二面角的求法精华版
- 格式:ppt
- 大小:994.50 KB
- 文档页数:20
四法求二面角二面角是高考的热点内容之一,求二面角的大小应先作出它的平面角,下面介绍作二面角的平面角四种方法:定义法、垂面法、三垂线定理法、射影面积法。
(1)定义法——在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
注:o 点在棱上,用定义法。
(2)垂线法(三垂线定理法)——利用三垂线定理作出平面角,通过解直角三角形求角的大小。
注:o 点在一个半平面上,用三垂线定理法。
(3)垂面法——通过做二面角的棱的垂面,两条交线所成的角即为平面角。
注:点O 在二面角内,用垂面法。
(4)射影面积法——若多边形的面积是S ,它在一个平面上的射影图形面积是S`,则二面角θ的大小为COS θ= S`÷ SA 图3αβO B lO图5β α l C B A例1 如图1-125,PC⊥平面ABC,AB=BC=CA=PC,求二面角B-PA-C的平面角的正切值。
(三垂线定理法)分析由PC⊥平面ABC,知平面ABC⊥平面PAC,从而B在平面PAC上的射影在AC 上,由此可用三垂线定理作出二面角的平面角。
解∵ PC⊥平面ABC∴平面PAC⊥平面ABC,交线为AC作BD⊥AC于D点,据面面垂直性质定理,BD⊥平面PAC,作DE⊥PA于E,连BE,据三垂线定理,则BE⊥PA,从而∠BED是二面角B-PA -C的平面角。
设PC=a,依题意知三角形ABC是边长为a的正三角形,∴ D是∵PC = CA=a,∠PCA=90°,∴∠PAC=45°∴在Rt△DEA评注本题解法使用了三垂线定理来作出二面角的平面角后,再用解三角形的方法来求解。
例2 在60°二面角M-a-N内有一点P,P到平面M、平面N的距离分别为1和2,求点P到直线a的距离。
(图1-126)(垂面法)分析设PA、PB分别为点P到平面M、N的距离,过PA、PB作平面α,分别交M、N于AQ、BQ.同理,有PB⊥a,∵ PA∩PB=P,∴ a⊥面PAQB于Q又 AQ、BQ平面PAQB∴ AQ⊥a,BQ⊥a.∴∠AQB是二面角M-a-N的平面角。
二面角求法正方体是研究立体几何概念的一个重要模型,中学立体几何教学中,求平面与平面所成的二面角是转化为平面角来度量的,也可采用一些特殊的方法求二面角,而正方体也是探讨求二面角大小方法的典型几何体。
笔者通过探求正方体中有关二面角,分析求二面角大小的八种方法:(1)平面角定义法;(2)三垂线定理法;(3)线面垂直法;(4)判定垂面法;(5)异面直线上两点间距离公式法;(6)平行移动法;(7)投影面积法;(8)棱锥体积法。
一、平面角定义法此法是根据二面角的平面角定义,直接寻求二面角的大小。
以所求二面角棱上任意一点为端点,在二面角两个平面内分别作垂直于棱的两条射线所成角就是二面角的平面角,如图二面角α-l-β中,在棱l上取一点O,分别在α、β两个平面内作AO⊥l,BO⊥l,∠AOB即是所求二面角的平面角。
例题1:已知正方体ABCD-A1B1C1D1中,O、O1是上下底面正方形的中心,求二面角O1-BC-O的大小。
例题2:已知正方体ABCD-A1B1C1D1中,E、F为A1D1、C1D1的中点,求平面EFCA与底面ABCD所成的二面角。
二、 利用三垂线定理法此方法是在二面角的一个平面内过一点作另一个面的垂线,再由垂足(或仍是该点)作棱的垂线,连接该点和棱上的垂足(或连两垂足)两点线,即可得二面角的平面角。
如图二面角α-l-β中,在平面α内取一点A ,过A 作AB ⊥平面β,B 是垂足, 由B (或A )作BO (或AO )⊥l ,连接AO (或BO )即得AO 是平面β的斜线, BO 是AO 在平面β中的射影,根据三垂线定理(或逆定理)即得AO ⊥l ,BO ⊥l , 即∠AOB 是α-l-β的平面角。
例题3:已知正方体ABCD-A 1B 1C 1D 1中,求二面角B-AC-B 1的大小。
例题4:已知正方体ABCD-A 1B 1C 1D 1中,求平面ACD 1与平面BDC 1所成的二面角。
三、 线面垂直法此法利用直线垂直平面即该直线垂直平面内任何直线的性质来寻求二面角的平面角。
二面角求法总结一、定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
例1:(全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =,2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点(II )求二面角S AM B --的大小。
