【精品课件】梁弯曲变形的计算
- 格式:ppt
- 大小:2.32 MB
- 文档页数:46
第7章 梁弯曲变形的计算§7-1 挠度与转角及梁的刚度条件梁变形前后形状的变化称为变形,一般用各段梁曲率的变化表示。
梁变形前后位置的变化称为位移,位移包括线位移和角位移,如图7-1所示。
在小变形和忽略剪力影响的条件下,线位移是截面形心沿垂直于梁轴线方向的位移,称为挠度,用v 表示;角位移是横截面变形前后的夹角,称为转角,用θ表示。
而dxx dv x )()(=θ,可见确定梁的位移,关键是确定挠曲线方程Y=f(x)。
梁的设计中,除了需要满足强度条件外,在很多情况下,还要将其弹性变形限制在一定范围内,即满足刚度条件][][max max θθ≤≤v v式中的和][v ][θ分别为梁的许用挠度和许用转角,可从有关设计手册中查得。
§7-2 挠度曲线的近似微分方程忽略剪力对变形的影响,梁平面弯曲的曲率公式为: 式(a)表明梁轴线上任一点的曲率)(1x ρ与该点处横截面上的弯矩成正比,而与该截面的抗弯刚度)(x M EI 成反比。
如图7-2所示。
而梁轴线上任一点的曲率与挠曲线方程v 之间存在下列关系:)(xEIx M x )()(1=ρ (a) 232221)(1⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛+±dx dv dx vd x ρ (b)将上式代入式(a),得到EIx M dx dv dx v d )(12322=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎠⎞⎜⎝⎛+±(c) 小挠度条件下,1<<=θdxdv,式(c)可简化为: EI x M dxv d )(22=±(d)在图7-3所示的坐标系中,正弯矩对应着22dx vd 的正值(图7-3a),负弯矩对应着22dxvd 的负值(图7-3b),故式(d)左边的符号取正值EI x M dx v d )(22= (8-1)式(7-1)称为小挠度曲线微分方程,简称小挠度微分方程。
显然,小挠度微分方程仅适用于线弹性范围内的平面弯曲问题。