当前位置:文档之家› 万向传动轴说明书DOC

万向传动轴说明书DOC

万向传动轴说明书DOC
万向传动轴说明书DOC

汽车设计课程设计说明书

题目:重型载货汽车万向传动轴设计

姓名:

学号:201124225

同组者:

专业班级:11级车辆工程1班

指导教师:李淑玉

商用汽车万向传动轴设计

摘要

万向传动轴在汽车上应用比较广泛。发动机前置后轮或全轮驱动汽车行驶时,由于悬架不断变形,变速器或分动器的输出轴与驱动桥输入轴轴线之间的相对位置经常变化,因而普遍采用可伸缩的十字轴万向传动轴。本设计注重实际应用,考虑整车的总体布置,改进了设计方法,力求整车结构及性能更为合理。传动轴是由轴管、万向节、伸缩花键等组成。伸缩套能自动调节变速器与驱动桥之间距离的变化;万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角发生变化时实现两轴的动力传输;万向节由十字轴、十字轴承和凸缘叉等组成。传动轴的布置直接影响十字轴万向节、主减速器的使用寿命,对汽车的振动噪声也有很大影响。在传动轴的设计中,主要考虑传动轴的临界转速,计算传动轴的花键轴和轴管的尺寸,并校核其扭转强度和临界转速,确定出合适的安全系数,合理优化轴与轴之间的角度。

目录

一、概述 (04)

二、货车原始数据及设计要求 (05)

三、万向节结构方案的分析与选择 (06)

四、万向传动的运动和受力分析 (08)

五、万向节的设计计算 (11)

六、传动轴结构分析与设计计算 (17)

七、参考文献 (20)

一、概述

汽车上的万向传动轴一般是由万向节、轴管及其伸缩花键等组成。主要是用于在工作过程中相对位置不断变化的两根轴间传递转矩和旋转运动。

在动机前置后轮驱动的汽车上,由于工作时悬架变形,驱动桥主减速器输入轴与变速器输出轴间经常有相对运动,普遍采用万向节传动(图1—1a、b)。当驱动桥与变速器之间相距较远,使得传动轴的长度超过1.5m时,为提高传动轴的临界速度以及总布置上的考虑,常将传动轴断开成两段或三段,万向节用三个或四个。此时,必须在中间传动轴上加设中间支承。

在转向驱动桥中,由于驱动桥又是转向轮,左右半轴间的夹角随行驶需要而变,这是多采用球叉式和球笼式等速万向节传动(图1—1c)。当后驱动桥为独立悬架结构时也必须采用万向节传动(图1—1d)。

万向节按扭转方向是否有明星的弹性,可分为刚性万向节和挠性万向节两类。刚性万向节又可分为不等速万向节(常用的为普通十字轴式),等速万向节(球叉式、球笼式等),准等速万向节(双联式、凸块式、三肖轴式等)。

万向节传动应保证所连接两轴的相对位置在预计范围内变动时,能可靠地传递动力,保证所连接两轴尽可能同步运转,由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内。

万向传动轴设计应满足如下基本要求:

1)、保证所连接的两轴相对位置在预计范围内变动时,能可靠地传递动力。

2)、保证所连接两轴尽可能等速运转;由万向节夹角而产生的附加载荷、振动和噪声应在允许的范围内,在使用车速范围内不应产生共振现象。

3)、传动效率高,使用寿命长,结构简单,制造方便,维修容易等。

二、货车原始数据及设计内容

2.1原始数据

最大总质量:28000kg

发动机的最大输出扭矩:Tmax=1050N·m(n=1400r/min);

轴距:1950+4550+1350mm;

轮胎选取:11.00R20 ,空载直径:1090mm、满载半径:520mm

变速器传动比: i

0=8.626 、i

1

=12.961、 i

10

=1

2.2设计要求:

1.查阅资料、调查研究、制定设计原则

2.根据给定的设计参数(发动机最大力矩和使用工况)及总布置图,选择万向传动轴的结构型式及主要特性参数,设计出一套完整的万向传动轴,设计过程中要进行必要的计算与校核。

3.万向传动轴设计和主要技术参数的确定

(1)万向节设计计算

(2)传动轴设计计算

(3)完成空载和满载情况下,传动轴长度与传动夹角变化的校核

4.绘制万向传动轴装配图及主要零部件的零件图

三、万向节结构方案的分析与选择

3.1、十字轴式万向节

普通的十字轴式万向节主要由主动叉、从动叉、十字轴、滚针轴承及其轴向定位件和橡胶密封件等组成。

目前常见的滚针轴承轴向定位方式有盖板式(图3—1a、b)、卡环式(图3—1c、d)、瓦盖固定式(图3—1e)和塑料环定位式(图3—1f)等。盖板式轴承轴向定位方式的一般结构(图3—1a)是用螺栓1和盖板3将套筒5固定在万向节叉4上,并用锁片2

将螺栓锁紧。它

工作可靠、拆装

方便,但零件数

目较多。有时将

弹性盖板6点焊

于轴承座7底部

(图3—1b),装配

后,弹性盖板对

轴承座底部有一

定的预压力,以

免高速转动时由

于离心力作用,

在十字轴端面与

轴承座底之间出

现间隙而引起十字轴轴向窜动,从而避免了由于这种窜动造成的传动轴动平衡状态的破坏。卡环式可分为外卡式(图 3—1c)和内卡式(图3—1d)两种。它们具有结构简单、工作可靠、零件少和质量小的优点。瓦盖固定式结构(图4—1e)中的

万向节叉与十字轴轴颈配合的圆孔不是一个整体,而是分成两半用螺钉联接起来。这种结构具有拆装方便、使用可靠的优点,但加工工艺较复杂。塑料环定位结构(图3—1f)是在轴承碗外圆和万向节叉的轴承孔中部开一环形槽,当滚针轴承动配合装入万向节叉到正确位置时,将塑料经万向节叉上的小孔压注到环槽中,待万向节叉上另一与环槽垂直的小孔有塑料溢出时,表明塑料已充满环槽。这种结构轴向定位可靠,十字轴轴向窜动小,但拆装不方便。为了防止十字轴轴向窜动和发热,保证在任何工况下十字轴的端隙始终为零,有的结构在十字轴轴端与轴承碗之间加装端面止推滚针或滚柱轴承。

滚针轴承的润滑和密封好坏直接影响着十字轴万向节的使用寿命。毛毡油封由于漏油多,防尘、防水效果差,在加注润滑油时,在个别滚针轴承中可能出现空气阻塞而造成缺油,已不能满足越来越高的使用要求。结构较复杂的双刃口复合油封(图3—2a),其中反装的单刃口橡胶油封用作径向密封,另一双刃口橡胶油封用作端面密封。当向十字轴内腔注入润滑油时,陈油、磨损产物及多余的润滑油便从橡胶油封内圆表面与十字轴轴颈接触处溢出,不需安装安全阀,防尘、防水效果良好。在灰尘较多的条件下使用时,万向节寿命可显著提高。图3—2b 为一轿车上采用的多刃口油封,安装在无润滑油流通系统且一次润滑的万向节上。

十字轴万向节结构简单,强度高,耐久性好,传动效率高,生产成本低。但所连接的两轴夹角不宜过大,当夹角由4°增至16°时,十字轴万向节滚针轴承寿命约下降至原来的1/4。