练习1:(山东)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点. (Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为62,求二面角E —AF —C 的余弦值.二、三垂线法FG三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P在一个半平面上则通常用三垂线定理法求二面角的大小。
例2.(山东卷理)如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB//CD,AB=4, BC=CD=2, AA1=2, E、E1、F分别是棱AD、AA1、AB的中点。
(1)证明:直线EE1//平面FCC1;(2)求二面角B-FC1-C的余弦值。
练习2(天津)如图,在四棱锥ABCDP-中,底面ABCD是矩形.已知60,22,2,2,3=∠====PABPDPAADAB.(Ⅰ)证明⊥AD平面PAB;(Ⅱ)求异面直线PC与AD所成的角的大小;(Ⅲ)求二面角ABDP--的大小.三.补棱法本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。
即当二平面没有明确的交线时,一般用补棱法解决例3(湖南)如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,PA ⊥底面ABCD ,PA =2. (Ⅰ)证明:平面PBE ⊥平面PAB ;(Ⅱ)求平面PAD 和平面PBE 所成二面角(锐角)的大小.练习3-1:已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。
二面角的多种求法1.概念法例1:如图所示,在四面体ABCD 中,1AC AB ==,2CD BD ==,3AD =。
求二面角A BC D --的大小。
分析:四面体ABCD 的各个棱长都已经给出来了,这是一个典型的根据长度求角度的问题。
解:设线段BC 的中点是E ,接AE 和DE 。
根据已知的条件1AC AB ==,2CD BD ==,可以知道AE BC ⊥且DE BC ⊥。
又BC 是平面ABC 和平面DBC 的交线。
根据定义,可以得出:AED ∠即为二面角A BC D --的平面角。
可以求出32AE =,3DE =3AD =。
根据余弦定理知:22222233)372cos 243232AE DE ADAED AE DE+-+-∠==-⨯⨯⨯即二面角A BC D --的大小为7arccos4π-。
例2:如图所示,ABCD 是正方形,PB ABCD ⊥平面,1PB AB ==,求二面角A PD C --的大小。
解:作辅助线CE PD ⊥于点E ,连接AC 、AE 。
由于AD CD =,PA PC =,所以PAD PCD ≅三角形三角形。
即AE PD ⊥。
由于CE PD ⊥,所以AEC ∠即为所求的二面角的大小。
通过计算可以得到:2PC =3PD =,又1CD =,在三角形PCD 中可以计算得到63CE =。
由此可以得到:63AE CE ==,又2AC =。
由余弦定理:222222133cos 22223AE CE AC AEC AE AC +-+-∠===-⋅⋅即:23AEC π∠=。
2.空间变换法空间变换法指的是基本的空间方法,包括三垂线法、补角法、垂面法、切平面法等方法。
下面用例3介绍三垂线法、补角法和垂面法。
例3:如图所示,现有平面α和平面β,它们的交线是直线DE ,点F 在平面α内,点C 在平面β内。
求二面角F DE C --的大小。
分析:过点C 作辅助线CA 垂直于DE ,作CB 垂直于平面β于点B 。
二面角的计算公式二面角,这可是高中立体几何中的一个重要概念呀!咱先来说说啥是二面角。
想象一下,你有一张纸,把它对折一下,那折起来的这个“角度”,就是二面角啦。
在数学里,二面角是指从一条直线出发的两个半平面所组成的图形。
那二面角咋计算呢?常见的方法有定义法、三垂线定理法、垂面法、射影面积法等等。
先说定义法。
这就好比你要量一个桌子的长度,直接拿尺子去量。
定义法就是直接在二面角的棱上找一点,在两个半平面内分别作棱的垂线,这两条垂线所成的角就是二面角的平面角。
比如有这么一道题:在正方体 ABCD - A1B1C1D1 中,求平面 A1BD 与平面 C1BD 所成二面角的大小。
