第三章-传热学数值计算方法
- 格式:pdf
- 大小:6.01 MB
- 文档页数:33
导热问题的数值求解方法数值解法的基本思想是用空间和时间区域内有限个离散点(称为节点)上温度的近似值,代替物体内实际的连续温度分布,然后由导热方程和边界条件推导出各节点温度间的相互关系的代数方程组(称为离散方程),求解此方程组,得到节点上的温度值,此即物体中温度场的解。
只要节点分布的足够稠密,数值解就有足够的精度。
求解导热问题的数值方法有有限差分法及有限元法,近几年又发展了边界元法和有限分析法。
数值方法适用于求解各种导热问题,不管物体的几何形状有多复杂,不管线性或非线性问题,都能使用。
由于计算机的飞速发展,计算技术软件发展也很快,数值方法的的地位越来越重要。
1 数值求解的基本思路及稳态导热内节点离散方程的建立一、 解法的基本思路1、基本思路:数值解法的求解过程可用框图4-1表示。
由此可见:1)物理模型简化成数学模型是基础;2)建立节点离散方程是关键;3)一般情况微分方程中,某一变量在某一坐标方向所需边界条件的个数等于该变量在该坐标方向最高阶导数的阶数。
二、稳态导热中位于计算区域内部的节点离散方程的建立方法1、基本方法方法:①泰勒级数展开法;②热平衡法。
1)泰勒级数展开法如图4-3所示,以节点(m,n)处的二阶偏导数为例,对节点(m+1,n)及(m-1,n)分别写出函数t 对(m,n)点的泰勒级数展开式:对(m+1,n):+∂∂∆+∂∂∆+∂∂∆+∂∂∆+=+444333,222,,,12462x t x x t x x t x x t x t t n m n m n m n m (a )对(m-1,n ):+∂∂∆+∂∂∆-∂∂∆+∂∂∆-=-444333,222,,,12462x t x x t x x t x x t xt t n m n m n m n m (b )(a )+(b )得: +∂∂∆+∂∂∆+=+-+444,222,,1,1122x t x x t x t t t n m n m n m n m 变形为n m x t,22∂∂的表示式得:n m x t,22∂∂)(0222,1,,1x x t t t nm n m n m ∆+∆+-=-+ 上式是用三个离散点上的值计算二阶导数n m x t ,22∂∂的严格表达式,其中:)(02x ∆―― 称截断误差,误差量级为2x ∆在数值计算时,用三个相邻节点上的值近似表示二阶导数的表达式即可,则相应的略去)(02x ∆。
传热学第一章绪论1.传热学的定义: 研究由于温度差而引起的热能传递规律的科学.2.热流量(heat transfer rate):单位时间内通过某一给定面积A的热量,记为Φ,单位为 W3.热流密度(或称面积热流量):通过单位面积的热流量,记为q,单位是 W/m24.稳态过程与非稳态过程稳态过程:热量传递系统中各点温度不随时间而改变的过程非稳态过程:各点温度随时间而改变的过程5.热传导的定义:物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子热运动而产生的热量传递过程1)导热是物质的固有属性2)固、液、气等均具有一定的导热能力3)纯导热只发生在密实的固体和静止的流体中导热现象的判断?1)有温差;2)密实固体或静止流体6.模型一平壁稳态导热.影响因素:平壁面积,厚度,温差平壁稳态导热的计算公式:7.λ —热导率,又称导热系数.单位:W/(m·K) (热物理参数)8.热对流:流体中温度不同的各部分发生相互混合的宏观运动而引起的热量传递现象特点: 1)发生在流体中2)流体内部必须存在温差3)流体必须有宏观运动4)伴随着热传导9.对流传热:流动的流体与温度不同的固体壁面间的热量传递过程.(热对流的一种方式,传热学研究方式).分类:按流体流动的起因:1)自然对流、自由对流:流体冷、热各部分密度不同而引起的2)受迫对流、强迫对流:流体的流动是在外力(在泵或风机)作用下产生的技巧:给出流体速度的为强迫对流按流体有无相变:1)无相变的对流传热2)有相变的对流传热:沸腾换热、凝结换热10.如何判断对流传热1)发生在壁面和流体之间:参与物质类型2)壁面和流体存在温差:热量传递的前提3)流体要运动:速度体现一定不要遗漏自然对流11.对流传热的计算—牛顿冷却公式(对流传热的热量传递速率方程)当流体被加热时:当流体被冷却时:h-表面传热系数(过程量),W/(m2·K)13.热辐射:由于自身温度(热)的原因而发出辐射能的现象(heat radiation)1)辐射传热:物体之间因为相互辐射、相互吸收而引起的热量传递过程2)理想物体:绝对黑体,简称黑体(能够全部吸收投射到其表面上辐射能的物体)14.黑体辐射的斯忒藩-玻耳兹曼(Stefan-Boltamann)定律实际物体的辐射能力:注意:1)σ—斯忒藩-玻耳兹曼常数,5.67×10-8W/(m2·K4) 2)ε—发射率(emissivity),习惯上也称为黑度,物性参数15.