3.2 准等速万向节

双联式万向节是由

两个十字轴万向节组合

而成。为了保证两万向

节连接的轴工作转速趋

于相等,可设有分度机

构。偏心十字轴双联式

万向节取消了分度机

构,也可确保输出轴与

输入轴接近等速。五分

度杆的双联式万向节,

在军用越野车的转向驱

动桥中用得相当广泛。此时采用主销中心偏离万向节中心1.0~3.5mm的方法,

使两万向节的工作转速接近相等。双联式万向节的主要优点是允许两轴间的夹角较大(一般可达50°,偏心十字轴双联式万向节可达60°),轴承密封性好,效率高,工作可靠,制造方便。缺点是结构较复杂,外形尺寸较大,零件数目较多。当应用于转向驱动桥时,由于双联式万向节轴向尺寸较大,为使主销轴线的延长线与地面交点到轮胎的接地印迹中心偏离不大,就必须用较大的主 销内倾角。

综上考虑成本、传递转矩的大小以及等速要求等,故选择十字轴万向节。此外,由于传动轴长度超过1.5m ,从总布置上考虑,选择三根传动轴,万向节用四个,而在传动轴上需加设中间支承了。

四、万向节传动的运动和受力分析

4.1、单十字轴万向节传动

当十字轴万向节的主、从动轴之间的夹角为α时,主、从动轴的角速度1ω、2ω之间存在如下关系

1

2

212c o s s i n 1c o s

?ααωω-= 式中,?1为主动叉转角。

由于12cos ?是周期为2π的周期函数,所以1

2ωω也为同周期的周期函数。如果

1ω保持不变,则2ω每周变化两次。因此主动轴以等速动时,从动轴时快时慢,

此即普通十字轴传动的不等速性。

十字轴万向节传动的不等速性可用转速不均匀系数K 表示

ααωωωtan sin 1

min

2max 2=-=

K

普通十字轴万向节的主动轴和从动轴转角间的关系式为

α??cos tan tan 21=

式中, ?1为主动轴转角,?2为传动轴转角,α为主动轴与从动轴之间的夹角。该式表示普通万向节传动的输入轴和输出轴的转角随两轴夹角的变化关系。(如图)

附加弯曲力偶矩的分析

当主动叉处于?1=0和π位置时(图a ),由于1T 作用在十字轴轴线平面上,故'

1T 必为零;而2T 的作用平面与十字轴不共平面,必有'

2T 存在,且矢量'

2T 垂直矢量2T ,合矢量指向十字轴平面的法线方向,与1T 大小相等,方向相反。这样,从动叉上的附加弯矩'

2T =1T αsin 。当主动叉处于?1=π/2和3π/2位置时(图b ),同理可知'

2T 为零,主动叉上的附加弯矩'

1T =1T αtan 。

4.2、双十字轴万向节传动

当输入与输出轴之间存在夹角α时,单个十字轴万向节的输出轴相对输入轴是不等速旋转的。为使处于同一平面的输出轴与输入轴等速旋转,可采用双万向节传动,但必须保证与传动轴相连的两万向节叉布置在同一平面内,且使两万向节夹角α1和α2相等(图a 、c )。

当输入轴与输出轴平行时,直接连接传动轴的两万向节叉所受的附加弯矩彼

此平衡,传动轴发生如图4-2b 中双点划线所示的弹性弯曲,从而引起传动轴的弯曲振动。当输入轴与输出轴的轴线相交时(图4-2c ),传动轴两端万向节叉上所受的附加弯矩方向相同,不能彼此平衡,传动轴发生如图4-2d 中双点划线的弹性弯曲,因此对两端的十字轴产生大小相等、方向相反的径向力。此力作用在滚针轴承碗的底部,并在输入轴与输出轴的支承上引起反力。 4.3、多十字轴万向节传动

多万向节传动的运动分析是建立在单十字轴万向节运动分析的基础上的。下面分析三万向节的等速条件(如图)。

多万向节传动的从动叉相对主动叉的转角差)(rad ??的计算公式与单万向节相似,可写成 )(2s i n 4

12θ?α?+=

?e

式中,e α为多万向节传动的当量夹角;θ为主动叉的初相位角;1?为主动轴转角。

假如多万向节传动的各轴轴线均在同一平面,且各传动轴两端万向节叉平面之间的夹角为零或π/2,则当量夹角e α为

??????±±±=2

32221ααααe

式中的正负号确定:当第一万向节的主动叉处在各轴轴线所在的平面内,在

其余的万向节中,如果其主动叉平面与此平面重合定义为正,与此平面垂直定义为负。

为使多万向节传动输出轴与输入轴等速,应使e α=0。

万向节传动输出轴与输入轴的转角差会引起动力总成支承和悬架弹性元件的振动,还能引起与输出轴相连齿轮的冲击和噪声及驾驶室内的谐振噪声。因此在设计多万向节传动时,总是希望其当量夹角e α尽可能小。一般设计时,应使空载和满载工况下的e α不大于?3。另外,对多万向节传动输出轴的角加速度幅

值212ωαe 应加以限制。对于乘用车,212ωαe 2/350s rad ≤;对于商用车,

212ωαe 2/600s rad ≤。

五、万向节的设计与计算

5.1、万向传动轴的计算载荷

万向传动轴因布置位置不同,计算载荷也不同。计算方法主要有三种,见表三。

表中各计算式中,max e T 为发动机最大转矩(N .M );n 为计算驱动桥数,取

法见表四;i 1为变速器一挡传动比;η为发动机到万向节传动轴之间的传动效率; k 为液力变矩器变矩系数,k=[(k 0-1)/2]+1,k 0为最大变矩系数;G 2为满载状态下一个驱动桥上的静载荷(N );m 2ˊ为汽车最大加速度时的后轴负荷转移系数,乘用车:m 2ˊ=1.2-1.4,商用车:m 2ˊ =1.1—1.2;?为轮胎与路面间的附着系数,对于安装一般轮胎的公路用汽车,在良好的混凝土或沥青路上,?可取

0.85,对于安装防侧滑轮胎的乘用车,?可取1.25,对于越野车,?可取1;r r 为车轮滚动半径(m );i 0为主减速器传动比;m i 为主减速器从动齿轮到车轮之间的传动比;ηm 为主减速器主动齿轮到车轮之间的传动效率;G 1为满载状态下转向驱动桥上的静载荷(N );1'm 为汽车最大加速度时的前轴负荷转移系数,乘用车:

1'm =0.80-0.85,商用车:1'm =0.75-0.90;F t 为日常汽车行驶的平均牵引力(N );

i f 为分动器传动比,取法见表四;d k =3,性能系数t f =0的汽车:d k =1,t f >0的汽车:d k =2。性能系数由下式计算

当max 195.0e a T g m <16时 当max

195.0e a T g

m ≥16时

对万向节传动轴进行静强度计算时,计算载荷s T 取1se T 和1ss T 的最小值,或取2se T 和2ss T 的最小值,即s T =min [1se T ,1ss T ]或s T =min [2se T ,2ss T ]

,安全系数一般取2.5-3.0。当对万向传动轴进行疲劳寿命计算时,计算载荷s T 取1sf T 或2sf T 。 传动轴载荷计算:

由于发动机前置后驱,位置采用为:用于变速器与驱动桥之间。所以按发动机最大转矩和一挡传动比来确定:

?????

???