那咱就可以在棱 BD 上找个点,比如中点 O,然后分别在平面 A1BD 和平面 C1BD 内作 BD 的垂线,再通过计算就能得出二面角的大小啦。
再说说三垂线定理法。
这就有点像你找东西,有个线索给你指引。
三垂线定理说的是:在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。
比如说,已知二面角α - l - β的一个半平面α内一点 A 到另一个半平面β的垂线为 AB,垂足为 B,过垂足 B 作棱 l 的垂线 BC,垂足为 C,连接 AC,那∠ACB 就是二面角的平面角。
还有垂面法。
就好像你盖房子,先打个牢固的地基。
作一个垂直于二面角棱的平面,那这个平面与二面角的两个半平面的交线所成的角就是二面角的平面角。
最后说说射影面积法。
这就好比是灯光照下来的影子。
二面角的余弦值等于某一个半平面在另一个半平面的射影面积与原面积的比值。
我记得我当年上学的时候,有一次老师在课堂上讲二面角的计算,我听得那叫一个迷糊。
课后我就自己找了好多练习题来做,做着做着突然就开窍了。
那种感觉,就像是在黑暗中摸索了好久,突然看到了一丝光亮。
总之啊,二面角的计算虽然有点复杂,但只要掌握了方法,多做练习,就一定能拿下它!加油吧,同学们!。
立体几何二面角求法一:知识准备1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面.2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。
3、二面角的大小范围:[0°,180°]4、三垂线定理:平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直5、平面的法向量:直线L垂直平面α,取直线L的方向向量,则这个方向向量叫做平面α的法向量。
(显然,一个平面的法向量有无数个,它们是共线向量)6、二面角做法:做二面角的平面角主要有3种方法:(1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹的角;(2)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角;(3)、三垂线法:过一个半平面内一点(记为A)做另一个半平面的一条垂线,过这个垂足(记为B)再做棱的垂线,记垂足为C,连接AC,则∠ACB即为该二面角的平面角。
7、两个平面的法向量的夹角与这两个平面所成的二面角的平面角有怎样的关系?二:二面角的基本求法及练习1、定义法:αβaOAB从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
本定义为解题提供了添辅助线的一种规律。
如例1中从二面角S —AM—B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。
五法求二面角一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
例1如图,四棱锥SABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD,AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点;(II )求二面角SAM B --的大小。
证明:作ME∥CD 交SD 于点E ,则ME∥AB,ME⊥平面SAD ,连结AE ,则四边形ABME 为直角梯形,作MF⊥AB,垂足为F ,则AFME 为矩形, 设ME=x ,则SE=x ,,MF=AE=,FB=2-x ,由MF=FB·tan 60°,得,解得x=1,即ME=1,从而,所以M 为侧棱SC 的中点。
(Ⅱ)解:MB==2,又∠ABM=60°,AB=2,所以△ABM 为等边三角形. 又由(Ⅰ)知M 为SC 中点,,故,取AM 中点G ,连结BG ,取SA 中点H ,连结GH , 则BG⊥AM,GH⊥AM,由此知∠BGH 为二面角S-AM-B 的平面角, 连结BH ,在△BGH 中,,BH=,所以,,所以,二面角S-AM-B 的大小为arccos。
