (n ≥2),且a 1=1,通过计算a 2,a 3,a 4,猜想a n 等于( ) A .2(n +1)2 B .2n (n +1)C .22n -1D .1n -1解析:选B.由已知a 1=1,S n =n 2a n (n ≥2),得a 1+a 2=4a 2,解得a 2=13=22×3,同理a 3=23×4,a 4=24×5,…,猜想a n =2n (n +1).10.对任意n ∈N +,34n +2+a2n +1都能被14整除,则最小的自然数a 为( )A .1B .2C .5D .3解析:选C.因为当n =1时,34n +2=36=729=52×14+1,所以只需1+a 3是14的倍数. 于是可排除选项A 、B , 若a =3,则当n =2时,34n +2+32n +1=35×22×61,不是14的倍数,这样又排除选项D. 因此答案只能是C.11.上一个n 层的台阶,若每次可上一层或两层,设所有不同上法总数为f (n ),则下列猜想中正确的是( )A .f (n )=nB .f (n )=f (n -1)+f (n -2)C .f (n )=f (n -1)f (n -2)D .f (n )=⎩⎪⎨⎪⎧n (n =1,2)f (n -1)+f (n -2)(n ≥3)解析:选D.当n =1时,有1种上法,当n =2时,有2种上法.当n ≥3时,f (n )为第1次上一层的上法f (n -1)与第1次上两层f (n -2)的和.故选D.12.已知1+2×3+3×32+4×33+…+n ×3n -1=3n(na -b )+c 对一切n ∈N +都成立,则a ,b ,c 的值为( )A .a =12,b =c =14B .a =b =c =14C .a =0,b =c =14D .不存在这样的a ,b ,c解析:选A.因为等式对一切n ∈N +均成立, 所以n =1,2,3时等式成立, 即⎩⎪⎨⎪⎧1=3(a -b )+c ,1+2×3=32(2a -b )+c ,1+2×3+3×32=33(3a -b )+c ,整理得⎩⎪⎨⎪⎧3a -3b +c =1,18a -9b +c =7,81a -27b +c =34,解得⎩⎪⎨⎪⎧a =12,b =14,c =14.二、填空题:本题共4小题,每小题5分.13.用数学归纳法证明cos α+cos 3α+…+cos(2n -1)α=sin 2n α2sin α(sin α≠0,n ∈N +),在验证n =1时,等式右边的式子是________.解析:当n =1时,右边=sin 2α2sin α=2sin αcos α2sin α=cos α.答案:cos α14.对于任意自然数n ,n 3+11n 都能被m 整除,则m 的最大值为________. 解析:设f (n )=n 3+11n ,则f (1)=12,f (2)=30,f (3)=60,f (4)=108.因为12,30,60,108的最大公约数为6, 所以m 的最大值为6. 答案:615.设f (n )=⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫1+1n +1…⎝ ⎛⎭⎪⎫1+1n +n ,用数学归纳法证明f (n )≤3.在“假设n=k 时成立”后,f (k +1)与f (k )的关系是f (k +1)=f (k )·________.解析:当n =k 时,f (k )=⎝ ⎛⎭⎪⎫1+1k ·⎝ ⎛⎭⎪⎫1+1k +1…⎝ ⎛⎭⎪⎫1+1k +k ;当n =k +1时,f (k +1)=⎝⎛⎭⎪⎫1+1k +1·(1+1k +2)…⎝ ⎛⎭⎪⎫1+12k +2, 所以应乘⎝ ⎛⎭⎪⎫1+12k +1⎝ ⎛⎭⎪⎫1+12k +2·k k +1. 答案:⎝ ⎛⎭⎪⎫1+12k +1⎝ ⎛⎭⎪⎫1+12k +2·k k +1 16.已知数列{a n },其中a 2=6,且满足a n +1+a n -1a n +1-a n +1=n ,则a 1=________,a 3=________,a 4=________,猜想a n =________.解析:由已知可得a 2+a 1-1a 2-a 1+1=1,a 3+a 2-1a 3-a 2+1=2,a 4+a 3-1a 4-a 3+1=3,将a 2=6代入以上三式,解得:a 1=1,a 3=15,a 4=28.