?-=0

)195.016(1001max e a t T g m f

T se1=k d T emax ki 1i f η/n T ss1= G 2 m ’2φr r / i 0i m η

m

已知汽车有关参数如下: 发动机最大转矩max e T =1050Nm 驱动桥数n=2,

发动机到万向传动轴之间的传动效率η=0.95, 液力变矩器变矩系数k=1

满载状态下一个驱动桥上的静载荷G 2=28000*0.3*9.8=82320N, 发动机最大加速度的后轴转移系数m ’2=1.2, 轮胎与路面间的附着系数φ=0.85, 车轮滚动半径r r =0.52m,

主减速器从动齿轮到车轮之间传动比i m =1, 主减速器主动齿轮到车轮之间传动效率ηm =0.96. 猛接离合器所产生的动载系数k d =1,主减速比i 1=12.96 所以:

T se1=k d T emax ki 1i f η/n =6463.8NM T ss1= G 2 m ’2φr r / i 0i m ηm =5272.6NM

∵T 1=min{ T se1, T ss1} ∴T 1= T se1=5272.6NM

5.2、十字轴万向节计算与校核

十字轴万向节的损坏形式主要有十字轴颈和滚针轴承的磨损,十字轴颈和滚针轴承碗工作表面出现压痕和剥落。

设作用于十字轴颈中点的力为F (如图),则

α

cos 21

r T F =

式中,1T 为万向传动轴的计算载荷,r 为合力F 作用线到十字轴中心之间的距离,α为主、从动叉轴的最大夹角。

十字轴轴颈根部的弯曲应力w σ和切应力τ应满足

][)

(324

2411w w d d Fs d σπσ≤-=

][)(42221τπτ≤-=d d F

其中][w σ为弯曲应力的许用值,为250-350Mpa ;][τ为切应力许用值,为80-120Mpa 。

十字轴滚针轴承中的滚针直径一般不小于1.6mm ,以免压碎,而且尺寸差别要小,否则会加重载荷在滚针间分配的不均匀性。 十字轴滚针轴承的接触应力应满足

][)11(27201j b

n

j L F d d σσ≤+=

式中,d 1为滚针直径(mm );L b 为滚针工作长度(mm );d 1为十字轴轴颈直径(mm );F n 为在合力F 作用下一个滚针所受的最大载荷(N );由下式确定

iz

F F n 6.4=

式中,i 为滚针列数,Z 为没列中的滚针数。 万向节叉与十字轴组成连接支承,在力F 作用下产生支承反力,在与十字轴轴孔中心线成450的B-B 截面处,万向节叉承受弯曲和扭转载荷,其弯曲应力

w σ和扭应力b τ应满足

][w w W

Fe

σσ≤= ][b t

b W Fa

ττ≤=

式中,t W W ,分别为截面B-B 处的抗弯截面系数和抗扭转截面系数,矩形截面:6/2bh W =,2khb W t =;k 为与h/b 有关的系数,按表五选取;e 、a 如图所示;弯曲应力许用值][w σ为50-80Mpa ,扭应力许用值][b τ为80-160Mpa 。.

加工和装配精度以及润滑条件等有关。当025≤α时,可按下式计算

π

αηtan 2)(

110r d f -= 式中,0η为十字轴万向节传动效率;f 为轴颈与万向节叉的摩擦因数,滑动轴承:f =0.15-0.20,滚针轴承:f =0.15-0.10。

通常情况下,十字轴万向节的传动效率约为97%--99%。

已知数据:

传动轴水平距离1500mm

万向传动轴的计算载荷1T =5272.6NM

合力F 作用线到十字轴中心之间的距离r =68mm 十字轴轴颈直径d 1=40mm 十字轴油道孔直径d 2=14mm

合力F 作用线到轴颈根部的距离s=22mm 滚针直径d 0=4.5,滚针工作长度L b =30mm 滚针列数i=4,每列中的滚针数Z=30

万向节叉中的a 取46mm ,e 取96mm ,b 取64mm ,h 取110mm 系数k 按表五选取0.258

轴颈与万向节叉的摩擦因数f=0.10

悬架钢板弹簧空满载弧高变化:22.12mm 前悬架动挠度:f d =80mm

主动齿轮左旋,下偏移E=40mm 计算过程

1)空载时两轴夹角的计算 =---=1500

)

40375()38465(tan α0.0613

计算得α=3.510

2)滚针对十字轴轴颈的作用合力α

cos 21

r T F ==5272.6/(2*0.068*cos3.510)

=38841.98N

3)十字轴轴颈根部的弯曲应力w σ和切应力τ应满足

)

(324

2411d d Fs

d w -=πσ =138.08Mpa w σ[≤] )

(42221d d F

-=

πτ=35.23Mpa ][τ≤

故十字轴轴颈根部的弯曲应力和切应力满足校核条件 4)F n 为在合力F 作用下一个滚针所受的最大载荷(N ),则有

iz

F F n 6.4==1488.9N

十字轴滚针轴承的接触应力

b

n j L F

d d )11(

27201+=σ=952Mpa ][j σ≤ 故十字轴滚针轴承的接触应力满足校核条件

5)万向节叉承受弯曲和扭转载荷,其弯曲应力w σ和扭应力b τ为

W

Fe

w =σ=34.2Mpa ][w σ≤ t

b W Fa

=

τ=23.17Mpa ][b τ≤ 故万向节叉承受弯曲和扭转载荷的校核满足要求 6)十字轴万向节的传动效率为

π

αηtan 2)(

110r d f -==99.77% 7)载荷变化时载荷变化情况下传动轴长度与角度变化校核

空载时两轴夹角:α=3.510

满载静止时两轴夹角:='tan α0.0505 即'α=2.890 满载动挠度跳动情况下:=''α-3.280

则满载时候,角度变化最大量为α?=3.28°

传动轴长度变化最大(缩短)L ?=1500/cos3.510-1500=2.82mm

(校核满足要求)

六、万向传动轴的结构分析与设计计算

万向传动轴中由滑动叉和矩形花键轴组成的滑动花键来实现传动长度的变化。伸缩套能自动调节变速器与驱动桥之间距离的变化。万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角的变化,并实现两轴的等角速传动。

由于该货车轴距为1950+4550+1350mm ,为了满足总布置需要,所以在设计时采用三根传动轴。

根据货车的总体布置要求,将离合器与变速器、变速器与分动器之间拉开一段距离,考虑到它们之间很难保证轴与轴同心及车架的变形,所以采用十字轴万向传动轴,为了避免运动干涉,在传动轴中设有由滑动叉和花键轴组成的伸缩节,以实现传动轴长度的变化。空心传动轴具有较小的质量,能传递较大的转矩,比实心传动轴具有更高的临界转速,所以此传动轴管采用空心传动轴。

传动轴管由低碳钢板制壁厚均匀、壁薄(1.5~3.0mm )、管径较大、易质量平衡、扭转强度高、弯曲刚度高、适用高速旋转的电焊钢管制成。 传动轴设计 已知:

传动轴支承长度c L =1503mm 传动轴最高转速max n =5000r/min 安全系数K 取1.2

1)传动轴管内外径确定

6000

2.15000*max =?==k n n k

600010

2.12228

=+?=c

c

c k L

d D n

8

.1275722=+c c d D

又mm d D mm c

c 32

5.1≤-≤ 取

mm d D c

c 32

=-, 则 mm D c 8.76= mm d c 8.82=

——Lc 为传动轴长度(mm ),即两万向节中心之间的距离;dc 和Dc 分别为传动轴轴管的内、外径(mm ) 2)传动轴扭转强度校核

由于传动轴只承受扭转应力而不承受弯曲应力,所以只需校核扭转强度,根据公式有

][48.181)(164

41

c c C c c Mpa

d D T D τπτ≤=-=

(c τ为轴管许用扭转应力) 上式说明设计参数满足扭转强度要求 3)花键内外径确定

MPa

c

h

74.902

==

ττ

取安全系数2,则

MPa

d T h

h 74.901631

≤=

πτ

mm

d h 89.52≥

h τ——为许用扭转应力

K '——为花键转矩分布不均匀系数,取1.3 h D ——花键外径 h d ——花键内径

h L ——为花键有效工作长度

B ——为键齿宽 0n ——为花键齿数

由于花键齿侧许用挤压应力较小,所以选用L h 较大尺寸的花键,查GB/T1144-2001,取mm d h 56=,mm D h 62=,mm

B

10=

80=n ,mm L h 50=。

⑤花键挤压强度校核

]

[9.12)2

)(

4

(

1y h h

h h h y n L d D d D K T σσ≤=-+'

=

当花键齿面硬度为35HRC 时,许用挤压应力为MPa y 50~25][=σ 则[]y y σσ<,满足花键挤压强度。 最终确定花键尺寸:

外径mm D h 62=、内径mm d h 56=、齿数80=n 、花键总长L=150mm

参考文献

[1]BOSCH 汽车工程手册(中文第2版) 顾柏良 等译 北京理工大学出版社 2004

[2]机械设计手册:第1~5卷[M]. 5版 成大先 化学工业出版社,2008

[3] 汽车理论第五版. 机械工业出版社,2011

[4] (德) Gfaf von H. -C. Seherr-Thoss 等著.万向节和传动轴. 伍德荣等译.

北京:北京理工大学出版社,1997

[5] 王望予主编. 汽车设计. 第三版. 北京:机械工业出版社,2004

[7] 汽车设计课程设计指导书 马明星 中国电力出版社 2009

万向传动轴设计说明书

汽车设计课程设计说明书 设计题目:上海大众-桑塔纳志俊万向传动 轴设计 2014年11月28日

目录 1前言 2设计说明书 2.1原始数据 2.2设计要求 3万向传动轴设计 3.1万向节结构方案的分析与选择3.1.1十字轴式万向节 3.1.2准等速万向节 3.2万向节传动的运动和受力分析3.2.1单十字轴万向节传动 3.2.2双十字轴万向节传动 3.2.3多十字轴万向节传动 4 万向节的设计与计算 4.1 万向传动轴的计算载荷 4.2传动轴载荷计算

4.3计算过程 5 万向传动轴的结构分析与设计计算 5.1 传动轴设计 6 法兰盘设计

前言 万向传动轴在汽车上应用比较广泛。发动机前置后轮或全轮驱动汽车行驶时,由于悬架不断变形,变速器或分动器的输出轴与驱动桥输入轴轴线之间的相对位置经常变化,因而普遍采用可伸缩的十字轴万向传动轴。本设计注重实际应用,考虑整车的总体布置,改进了设计方法,力求整车结构及性能更为合理。传动轴是由轴管、万向节、伸缩花键等组成。伸缩套能自动调节变速器与驱动桥之间距离的变化;万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角发生变化时实现两轴的动力传输;万向节由十字轴、十字轴承和凸缘叉等组成。传动轴的布置直接影响十字轴万向节、主减速器的使用寿命,对汽车的振动噪声也有很大影响。在传动轴的设计中,主要考虑传动轴的临界转速,计算传动轴的花键轴和轴管的尺寸,并校核其扭转强度和临界转速,确定出合适的安全系数,合理优化轴与轴之间的角度。

2 设计说明书 2.1 原始数据 最大总质量:1210kg 发动机的最大输出扭矩:Tmax=140N·m(n=3800r/min); 轴距:2656mm; 前轮胎选取:195/60 R14 、后轮胎规格:195/60 R14 长*宽*高(mm):4687*1700*1450 前轮距(mm);1414 后轮距(mm):1422 最大马力(pa):95 2.2 设计要求 1.查阅资料、调查研究、制定设计原则 2.根据给定的设计参数(发动机最大力矩和使用工况)及总布置图,选择万向传动轴的结构型式及主要特性参数,设计出一套完整的万向传动轴,设计过程中要进行必要的计算与校核。 3.万向传动轴设计和主要技术参数的确定 (1)万向节设计计算 (2)传动轴设计计算 (3)完成空载和满载情况下,传动轴长度与传动夹角变化的校核 4.绘制万向传动轴装配图及主要零部件的零件图 3 万向传动轴设计 3.1 万向节结构方案的分析与选择 3.1.1 十字轴式万向节 普通的十字轴式万向节主要由主动叉、从动叉、十字轴、滚针轴承及其轴向定位件和橡胶密封件等组成。

万向传动轴设计说明书

目录 (一)万向传动轴设计 1.1 概述 (02) 1.1 结构方案选择 (03) 1.2 计算传动轴载荷 (04) 1.3 十字轴万向节设计 (05) 1.4 传动轴强度校核 (07) 1.5 传动轴转速校核及安全系数 (07) 1.6 参考文献 (09)

概述 万向传动轴一般是由万向节、传动轴和中间支承组成。主要用于在工作过程中相对位置不断改变的两根轴间传递转矩和旋转运动。 万向传动轴设计应满足如下基本要求: 1.保证所连接的两根轴相对位置在预计范围内变动时,能可靠地 传递动力。 2.保证所连接两轴尽可能等速运转。 3.由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围 内。 4.传动效率高,使用寿命长,结构简单,制造方便,维修容易等。 变速器或分动器输出轴与驱动桥输入轴之间普遍采用十字轴万向传动轴。在转向驱动桥中,多采用等速万向传动轴。当后驱动桥为独立的弹性,采用万向传动轴。

1.传动轴与十字轴万向节设计要求 1.1 结构方案选择 十字轴万向节结构简单,强度高,耐久性好,传动效率高,生产成本低,但所连接的两轴夹角不宜太大。当夹角增加时,万向节中的滚针轴承寿命将下降。 普通的十字轴式万向节主要由主动叉,从动叉,十字轴,滚针轴承及轴向定位件和橡胶封件等组成。 1. 组成:由主动叉、从动叉、十字轴、滚针轴承、轴向定位件和橡胶密封件组成 2. 特点:结构简单、强度高、耐久性好、传动效率高、成本低,但夹角不宜过大。 3.轴向定位方式: 盖板式卡环式瓦盖固定式塑料环定位式 4. 润滑与密封:双刃口复合油封多刃口油封

1.2 计算传动轴载荷 由于发动机前置后驱,根据表4-1,位置采用:用于转向驱动桥中 ①按发动机最大转矩和一档传动比来确定 T se1=k d T emax ki1i f i0η/n T ss1= G1 m’1υr r/ 2i mηm 发动机最大转矩T emax=186Nm 驱动桥数n=1, 发动机到万向传动轴之间的传动效率η=0.89, 液力变矩器变矩系数k={(k0 -1)/2}+1=1, 满载状态下一个转向驱动桥上的静载荷G1=50%m a g=0.5*1747*9.8=8530.9N,满载状态下一个驱动桥上的静载荷G2=65%m a g=0.65*1747*9.8=11128.39N, 发动机最大加速度的前轴转移系数m’1=0.8 发动机最大加速度的后轴转移系数m’2=1.3, 轮胎与路面间的附着系数υ=0.85, 车轮滚动半径r r=0.35, i=3.6 变速器一挡传动比 1 i=1 分动器传动比 f 主减速器从动齿轮到车轮之间传动比i m=0.55, 主减速器主动齿轮到车轮之间传动效率ηm=η发动机η离合器=0.98x0.96=0.94 因为0.195 m a g/T emax>16,f j=0,所以猛接离合器所产生的动载系数k d=1,主减速