练习1如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC∠=︒,E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ; (Ⅱ)若H 为PD 上的动点,EH 与平面P AD所成最大角的正切值为2E —AF —C 的余弦值. (2).设AB=2则AE=√3∵AE ⊥面PAD ∴∠EHA 就是EH 与面PAD 所成的角当∠EHA 最大时,EH ⊥PD 则AH ⊥PD tan ∠EHA=AE/AH=√6/2 AH=√2 AD=2 ∴PA=2=AC ∴AF=√2 CF ⊥AF ∵PA ⊥面ABC ∴面PAC ⊥面ABCFG作EG ⊥AC 则EG ⊥面PAC 作GM ⊥AF 于M,连EM 则∠EMG 为二面角E-AF-C 的平面角或其补角EG=AE/2=√3/2,AG=√3·EG=3/2 GM=3√2/4 EF=PB/2=√2EM=√30/4(也可以在△AEF 中利用面积可以求得) cos ∠EMG=GM/EM=3√10/10二、三垂线法三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。
a O课题3:二面角求法总结一、知识准备1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面.2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。
3、二面角的大小范围:[0°,180°]4、 二面角的求解方法对二面角的求解通常是先定位二面角的平面角,从而将三维空间中的求角问题转化为二维空间并可以通过三角形的边角问题加以解决.定位出二面角为解题的关键环节,下面就二面角求解的步骤做初步介绍:一、“找”:找出图形中二面角,若不能直接找到可以通过作辅助线补全图形定位二面角的平面角二、“证”:证明所找出的二面角就是该二面角的平面角 三、“算”:计算出该平面角由于定位二面角的难度较大,对于求解二面角还有一种思路就是绕开定位二面角这一环节,通过一些等价的结论或公式或用空间向量等方法来直接求出二面角的大小.本文将根据这两种解题思路对二面角的解题方法做一一介绍. 5、二面角做法:做二面角的平面角主要的方法有: 6、 (1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹 的角; 7、 (2)、三垂线法:过一个半平面内一点(记为A )做另一个半平面的一条垂线,过这个垂足(记为B )再做棱的垂线,记垂足为C ,连接AC ,则∠ACB 即为该二面角的平面角。
(3)射影法:凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos 斜射S S =θ)求出二面角的大小。
(4)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角;(5)无交线的二面角处理方法(6)向量法二、二面角的基本求法及练习1、定义法(从两面内引两条射线与棱垂直,这两条射线可以相交也可异面,从而面面角就转化为线线角来求)从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
二面角的平面角及求法1、二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面.棱为AB、面分别为a、0的二面角记作二面角a-45-0.有时为了方便,也可在a、P内(棱以外的半平面部分)分别取点尸、0,将这个二面角记作夕-AB-Q.如果棱记作/,那么这个二面角记作二面角a-/-0或尸2、二面角的平面角在二面角a-/-0的棱/上任取一点0,以点0为垂足,在半平面a和0内分别作垂直于棱/的射线。
4和08,则射线04和06构成的N4O6叫做二面角的平面角.二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度.平面角是直角的二面角叫做直二面角.二面角的平面角NZ06的大小与点。
的位置无关,也就是说,我们可以根据需要来选择棱/上的点0.3、二面角的平面角求法:(1)定义;(2)三垂线定理及其逆定理;①定理内容:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么,它就和这条斜线垂直.②三垂线定理(逆定理)法:由二面角的一个面上的斜线(或它的射影)与二面角的棱垂直,推得它位于二面角的另一的面上的射影(或斜线)也与二面角的棱垂直,从而确定二面角的平面角.(3)找(作)公垂面法:由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角.;(4)平移或延长(展)线(面)法;(5)射影公式;(6)化归为分别垂直于二面角的两个面的两条直线所成的角;(7)向量法:用空间向量求平面间夹角的方法:设平面a和0的法向量分别为:和若两个平面的夹角为仇则(1)当O〈Vu,v>^—,e=Vu,v>,此时cose=cosVu,v>=-7-^—.2 lullvl―♦―♦—♦1]■V (2)当——<<u,V>W TT时,0=cos(n-Vu,v>)=-cos<u,v>=-=———2 lullvl。