由于a 1=1,a 2=2×3,a 3=3×5,a 4=4×7, 猜想得a n =n (2n -1). 答案:1 15 28 n (2n -1)三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)求证:平面上通过同一点的n 条直线分平面为2n 个部分. 证明:(1)当n =1时,一条直线把平面分成两部分,故命题成立.(2)假设n =k(k≥1,k ∈N +)时,平面上通过同一点的k 条直线把平面分成2k 个部分,设第(k +1)条直线落在相邻的两条直线之间,它把这两条直线所围成的平面上的两个区域变成4个区域,也即增加一条直线后,平面上的区域共有2k +2=2(k +1)个,故命题对于n =k +1也成立.由(1)、(2)知,原命题对于任何正整数n 都成立.18.(本小题满分12分)用数学归纳法证明:f (n )=3·52n +1+23n +1(n ∈N +)能被17整除.证明:(1)当n =1时,f (1)=3×53+24=391=17×23, 故f (1)能被17整除.(2)假设n =k (k ≥1,k ∈N +)时,命题成立. 即f (k )=3·52k +1+23k +1能被17 整除,则当n =k +1时,f (k +1)=3·52k +3+23k +4=52·3·52k +1+52·23k +1-52·23k +1+23k +4=25f (k )-17·23k +1.由归纳假设,可知f (k )能被17整除,又17·23k +1显然可被17整除,故f (k +1)能被17整除.综合(1)(2)可知,对任意正整数n ,f (n )能被17整除.19.(本小题满分12分)已知a i >0(i =1,2,3,…,n ),考察下列式子: ①a 1·1a 1≥1;②(a 1+a 2)⎝ ⎛⎭⎪⎫1a 1+1a 2≥4;③(a 1+a 2+a 3)⎝ ⎛⎭⎪⎫1a 1+1a 2+1a 3≥9.归纳对a 1,a 2,…,a n 都成立的类似不等式,并用数学归纳法证明. 解:由所给不等式可归纳(a 1+a 2+…+a n )⎝ ⎛⎭⎪⎫1a 1+1a 2+…+1a n ≥n 2.证明如下:(1)当n =1时,显然成立.(2)假设当n =k (k ≥1,k ∈N +)时,不等式成立. 当n =k +1时,(a 1+a 2+…+a k +1)·⎝ ⎛⎭⎪⎫1a 1+1a 2+…+1a k +1=(a 1+a 2+…+a k )⎝ ⎛⎭⎪⎫1a 1+1a 2+…+1a k +a k +1⎝ ⎛⎭⎪⎫1a 1+1a 2+…+1a k +1a k +1(a 1+a 2+…+a k )+1≥k 2+⎝ ⎛⎭⎪⎫a k +1a 1+a 1a k +1+⎝ ⎛⎭⎪⎫a k +1a 2+a 2a k +1+…+⎝ ⎛⎭⎪⎫a k +1a k +a k a k +1+1≥k 2+2k +1=(k +1)2, 即n =k +1时,不等式成立.综上,(a 1+a 2+…+a n )⎝ ⎛⎭⎪⎫1a 1+1a 2+…+1a n ≥n 2.20.(本小题满分12分)设函数f (x )=x -x ln x ,数列{a n }满足0<a 1<1,a n +1=f (a n ). (1)证明:函数f (x )在区间(0,1)上是增函数; (2)证明:a n <a n +1<1.证明:(1)f ′(x )=1-(1+ln x )=-ln x . 因为x ∈(0,1),所以ln x <0. 所以f ′(x )>0,所以f (x )在(0,1)上为增函数. (2)运用数学归纳法证明0<a n <1, 当n =1时,由于0<a 1<1, 所以不等式成立.假设当n =k (k ≥1,k ∈N +)时,0<a k <1, 则当n =k +1时,a k +1=f (a k )=a k -a k ln a k =a k (1-ln a k ).因为ln a k <0,所以a k +1>0. 因为f (x )在(0,1)上为增函数, 又0<a k <1,所以a k +1=f (a k )<f (1)=1-0=1. 即对于任意的正整数n 均有0<a n <1. 而a n +1-a n =-a n ·ln a n >0, 所以a n +1>a n , 故a n <a n +1<1.21.