传动轴加工工艺过程卡片(1)

- 轴工艺过程卡 第三小组 班级:机制16-1班 组长:彭志伟 成员:彭志伟明健伟邓佳辉邓尧刘磊刘含新 时间:2017.9.29 - 2017.10.10

机械加工工序卡片

机械加工工序卡片

标记处数更改文件号签字日期标记处数更改文件号签字日期 机械加工工序卡片 机械加工工序卡片产品型号零件图号3 产品名称传动轴零件名称共12页第3页间工序号工序名称材料牌号 金工3粗车45钢 毛坯种类毛坯外形尺寸每毛坯可制件数每台件数 Φ42mm x140.2mm1 设备名称设备型号设备编号同时加工件数 C61401 夹具编号夹具名称切削液 铣床,分度头 工位器具编号工位器具名称 工序工时/s 准终单件 工步号工步内容工艺装备主轴转速切削速度进给量切削深度 进给次数 工步工时r/min m/min mm/r mm机动辅助 1粗车外圆Φ55.4mm→φ43.8mm, φ43.8mm→φ41.8mm 90°外圆车刀、顶尖0.50.3/0.53

2粗车外圆φ41.8mm→φ37.8mm, Φ37.8mm→φ31.8mm 设计(日期)校对(日期)审核(日期)标准化(日期)会签(日期) 标记处数更改文件号签字日期标记处数更改文件号签字日期 机械加工工序卡片 机械加工工序卡片产品型号零件图号4 产品名称传动轴零件名称共12页第4页间工序号工序名称材料牌号 金工4粗车45钢 毛坯种类毛坯外形尺寸每毛坯可制件数每台件数 Φ42mm x140.2mm1 设备名称设备型号设备编号同时加工件数 C61401 夹具编号夹具名称切削液 铣床,分度头 工位器具编号工位器具名称 工序工时/s 准终单件 工步号工步内容工艺装备主轴转速切削速度进给量切削深度进给次数工步工时

车床传动轴机械加工工艺过程设计

车床传动轴机械加工工艺过程设计 院系名称 班级 学生姓名 学号 指导老师

1.问题提出: 零件的几何精度直接影响零件的使用性能,而机械加工工艺过程制定的是否合理将直接影响零件的加工精度。针对车床传动轴,应用所学的机械制造基础知识进行一次加机械工工艺过程设计的综合性工程应用训练。 2.专题研究的目的: 1、掌握零件主要部分技术要求的分析方法; 2、掌握零件材料的选择方法和确定毛坯的制备方法及工艺; 3、掌握工艺分析方法; 4、掌握定位基准的选择方法; 5、掌握制定出合理的零件加工顺序的原则和方法; 7、掌握制定出合理的零件加工路线的方法。 3.研究内容: 图1所示为车床的传动轴,轴上开有键槽用来安装齿轮以传递运动和动力,两端是安装滚动轴承的支承轴颈。完成该传动轴零件的机械加工工艺过程设计。工艺设计的具体内容包括: 一、进行零件主要部分的技术要求分析研究; 1、本零件是传动轴,传动过程中只传递转矩而不承受弯矩,可以通过热处理方法提高轴的耐磨性和抗疲劳强度。 2、此传动轴的形状简单,属于对称零件,同时阶梯轴很少,而且各段直径相差不太大。 3、轴上需磨削的轴段都设计出了砂轮越程槽,而且砂轮越程槽都是统一大小的。 4、传动轴上的各个键槽开在同一母线的位置上,便于加工。键槽和齿轮通过与键配合,实现动力的传递。 5、轴端设有倒角,以便于装配,并且轴肩高度不妨碍零件的拆卸。 6、此传动轴设计成两端小中间大的形状,便于零件从两端装拆。

7、Φ17圆柱表面为支撑轴颈与滚动轴承相配合,对其要求圆柱度公差则可控制横剖面和轴剖面内的各种形状误差。 8、Φ24圆柱面要与齿轮配合,为保证其平稳性和减少噪音,对其表面有径向全跳动的要求。 9、Φ24和Φ32轴段处的轴肩用于定位,防止其端面圆跳动产生偏心。 10、轴上键槽有对称度要求,一般来说键槽都有对成度公差。 二、确定传动轴的材料、毛坯的制备方法及工艺、热处理工艺; 1、选用材料为45钢,由于此车床传动轴是一般的阶梯轴,并且各阶梯的直径相差小,则可以直接以热轧圆柱棒料做毛坯。 2、选用调质和表面淬火的热处理工艺。 三、进行加工工艺分析; 1、传动轴大多是回转表面,主要是采用车削和外圆磨削。由于该轴主要 2、该传动轴加工划分为三个加工阶段,粗车,半精车,粗精磨各处外圆。各加工阶段大致以热处理和铣键槽为界。 四、确定定位基准; 此传动轴是精度要求高的轴类零件,因此先以毛坯外圆为粗基准,加工两端面及中心孔,再以中心孔定位完成各表面的粗加工;精加工开始先再修整中心孔,以提高轴在精加工时的定位精度,再以中心孔为精基准加工外圆。 五、制定传动轴的加工顺序; 1、外圆表面加工顺序应为,先加工大直径外圆,然后再加工小直径外圆,以 2、轴上的键槽等表面的加工应在外圆精车或粗磨之后,精磨外圆之前。 3、为了改善工件材料的力学性质而进行的热处理工艺调质、表面淬火通常安排在粗加工之后、加工之前进行。 六、制定传动轴的加工路线; 车端面和钻中心孔—粗车—半精车—调质—表面淬火—粗磨—铣键槽—精磨外圆—去毛刺 车床传动轴的机械加工工艺路线

重型载货汽车万向传动轴设计方案说明书

汽车设计课程设计说明书 题目:重型载货汽车万向传动轴设计 姓名:xx 学号:200924xxxx 同组者:xxxxxx 专业班级:09车辆工程2班 指导教师:xxxxxxxx

商用汽车万向传动轴设计 摘要 万向传动轴在汽车上应用比较广泛。发动机前置后轮或全轮驱动汽车行驶时,由于悬架不断变形,变速器或分动器的输出轴与驱动桥输入轴轴线之间的相对位置经常变化,因而普遍采用可伸缩的十字轴万向传动轴。本设计注重实际应用,考虑整车的总体布置,改进了设计方法,力求整车结构及性能更为合理。传动轴是由轴管、万向节、伸缩花键等组成。伸缩套能自动调节变速器与驱动桥之间距离的变化;万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角发生变化时实现两轴的动力传输;万向节由十字轴、十字轴承和凸缘叉等组成。传动轴的布置直接影响十字轴万向节、主减速器的使用寿命,对汽车的振动噪声也有很大影响。在传动轴的设计中,主要考虑传动轴的临界转速,计算传动轴的花键轴和轴管的尺寸,并校核其扭转强度和临界转速,确定出合适的安全系数,合理优化轴与轴之间的角度。 目录 一、概述 (04)