解题宝典二面角是立体几何的重要内容,也是各类试题考查的重点内容.求二面角问题主要考查作二面角的平面角的方法以及同学们的空间想象能力.本文重点介绍求二面角的三种基本方法:定义法、三垂线法、公垂面法.一、定义法从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱.以二面角棱上的任意一点O 为端点,在两个半平面内分别作垂直于棱的两条射线OA 、OB ,则∠AOB 就是此二面角的平面角.二面角的大小可以用它的平面角来度量.在求二面角的大小时,我们只要根据二面角的平面角的定义作出平面角,通过解三角形,即可求得平面角的大小.例1.已知二面角α-a -β等于120°,PA ⊥α,A∈α,PB ⊥β,B ∈β,求∠APB 的大小.分析:本题可运用定义法求解,首先需要根据二面角的定义作出二面角的平面角.为了求得∠APB ,可过A 作二面角棱的垂线交棱于O 点,连接OB ,使APBO 在同一平面内,这样便可运用四边形的内角和为360o的定理求得结果.解:如图1,过A 作二面角棱的垂线交棱于O 点,连接OB ,∵PA ⊥α,a ⊂α,∴PA ⊥a ,同理PB ⊥a ,∴a ⊥平面PAB 又∵OA ⊂平面PAB ,∴a ⊥OA ,且O 、P 、A 、B 四点共面,同理a ⊥OB ,∴∠AOB 是二面角α-a -β的平面角.在四边形PAOB 中,∠AOB =120°,∠PAO =∠POB =90°,∴∠APB =60°.图3图1图2二、三垂线法三垂线法是指运用三垂线定理求二面角的方法.我们首先要找到一个平面的垂线,再过垂足作棱的垂线,连结两个垂足即得到二面角的平面角.在运用三垂线法解题时,只需要构造出三条垂线,便可利用三垂线定理来证明所作的角为二面角的平面角.例2.如图2,ABCD -A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求二面角C 1-DE -C 的正切值.解:过点C 1作C 1O ⊥DE ,连接CO ,由三垂线定理可得CO ⊥DE ,∴∠C 1OC 为二面角C 1-DE -C 的平面角,又∵ABCD 是边长为2的正方形,∴CD =2,CE =1,DE =5,在RtΔADE 中,S ΔCDE =12CD ∙CE =12DE ∙CO ,∴CO =,又∵CC 1=1,tan ∠C 1OC =CC1CO.该解法主要运用了三垂线法作出了二面角的平面角,然后在直角三角形C 1OC 中,根据正弦函数的定义求得二面角C 1-DE -C 的平面角∠C 1OC 的正切值.三、公垂面法公垂面法是指作一个与棱垂直的平面,使该垂面与二面角的两半平面相交,得到的交线所成的角即为二面角的平面角.公垂面法的适用范围较小,一般只适用于方便求作两个半平面的公垂面的问题.例3.如图3,已知PA 与正方形ABCD 所在的平面垂直,且AB =PA ,求平面PAB 与平面PCD 所成的二面角的大小.分析:该二面角的平面角很难作出来,由图可知平面PAD 为平面PAB 与平面PCD 的公垂面,可运用公垂面法求解,寻找出它们的交线便可找出二面角的平面角,由已知的边角关系即可求得二面角的大小.解:∵PA ⊥平面ABCD ,∴PA ⊥CD ,又∵CD ⊥AD ,∴CD ⊥平面PAD ,而CD ⊂平面PCD ,∴平面PCD ⊥平面PAD ,同理可证,平面PAB ⊥平面PAD ,∵平面PCD ∩平面PAD =PD ,平面PAB ∩平面PAD =PA ,∴PA ,PD 与所求二面角的棱均垂直,∴∠APD 为所求二面角的平面角,且∠APD =45°.定义法、三垂线法、公垂面法三种方法都是求二面角的常用方法,但其适用的情形各不相同.定义法适用于解答可直接利用定义作出二面角的问题;三垂线法适用于解答垂直关系较多的问题;公垂面法适用于解答方便求作两个半平面的公垂面的问题.(作者单位:山东省无棣县第三高级中学)刘阳43。
立体几何-二面角求解五法一、定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