理想模型2—两平行黑体平板间的辐射传热(相距很近,表面间充满了透明介质)16.理想模型3—非凹表面1包容在面积很大的空腔2中注意:1)辐射传热必须采用热力学温度2)注意公式的使用条件3)“动态平衡”的含义(p8)17.导热、对流与辐射的辨析:1)导热、对流只在有物质存在的条件下才能实现;热辐射不需中间介质(非接触性传热)2)辐射不仅有能量的转移,而且伴随能量形式的转换;3)辐射换热是一种双向热流同时存在的换热过程;4)辐射能力与其温度有关,导热、对流与温差有关;导热与对流的辨析:气、液、固均具有导热能力,纯导热只发生在静止的流体中;对流只发生在流动的流体中;18.传热过程:热量由固体一侧的高温流体通过固体壁面传给另一侧低温流体的热量传递过程 。
传热过程常用计算方法6.2.2.1 换热器热工计算的基本公式换热器热工计算的基本公式为传热方程式和热平衡方程式。
(1)传热方程(6-12)式中,Δt m为换热器的平均温差,是整个换热面上冷热流体温差的平均值,它是考虑冷热两流体沿传热面进行换热时,其温度沿流动方向不断变化,故温度差Δt也是不断变化的。
它不能像计算房屋的墙体的热损失或热管道的热损失等时,都把其Δt作为一个定值来处理。
换热器的平均温差的数值,与冷、热流体的相对流向及换热器的结构型式有关。
(2)热平衡方程式(6-13)式中 G1,G2:热、冷流体的质量流量,kg/s;c1,c2:热、冷流体的比热,J/(kg·℃);t1′、t2′:热、冷流体的进口温度,℃;t1″、t2″:热、冷流体的出口温度,℃;G1c1,G2c2:热、冷流体的热容量,W/℃。
即各项温度的角标意义为:“1”是指热流体,“2”是指冷流体;”′”指进口端温度,”″”指出口端温度。
6.2.2.2 对数平均温差法应用对数平均温差法计算的基本计算公式如式(6-12)所示,式中平均温差对于顺流和逆流换热器,由传热学可得,均为:(6-14)由于温差随换热面变化是指数曲线,顾流与逆流相比,顺流时温差变化较显著,而逆流时温差变化较平缓,故在相同的进出口的温度下,逆流比顾流平均温差大。
此外,顾流时冷流体的出口温度必然低于热流体的出口温度,而逆流则不受此限制。
故工程上换热器一般都尽可能采用逆流布置。
逆流换热器的缺点是高温部分集中在换热器的一端。
除顺流、逆流外,根据流体在换热器中的安排,还有交叉流、混合流等。
对于这些其它流动形式的平均温差,通常都把推导结果整理成温差修正系数图,计算时,先一律按逆流方式计算出对数平均温差,然后按流动方式乘以温差修正系数。
用对数平均温差法计算虽然较精确,但稍显麻烦。
当Δt′/Δt″<1.7时,用算术平均温差代替对数平均温差的误差不超过2.3%,一般当Δt′/Δt″<2时,即可用算术平均温差代替对数平均温差,这时误差小于4%,即Δt m=(Δt′+Δt″)/26.2.2.3 效能-传热单元数法(ε-NTU法)换热器热工计算分为设计和校核计算,它们所依据的都是式(6-12)、(6-13)。
(完整PPT)传热学contents •传热学基本概念与原理•导热现象与规律•对流换热原理及应用•辐射换热基础与特性•传热过程数值计算方法•传热学实验技术与设备•传热学在工程领域应用案例目录01传热学基本概念与原理03热辐射通过电磁波传递热量的方式,不需要介质,可在真空中传播。
01热传导物体内部或两个直接接触物体之间的热量传递,由温度梯度驱动。
02热对流流体中由于温度差异引起的热量传递,包括自然对流和强制对流。
热量传递方式传热过程及机理稳态传热系统内的温度分布不随时间变化,热量传递速率保持恒定。
非稳态传热系统内的温度分布随时间变化,热量传递速率也随时间变化。
传热机理包括导热、对流和辐射三种基本传热方式的单独作用或相互耦合作用。
生物医学工程研究生物体内的热量传递和温度调节机制,为医学诊断和治疗提供理论支持。
解决高速飞行时的高温问题,保证航空航天器的安全运行。
机械工程用于优化机械设备的散热设计,提高设备运行效率和可靠性。
能源工程用于提高能源利用效率和开发新能源技术,如太阳能、地热能等。
建筑工程在建筑设计中考虑保温、隔热和通风等因素,提高建筑能效。
传热学应用领域02导热现象与规律导热基本概念及定律导热定义物体内部或物体之间由于温度差异引起的热量传递现象。
热流密度单位时间内通过单位面积的热流量,表示热量传递的强度和方向。
热传导定律描述导热过程中热流密度与温度梯度之间关系的定律,即傅里叶定律。
导热系数影响因素材料性质不同材料的导热系数差异较大,如金属通常具有较高的导热系数,而绝缘材料则具有较低的导热系数。
温度温度对导热系数的影响因材料而异,一般情况下,随着温度的升高,导热系数会增加。
压力对于某些材料,如气体,压力的变化会对导热系数产生显著影响。
稳态与非稳态导热过程稳态导热物体内部各点温度不随时间变化而变化的导热过程。
在稳态导热过程中,热流密度和温度分布保持恒定。
非稳态导热物体内部各点温度随时间变化而变化的导热过程。