二、货车原始数据及设计要求 (05) 三、万向节结构方案的分析与选择 (06) 四、万向传动的运动和受力分析 (08) 五、万向节的设计计算 (11) 六、传动轴结构分析与设计计算 (17) 七、参考文献 (20) 一、概述 汽车上的万向传动轴一般是由万向节、轴管及其伸缩花键等组成。主要是用于在工作过程中相对位置不断变化的两根轴间传递转矩和旋转运动。 在动机前置后轮驱动的汽车上,由于工作时悬架变形,驱动桥主减速器输入轴与变速器输出轴间经常有相对运动,普遍采用万向节传动<图1—1a、b)。当驱动桥与变速器之间相距较远,使得传动轴的长度超过1.5m时,为提高传动轴的临界速度以及总布置上的考虑,常将传动轴断开成两段或三段,万向节用三个或四个。此时,必须在中间传动轴上加设中间支承。

设计-传动轴-机械制造技术基础

毕业设计 题目:传动轴的工艺设计 院系:机电工程系 专业:机电一体化 姓名:吕书星 班级:机电六班 学号:2010010306036 指导教师:孔祥林

目录 前言------------------------------------------------------2 课程设计简要分析------------------------------------------3 1 零件最小直径的确定--------------------------------------4 2 零件的工艺分析------------------------------------------4 3 工艺计算与设计------------------------------------------5 3.1 毛坯选择---------------------------------------------5 3.2 工艺路线的确定---------------------------------------5 3.2.1 确定零件的定位基准与装夹方式----------------------5 3.2.2 主要表面加工方法的确定----------------------------6 3.2.3 装夹方式------------------------------------------6 3.2. 4 划分阶段------------------------------------------7 3.2. 5 热处理工序安排------------------------------------7 3.2.6 加工方法的选择和加工方案的确定--------------------8 4 工序与工步的划分---------------------------------------10 4.1 工序的划分------------------------------------------10 4.2工步的划分-------------------------------------------11 4.3加工顺序及加工路线的确定-----------------------------11 4.3.1 零件加工必须遵守的安排原则------------------------11 4.3.2进给路线-------------------------------------------11 4.4 加工尺寸和切削用量----------------------------------12 4.5拟定工艺过程-----------------------------------------12

汽车万向传动轴设计

分类号:U463 单位代码:10452 本科专业职业生涯设计规划人生方向实现人生梦想 汽车万向传动轴设计 姓名 学号 年级 2007级 专业车辆工程 系(院)工学院 指导教师 2011年 4 月 1 日

目录 第一部分 (4) 规划人生方向实现人生梦想 (4) 前言 (4) 1 自我分析 (4) 1.1个性特征分析 (4) 1.1.1 性格特征分析 (5) 1.1.2 兴趣爱好分析 (5) 1.2 个人能力分析 (5) 1.2.1 能力优势 (5) 1.2.2 能力弱势 (5) 1.3 价值观分析 (5) 1.3.1 人生价值观分析 (6) 1.3.2 职业价值观分析 (6) 2 环境分析 (6) 2.1 家庭环境分析 (6) 2.2 学校环境分析 (6) 2.3 社会环境分析 (7) 2.4 临沂环境分析 (7) 3 毕业打算及具体计划 (7) 3.1 做一公务人员 (7) 3.2 考研 (7) 3.3 自主创业 (7)

4 具体各阶段规划 (8) 4.1 2010年—2013年(短期目标) (8) 4.2 2014年—2019年(中期目标) (8) 4.3 2019年—退休 (9) 5 最后总结 (9) 第二部分 (9) 汽车万向传动轴设计 (9) 中文摘要 (9) ABSTRAT (10) 1概论 (11) 2华利微型客车TJ6350汽车原始数据及设计要求 (12) 3 万向传动轴的结构特点及基本要求 (13) 4 万向传动轴结构方案的分析 (15) 4.1 基本组成的选择 (15) 4.2 万向传动轴的计算载荷 (17) 5 万向传动的运动和受力分析 (18) 5.1 单十字万向节传动 (19) 5.1.1运动分析 (19) 5.1.2 附加弯曲力偶矩的分析 (20) 5.2 双十字轴万向节传动 (21) 6 万向传动轴的选择 (23) 6.1 传动轴管的选择 (23) 6.2 伸缩花键的选择 (23)

传动轴加工工艺设计

机械制造工艺学课程设计 --传动轴加工工艺设计 班级: 指导老师: 组员:

传动轴机械加工工艺 轴类零件是常见的典型零件之一。按轴类零件结构形式不同,一般可分为光轴、阶梯轴和异形轴三类;或分为实心轴、空心轴等。它们在机器中用来支承齿轮、带轮等传动零件,以传递转矩或运动。 台阶轴的加工工艺较为典型,反映了轴类零件加工的大部分内容与基本规律。下面就以减速箱中的传动轴为例,介绍一般台阶轴的加工工艺。 1.零件图样分析

图A-1 图A-1所示零件是减速器中的传动轴。它属于台阶轴类零件,由圆柱面、轴肩、螺纹、螺尾退刀槽、砂轮越程槽和键槽等组成。轴肩一般用来确定安装在轴上零件的轴向位置,各环槽的作用是使零件装配时有

一个正确的位置,并使加工中磨削外圆或车螺纹时退刀方便;键槽用于安装键,以传递转矩;螺纹用于安装各种锁紧螺母和调整螺母。 根据工作性能与条件,该传动轴图样(图A-1)规定了主要轴颈M,N,外圆P、Q以及轴肩G、H、I有较高的尺寸、位置精度和较小的表面粗糙度值,并有热处理要求。这些技术要求必须在加工中给予保证。因此,该传动轴的关键工序是轴颈M、N和外圆P、Q的加工。 毛坯图 2.确定毛坯 该传动轴材料为45钢,因其属于一般传动轴,故选45钢可满足其要求。

本例传动轴属于中、小传动轴,并且各外圆直径尺寸相差不大,故选择¢60mm的热轧圆钢作毛坯。 3.确定主要表面的加工方法 传动轴大都是回转表面,主要采用车削与外圆磨削成形。由于该传动轴的主要表面M、N、P、Q的公差等级(IT6)较高,表面粗糙度Ra值(Ra=0.8 um)较小,故车削后还需磨削。外圆表面的加工方案(参考表A-3)可为: 粗车→半精车→磨削。

轿车传动系总体方案设计及万向传动轴的设计

汽车设计课程设计 题目轿车传动系统总体方案及万向传动轴的设计 院(系)机械与汽车工程学院 专业车辆工程(新能源) 年级2011级 学生姓名 学号 指导教师邓利军 二○一四年六月

摘要 汽车传动系统的基本功用是将发动机发出的动力传给驱动车轮。组成现代汽车普遍采用的是活塞式内燃机,与之相配用的传动系统大多数是采用机械式或液力机械式的。普通双轴货车或部分轿车的发动机纵向布置在汽车的前部,并且以后轮为驱动轮,其传动系统的组成和布置发动机发出的动力依次经过离合器、变速器(或自动变速器)和由万向节与传动轴组成的万向传动装置,以及安装在驱动桥中的主减速器、差速器和半轴,最后传到驱动车轮。传动系统的首要任务是与发动机协同工作,以保证汽车能在不同使用条件下正常行驶,并具有良好的动力性和燃油经济性。 关键词:离合器、变速器、万向节传动轴、驱动桥、主减速器、差速器、半轴、驱动车轮