本定义为解题提供了添辅助线的一种规律。
如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。
例1如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点(II )求二面角S AM B --的大小。
解证(I )略 (II ):利用二面角的定义。
在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。
则GFB ∠即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB , ∴211423=+=BG FGFG366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)36arccos(-练习1如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点. (Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角的正切值为6,求二面角E —AF —C 的余弦值. 分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。
解题宝典空间角主要包括异面直线所成的角、直线与平面所成的角、二面角.二面角是指从一条直线出发的两个半平面所组成的图形.求二面角的大小是一类常见的问题.本文重点介绍求二面角大小的四种方法:定义法、向量法、面积投影法、三垂线定理法.一、定义法过二面角棱上的任一点,在两个半平面内分别作与棱垂直的射线,则两射线所成的角叫做二面角的平面角.一般地,要求得二面角的大小只需要求出二面角的平面角的大小即可.在求二面角的大小时,我们可以根据二面角的平面角的定义来求解.首先在二面角的棱上选取一点,在两个面内作棱的垂线,则两条垂线的夹角,即为二面角的平面角,求得平面角的大小即可得到二面角的大小.例题:如图1,在长方体ABCD-A1B1C1D1中,底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥EB1C1;(2)若AE=A1E,求二面角B-EC-C1正弦值.图1图2解:(1)略;(2)由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=45°,故AE=AB,AA1=2AB.如图2所示,在平面BCE内过B点作BM⊥CE于点M,取棱CC1的中点N,连结MN,EN.因为EC1=EC,所以EN⊥CC1,所以ΔCEN为直角三角形.因为BC⊥BE,所以ΔCEB为直角三角形.令AB=1,则BC=NC=1,BE=EN=2,CE=3,所以RtΔBEC≌RtΔNEC,所以MN⊥EC,则∠BMN即为二面角B-EC-C1的平面角.在RtΔBEC中,sin∠BCE=BE CE=BM BC,所以BM=,MN.在ΔBMN中,cos∠BMN=BM2+MN2-BN22BM∙MN=-12,则sin∠BMN=,故二面角B-EC-C1正弦值.利用定义法求二面角的大小的关键是作出二面角的平面角.在作图的过程中要充分利用题目条件中隐含的垂直关系,如等腰三角形三线合一的性质、菱形或正方形的对角线相互垂直、直角三角形中勾股定理及其逆定理等.另外在构造二面角的平面角时,常用的方法还有垂面法,即经过两个面的垂线的平面与两个平面的交线所夹的角即为二面角的平面角.二、三垂线法三垂线法是指利用三垂线定理求作二面角的平面角,求得二面角大小的方法.在求作二面角的平面角时,需过其中一个面内的一点作另一个面的垂线,再经过垂足作棱的垂线,连接该点与棱上的垂足,进而构造出与二面角的平面角相关的角,再结合图形中的垂直关系求得二面角的大小.以上述例题为例.解:如图3,连接BD,AC,交点为O,过点O作CE的垂线,垂足为P,连接BP.由三垂线定理可知BP垂直于CE,所以∠BPO即为所求二面角平面角的补角.设AB=1,由(1)可知AE=1,所以BE=2,CE=3.因为BC⊥BE,所以ΔBCE为直角三角形,所以RtΔBCP∽RtΔBCE.陈秀林图342解题宝典所以BP.在Rt△BOP 中,sin ∠BPO =BC BP=,即所求二面角正弦值为.此法与定义法的不同之处是将所求二面角的相关角置于直角三角形中,从而使解题的过程更加简洁.三、向量法向量法是通过空间向量的坐标运算,将所求的二面角转化为两个平面的法向量的夹角的方法.