数值计算方法-第3章--线性方程组的解法PPT
- 格式:pptx
- 大小:1.85 MB
- 文档页数:77
第3章线性方程组的解法本章探讨大型线性方程组计算机求解的常用数值方法的构造和原理,主要介绍在计算机上有效快速地求解线性方程组的有关知识和方法。
重点论述Jacobi迭代法、Seidel迭代法、Guass消元法及LU分解法的原理、构造、收敛性等内容。
3.1 实际案例3.2问题的描述与基本概念解线性方程组问题在线性代数中已有很优美的行列式解法,但对大型的线性方程组(阶数n>40)的求解问题使用价值并不大,因为其计算量太大。
实际问题中经常遇到自变量个数n都很大的线性方程组求解问题,这些线性方程组要借助计算机的帮助才能求出解。
n 个变元12,,,n x x x ⋯的线性方程组的一般形式为11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ (3.3)式中,a ij 称为系数,b i 称为右端项,它们都是已知的常数。
如果有***1122,,,n n x x x x x x ===使方程组(3.3)成立,则称值***12,,,n x x x为线性方程组的(3.3)的一组解。
本章在不作特别说明的情况下,主要讨论m=n 的线性方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩的求解问题,且假设它有唯一解。
线性方程组的矩阵表示Ax b =式中A 称为系数矩阵,b 称为右端项。
数值分析中,线性方程组的数值解法主要分为直接法和迭代法两大类。
直接法是用有限次计算就能求出线性方程组“准确解”的方法(不考虑舍入误差);迭代法是由线性方程组构造出迭代计算公式,然后以一个猜测的向量作为迭代计算的初始向量逐步迭代计算,来获得满足精度要求的近似解。