Abstract The basic issue of Automotive driveline is to driving force from the engine to drive wheels. The modern Motor commonly used is the piston-type internal combustion engine and usually use mechanical drive system or hydraulic mechanical drive system to match with it. The engine of General biaxial goods or part of the vertical layout are in the front of the car, and use the rear wheel for driving wheel, the composition of the drive system and arrangement of the engine power to issue the order after clutch、gearbox (or automatic transmission) and the drive shaft gear which make up of the universal section and the composition, and the main reducer which installed on the drive axle 、 differential and axle, and finally is the drive wheels.The primary tasks of transmission is to work together with the engine for ensure that the use of motor vehicles to normal in different traffic conditions, and has good power and fuel economy. Key words: Clutch, transmission, drive shaft universal joints, drive axle, main reducer, differential, axle, drive wheels

汽车万向传动轴设计技术毕业设计说明书

目录 1.1 汽车万向传动轴的发展与现状 (2) 1.2 万向传动轴设计技术综述 (2) 2 万向传动轴结构方案确定 (4) 2.1 设计已知参数 (4) 2.2 万向传动轴设计思路 (6) 2.3 结构方案的确定 (6) 3 万向传动轴运动分析 (9) 4 万向传动轴设计 (10) 4.1 传动载荷计算 (10) 4.2 十字轴万向节设计 (12) 4.3滚针轴承设计 (13) 4.4传动轴初步设计 (14) 4.5 花键轴设计 (15) 4.6 万向节凸缘叉连接螺栓设计 (16) 4.7 万向节凸缘叉叉处断面校核 (17) 5基于UG的万向传动轴三维模型构建 (18) 5.1万向节凸缘叉作图方法及三维图 (18) 5.2万向节十字轴总成作图方法及三维图 (21) 5.3 内花键轴管与万向节叉总成作图方法及三维图 (25) 5.4 花键、轴管与万向节叉总成作图方法及三维图 (2624) 5.5万向传动轴总装装配方法及三维图 (27) 6 万向传动装置总成的技术要求、材料及使用保养 (29) 6.1普通万向传动轴总成的主要技术要求 (29) 6.2万向传动轴的使用材料 (29) 6.3 传动轴的使用与保养 (30) 7 结论 (31) 总结体会 (32) 谢辞 (33) 附录1外文文献翻译 (34) 附录2模拟申请万向传动轴专利书 (48) 【参考文献】 (52)

1引言 1.1 汽车万向传动轴的发展与现状 万向传动装置的出现要追溯到1352年,用于教堂时钟中的万向节传动轴。1663年英国物理学家虎克制造了一个铰接传动装置,后来被人们叫做虎克万向节,也就是十字轴式万向节,但这种万向节在单个传递动力时有不等速性。1683年双联式虎克万向节诞生,消除了单个虎克万向节传递的不等速性,并于1901年用于汽车转向轮。上世纪初,虎克万向节和传动轴已在机械工程和汽车工业中起到了极其重要的作用。1908年第一个球式万向节诞生,1926年凸块式等速万向节出现,开始用于独立悬架的前轮驱动轿车和四轮驱动的军用车的前轮转向节。1949年由双联式虎克万向节演变而来的三销式万向节开始被使用在低速的商用车辆上。 直到现在,根据在扭转方向是是否有明显的弹性,万向节可分为刚性万向节和挠性万向节。刚性万向节是靠零件的铰链式传递动力,又分成不等速万向节(常用的为十字轴式)、准等速万向节(双联式、二销轴式等)和等速万向节(球叉式、球笼式等);挠性万向节是靠弹性零件传递动力的,具有缓冲减振作用。万向传动装置已经可以满足飞速发展的汽车科技[]1。 1.2 万向传动轴设计技术综述 汽车万向传动装置一般由万向节和传动轴以及中间支撑等组成,它主要用于工作过程中相对位置不断改变的两根轴间传递转矩和旋转运动。以内燃机在作为动力的机械传动汽车中,万向传动装置是其传动系中必不可少的部分。万向传动装置设计的合理与否直接影响传动系的传动性能。选用与布置不当会给传动系增添不必要的和设计未能估算在内的附加动负荷,可能导致传动系不能正常运转和早期损坏。只有合理的设计,才能保证汽车在各种工况和路面条件下可靠地传递动力。 在汽车高速行驶的时候,万向传动装置也在伴随着高速旋转,并且源源不断的将动力从变速器的输出端输送到主减速器上。因此,万向传动装置的设计就显得十分重要,设计必须保证所连接的两轴的夹角及相对位置在一定范围内变化时,能可靠而稳定地传

传动轴轴的加工工艺规程的设计

传动轴轴的加工工艺规程 的设计 The Standardization Office was revised on the afternoon of December 13, 2020

承德石油高等专科学校机械工程系 机械加工工艺规程编制工程实践报告 姓名:高武梁 专业班级:机械制造与自动化1005 学号: 35 机械工程系

2012年5月10日 绪论 所谓机械加工工艺规程,是指规定产品或零部件机械加工工艺过程和操作方法等的工艺文件。生产规模的大小、工艺水平的高低以及解决各种工艺问题的方法和手段都要通过机械加工工艺规程来体现。因此,机械加工工艺规程的设计是一项十分重要而又非常严肃的工作。 制订机械加工工艺规程的原则是:在一定的生产条件下,在保证质量和生产进度的前提下,能获得最好的经济效益。制订工艺规程时,应注意以下三方面的问题: 1、技术上的先进性 2、经济上的合理性3、有良的劳动条件,避免环境污染 本机械加工工艺规程的编制通过传动轴零件图的分析,确定了该零件的毛坯材料及尺寸规格;通过对零件的加工工艺分析,确定了该零件的加工工艺路线,编写了详细的机械加工工艺文件:工艺过程卡片和工序卡片。 关键字:传动轴、零件、刚度、强度、表面法兰

ABSTRACT The so-called mechanical processing procedure, it is to point to provisions products or components in machining technology process and operation method of process documents. The size of the production, process of level and process problems to solve all the methods and means of the machining process planning to reflect. Therefore, the machining process planning design is a very important and very serious work. Make the machining process planning principle is: in certain production conditions, the quantity and the guarantee production progress, under the premise of the best economic benefit. Develop technical process, we should pay attention to the following three problems: 1, technical advanced 2, economic rationality 3, have good working conditions, and avoid the pollution of the environment This mechanical processing procedure of transmission shaft parts through the analysis of the graph, determine the components of the blank material and size; Through the analysis of the technology of parts processing, to determine the parts processing process route, write detailed machining process documents: process card and process card.