解题的思路是通过建立空间直角坐标系,求出两个平面的法向量,根据向量的数量积公式求出夹角,再利用法向量的夹角与二面角的关系来确定二面角的大小.值得说明的是,二面角的平面角与法向量的夹角的关系是相等或互补.以上述例题为例.解:(2)由(1)知∠BEB 1=90°.由题设知Rt△ABE ≌Rt△A 1B 1E ,所以∠AEB =45°,故AE =AB ,AA 1=2AB .以D 为坐标原点,建立如图4所示的空间直角坐标系D -xyz ,则C (0,1,0),B (1,1,0),C 1(0,1,2),E (1,0,1),所以 CB =(1,0,0),CE =(1,-1,1),CC 1=(0,0,2).设平面BCE 的法向量为n =(x ,y ,z ),则ìíî CB ∙n =0,CE ∙n =0,即{x =0,x -y +z =0,令y =-1,得n =(0,-1,-1).设平面ECC 1的法向量为m =(x ,y ,z ),则ìíî CC 1∙m =0,CE ∙m =0,即{2z =0,x -y +z =0,令x =1得m=(1,1,0).于是cos m,n =m ∙n |m |∙|n |=-12.所以二面角B -EC-C 1平面角正弦值为.向量的引入降低了立体几何问题的难度,但对同学们的运算能力提出了更高的要求.求法向量的原则是先找后求,即如果存在一条已知的直线与二面角的某一个平面垂直,则该直线的方向向量即可视为此平面的法向量.四、投影法投影法,即为构造出二面角的两个平面中的一个平面在另外一个平面内的投影,从而利用此平面与其投影的夹角θ来判断所求二面角的大小的方法.若该平面与其投影的面积分别为S 1,S 2,则cos θ=S 1S 2.θ与所求二面角的关系有两种,即相等或互补.以上述例题为例.解:如图5,连接BD 交AC 于点O ,连接EO .因为四边形ABCD 为正方形,所以BD ⊥AC ,所以点B 在面C 1CE 内的投影,三角形EOC 为ECB 的投影.设棱AB =1,由(1)可知AE =1,则AC =BE =2,EC =3,所以三角形OCE 的面积为S 1=12∙OC ∙AE =12,三角形BCE 的面积为S 2=12BC ∙BE =12×1×2.所以S 2S 1=42=12.所以面BCE 与面ECC 1所成锐二面角的余弦值为12,故二面角的正弦值为.在本题中,三角形ECB 与其在面ECC 1上的投影EOC 的夹角即为所求二面角的补角,而两角互补,则其正弦值相等,所以可直接利用投影法来求解.一般地,求二面角的问题主要有两类,即求有棱二面角的大小和无棱二面角的大小,虽然图形有所不同,但解题的方法基本上一致.同学们在解题的过程中要注意仔细审题,择优而用.(作者单位:江苏省大丰高级中学)图5图443。
六种方法求二面角从全国19份高考试卷中我们知道,立体几何题中命有求二面角大小的试题共有12份,并都为分值是12分的大题,足以说明这一知识点在高考中的位置,据有关专家分析,它仍然是2010年高考的重点,因此,我们每位考生必须注意,学会其解题方法,掌握其解题技巧,是十分重要的。
一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
本定义为解题提供了添辅助线的一种规律。
如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。
例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD,AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。
证(I )略解(II ):利用二面角的定义。
在等边三角形ABM 中过点B作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。
则GFB ∠即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG FG366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)36arccos(-练习1(2008山东)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点. (Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角E —AF —C 的余弦值. 分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。