(本小题满分12分)设集合M ={1,2,3,…,n }(n ≥3),记M 的含有三个元素的子集个数为S n ,同时将每一个子集中的三个元素由小到大排列,取出中间的数,所有这些中间的数的和记为T n .(1)求T 3S 3,T 4S 4,T 5S 5,T 6S 6的值; (2)猜想T n S n的表达式,并证明.解:(1)当n =3时,M ={1,2,3},S 3=1,T 3=2,T 3S 3=2,当n =4时,M ={1,2,3,4},S 4=4,T 4=2+2+3+3=10,T 4S 4=52,T 5S 5=3,T 6S 6=72. (2)猜想T n S n =n +12.下面用数学归纳法证明. ①当n =3时,由(1)知猜想成立. ②假设当n =k (k ≥3)时,猜想成立, 即T k S k =k +12,而S k =C 3k ,所以T k =k +12C 3k ,则当n =k +1时,易知S k +1=C 3k +1.而当集合M 从{1,2,3,…,k }变为{1,2,3,…,k ,k +1}时,T k +1在T k 的基础上增加了1个2,2个3,3个4,…,(k -1)个k ,所以T k +1=T k +2×1+3×2+4×3+…+k (k -1) =k +12C 3k +2(C 22+C 23+C 24+…+C 2k ) =k +12C 3k +2(C 33+C 23+C 24+…+C 2k ) =k -22C 3k +1+2C 3k +1 =k +22C 3k +1=(k +1)+12S k +1, 即T k +1S k +1=(k +1)+12. 所以当n =k +1时,猜想也成立. 综上所述,猜想成立.22.(本小题满分12分)记f n (x ,y )=(x +y )n-(x n+y n),其中x ,y 为正实数,n ∈N +.给定正实数a ,b 满足a =bb -1.用数学归纳法证明:对于任意正整数n ,f n (a ,b )≥f n (2,2).证明:欲证不等式为(a +b )n-a n-b n≥22n-2n +1.(*)(1)当n =1时,不等式(*)左边=0,右边=0,不等式(*)成立. (2)假设当n =k (k ∈N +)时,不等式(*)成立,即(a+b)k-a k-b k≥22k-2k+1.由a>0,b>0及a=bb-1,得a+b=ab.因为a>0,b>0,所以a+b≥2ab,从而ab≥4,a+b=ab≥4.进而a k b+ab k≥2(ab)k+1≥24k+1=2k+2,则当n=k+1(k∈N+)时,(a+b)k+1-a k+1-b k+1=(a+b)[(a+b)k-a k-b k]+a k b+ab k≥4[(a+b)k-a k-b k]+2k+2≥4(22k-2k+1)+2k+2=22(k+1)-2(k+1)+1,所以当n=k+1时,不等式也成立.由(1)(2)知,对n∈N+,不等式(*)成立,即原不等式成立.。
初中比例与相似解题技巧与实例讲解比例是数学中常见的概念,也是日常生活中经常会用到的数学知识。
而在初中数学中,比例与相似的解题技巧更是需要掌握的基础知识。
本文将为大家详细介绍初中比例与相似解题技巧,并给出相关实例讲解,帮助大家更好地理解和掌握这些知识。
一、比例的基本概念比例指的是两个量之间的对应关系。
通常表示为a:b或a/b,其中a称为比例的第一项,b称为比例的第二项。
比例的两个项可以是任意实数,包括正数、负数和零。
比例中的两个项之间的关系是等比关系,比如a:b=c:d就表示a与b的比值等于c与d的比值。
在比例中,我们常常遇到三种常见的情况,即已知一项求另一项、已知两个比例求第三个比例和连续比。
我们通过以下几个实例来讲解比例的解题技巧。
实例1:已知a:b=2:3,求a的值当b=9时。
解析:根据已知条件,我们可以设a=k,即a的值为k倍的2。
那么,b的值就是k倍的3。
当b=9时,解方程3k=9,可得k=3。
因此,a的值为k倍的2,即a=3×2=6。
实例2:已知a:b=2:3,b:c=4:5,求a:b:c的比例。
解析:由已知条件,我们可以得到a:b=2:3,b:c=4:5。
为了求得a:b:c的比例,我们需要将两个比例进行合并。
首先,我们可以将第一个比例的第二项b和第二个比例的第一项b进行合并,得到a:b=2×4:3×4,即a:b=8:12。
然后,我们再将第一个比例的第一项a和第二个比例的第二项c进行合并,得到a:c=2×5:3×5,即a:c=10:15。
因此,最终得到a:b:c=8:12:15。
实例3:有三个数按照比例0.2:0.3:0.5排列,这是连续比,求这三个数。
解析:连续比指的是比例中的两个相邻项之间的比值相等。
对于这个问题,我们可以假设第一个数为k,那么第二个数为0.3k,第三个数为0.5k。
根据连续比的性质,我们可以得到以下方程组:0.3k/0.2=0.5k/0.3解方程可得k=0.9。
用数学归纳法求证F n中Aa所占的比例
范华茂(道县二中)
数学归纳法是数学上证明与自然数n有关命题的一种特殊方法,在高中数学中常用来证明不等式和数列的通项公式。
在高中生物中也有很多方面体现了数学归纳法的思想,在遗传学中运用数学归纳法可以求证F n中Aa所占的比例。
一、基因型为Aa的个体连续自交F n中Aa所占的比例(B n)
1.用遗传图解法猜测B n的表达式
基因型为Aa的个体连续自交n代的遗传图解如下:
由图可知,当n=1时,B1=1/21;当n=2时,B2=1/22;当n=3时,B3=1/23……
由此猜想,基因型为Aa的个体连续自交n代,F n中Aa所占的比例B n=1/2n。
2.用数学归纳法证明B n的表达式
(1)当n=1时,B1=1/21,已证;
(2)设n=k时,B k=1/2k,成立。
那么当n=k+1时,遗传图解如下:
由图可知,当n=k+1时,B k+1=1/2k+1。
由(1) (2)可知,基因型为Aa的个体连续自交n代,F n中Aa所占的比例B n=1/2n,对于任意自然数n都成立。
二、基因型为Aa的个体连续自交并逐代淘汰隐性个体F n中Aa所占的比例(B n)
1. 用遗传图解法猜测B n的表达式
基因型为Aa的个体连续自交n代并逐代淘汰隐性个体的遗传图解如下:
由图可知,当n=1时,B1=2/3;当n=2时,B2=2/5;当n=3时,B3=2/9……
由此猜想,Aa的个体连续自交并逐代淘汰aa,F n中Aa所占的比例B n=2/(2n+1)。
2.用数学归纳法证明B n的表达式
(1)当n=1时,B1=2/(21+1),已证;
(2)设n=k时,B k=2/(2k+1),成立。
那么当n=k+1时,遗传图解如下:
由图可知,当n=k+1时,B k+1=2/(2k+1+1)。
由(1) (2)可知,基因型为Aa的个体连续自交n代,并逐代淘汰隐性个体,F n中Aa所占的比例B n=1/2n,对于任意自然数n都成立。
三、基因型为Aa的个体随机交配F n中Aa所占的比例(B n)
1.用遗传图解法猜测B n的表达式
基因型为Aa的个体随机交配n代的遗传图解如下:
由图可知,当n=1时,B1=1/2;当n=2时,B2=1/2;当n=3时,B3=1/2……
由此猜想,基因型为Aa的个体随机交配n代,F n中Aa所占的比例B n=1/2。
2.用数学归纳法证明B n的表达式
(1)当n=1时,B1=1/2,已证;
(2)设n=k时,B k=1/2,成立。
那么当n=k+1时,遗传图解如下:
由图可知,当n=k+1时,B k+1=1/2。
由(1) (2)可知,基因型为Aa的个体随机交配n代,F n中Aa所占的比例B n=1/2,对于任意自然数n都成立。
四、基因型为Aa的个体随机交配并逐代淘汰隐性个体F n中Aa所占的比例(B n)
1.用遗传图解法猜测B n的表达式
基因型为Aa的个体随机交配n代并逐代淘汰隐性个体的遗传图解如下:
由图可知,当n=1时,B1=2/3;当n=2时,B2=2/4;当n=3时,B3=2/5……
由此猜想,Aa的个体随机交配并逐代淘汰aa,F n中Aa所占的比例B n=2/(n+2)。
2.用数学归纳法证明B n的表达式
(1)当n=1时,B1=2/(1+2),已证;
(2)设n=k时,B k=2/(k+2),成立。
那么当n=k+1时,遗传图解如下:
由图可知,当n=k+1时,B k+1=2/[(k+1)+2]。
由(1) (2)可知,基因型为Aa的个体随机交配n代,并逐代淘汰隐性个体,F n中Aa所占的比例B n=2/(n+2),对于任意自然数n都成立。