传动轴加工工艺过程卡片

如文档对你有用,请下载支持! 轴工艺过程卡 第三小组 班级:机制16-1班 组长:彭志伟 成员:彭志伟明健伟邓佳辉邓尧刘磊刘含新 时间:2017.9.29 - 2017.10.10

如文档对你有用,请下载支持! 机械加工工艺过程卡片 产品型号 零件图号 产品名称 传动轴 零件名称 材料牌号 45钢 毛坯外形尺寸 199.3m m ×?55.4mm 每件毛坯可制件数 1 每台 件数 1 工序号 工序名称 工序内容 车间 附图 设备 工艺装备 加工示意图 1 下料 Φ55.4mm x 199.3mm ,45钢 金工 2 铣端面 右铣端面3.3mm ,钻中心孔; 金工 C6140 90°外圆车刀、游标卡尺、顶尖、中心钻 3 粗车 车φ55.4mm →φ43.8mm ; 车Φ43.8mm →φ41.8mm ; 车φ41.8mm →φ37.8mm ; 车φ37.8mm →φ31.8mm 金工 C6140 90°外圆车刀、游标卡尺、顶 尖 4 半精车 车φ43.8mm →φ42.4mm ; 车φ41.8mm →φ40.4mm ; 车φ37.8mm →φ36.4mm ; 车φ31.8mm →φ30.4mm 金工 C6140 90°外圆车刀、游标卡尺、顶 尖 粗车 调头,车φ55.4mm →φ53.4mm ; 车φ45.8mm →φ41.8mm 金工 C6140 90°外圆车刀、游标卡尺、顶 尖 半精车 车φ41.8mm →φ40.4mm ; 车φ53.4mm →φ52mm 金工 C6140 90°外圆车刀、游标卡尺、顶 尖 8 倒角 倒两端及φ52mm 上左端的角1.5x45°,其余圆 角使用滚压方法倒角 金工 C6140 45°左偏刀、顶尖 铣键槽 沟槽2x0.3mm 金工 X6132 直柄键槽铣刀、游标卡尺 热处理 正火 金工 粗磨 磨φ42.4mm →φ42.15mm ; 磨φ40.4mm →φ40.15mm ; 磨φ36.4mm →φ36.15mm ; 磨φ30.4mm →φ30.15mm 金工 M1432 砂轮、顶尖、千分尺 精磨 磨Φ42.15mm →φ42mm ; 磨Φ40.15mm →φ40mm ; 磨φ36.15mm →φ36mm ; 磨φ30.15mm →φ 30mm 金工 M1432 砂轮、顶尖、千分尺 11 热处理 调质处理,硬度为217-225HBS 金工 16 检验 质检室 游标卡尺、千分尺 17 钳工 去毛刺、清洗 金工 锉刀 18 入库 涂防锈油

万向传动轴设计实例

万向传动轴设计说明书

商用汽车万向传动轴设计 摘要 万向传动轴在汽车上应用比较广泛。发动机前置后轮或全轮驱动汽车行驶时,由于悬架不断变形,变速器或分动器的输出轴与驱动桥输入轴轴线之间的相对位置经常变化,因而普遍采用可伸缩的十字轴万向传动轴。本设计注重实际应用,考虑整车的总体布置,改进了设计方法,力求整车结构及性能更为合理。传动轴是由轴管、万向节、伸缩花键等组成。伸缩套能自动调节变速器与驱动桥之间距离的变化;万向节是保证变速器输出轴与驱动桥输入轴两轴线夹角发生变化时实现两轴的动力传输;万向节由十字轴、十字轴承和凸缘叉等组成。传动轴的布置直接影响十字轴万向节、主减速器的使用寿命,对汽车的振动噪声也有很大影响。在传动轴的设计中,主要考虑传动轴的临界转速,计算传动轴的花键轴和轴管的尺寸,并校核其扭转强度和临界转速,确定出合适的安全系数,合理优化轴与轴之间的角度。 关键字:万向传动轴、伸缩花键、十字轴万向节、临界转速、扭转强度

目录 一、概述 (04) 二、货车原始数据及设计要求 (05) 三、万向节结构方案的分析与选择 (06) 四、万向传动的运动和受力分析 (08) 五、万向节的设计计算 (11) 六、传动轴结构分析与设计计算 (17) 七、法兰盘的设计 (19) 八、参考文献 (20)

一、概述 汽车上的万向传动轴一般是由万向节、轴管及其伸缩花键等组成。主要是用于在工作过程中相对位置不断变化的两根轴间传递转矩和旋转运动。 在动机前置后轮驱动的汽车上,由于工作时悬架变形,驱动桥主减速器输入轴与变速器输出轴间经常有相对运动,普遍采用万向节传动(图1—1a、b)。当驱动桥与变速器之间相距较远,使得传动轴的长度超过1.5m时,为提高传动轴的临界速度以及总布置上的考虑,常将传动轴断开成两段,万向节用三个。此时,必须在中间传动轴上加设中间支承。 在转向驱动桥中,由于驱动桥又是转向轮,左右半轴间的夹角随行驶需要而变,这是多采用球叉式和球笼式等速万向节传动(图1—1c)。当后驱动桥为独立悬架结构时也必须采用万向节传动(图1—1d)。 万向节按扭转方向是否有明星的弹性,可分为刚性万向节和挠性万向节两类。刚性万向节又可分为不等速万向节(常用的为普通十字轴式),等速万向节(球叉式、球笼式等),准等速万向节(双联式、凸块式、三肖轴式等)。 万向节传动应保证所连接两轴的相对位置在预计范围内变动时,能可靠地传递动力,保证所连接两轴尽可能同步运转,由于万向节夹角而产生的附加载荷、振动和噪声应在允许范围内。

轻型商用车传动轴及万向节毕业设计

摘要 汽车的万向传动轴是由传动轴、万向节两个主要部件联接而成,在长轴距的车辆中还要加装中间支承。万向传动轴主要用于工作过程中相对位置不断改变的两根轴间传递转矩和旋转运动。在本世纪初万向节与传动轴的发明与使用,在汽车工业的发展中起到了极其重要的作用。随着汽车工业的发展,现代汽车对万向节与传动轴的效率、强度、耐久性和噪声等性能方面的设计及计算校核要求也越来越严格。本毕业设计将依据现有生产企业在生产车型(CA1041)的万向传动装置作为设计原型。在给定整车主要技术参数以及发动机、变速器等主要总成安装位置确定的条件下,对整车结构进行了分析,确定了传动轴布置方案,采用两轴三万向节带中间支承的布置形式。在确定了传动方案后,对传动轴、万向节总成、中间支承总成进行设计,使该总成能够在正常使用的情况及规定的使用寿命内不发生失效。 关键字:传动轴;万向节;中间支承;设计;校核

ABSTRACT The universal drive shaft of automotive is composed of transmission shaft and cardin joint. The main function of the universal drive shaft is to transmitting torque and rotation movement between two shafts whose relative position is variation in the working process. At the beginning of this century the transmission shaft and cardin joint play an important role in the development of automobile industry. As the development of automobile industry, the automobile demand that the design and verification of transmission shaft and cardin join stricter in the efficiency, intension, durability and noise performance. This graduation design chooses existing production business enterprise of basis is producing the car type(CA1041) of ten thousand to spread to move to equip the conduct and actions design prototype. Under the conditions of the main technical parameters of the given vehicle, installation location of engine, transmission and other major assembly are determined , the structure of the vehicle is analysised, the transmission shaft layout program is determined. Two shaft-three cardin joints is adapted.After determining the transmission options, the right drive shaft and universal joint assembly, intermediate bearing assembly is designed, so that the assembly can be used in normal situations and the life within no failure. Keywords:Transmission shaft;Cardin joint;Middle supporting;Design ;Verification

万向传动装置课程设计说明书

汽车设计课程设计说明书 2014年09月05日

目录 1 前言 (2) 2 万向传动装置设计 (3) 2.1 万向传动装置的结构方案设计 (3) 2.1.1 主要参数的选择 (3) 2.1.2 总体设计方案 (3) (1)传动轴管的选择 (4) (2)伸缩花键的选择 (4) (3)万向节分析 (5) (4)中间支承结构分析与设计 (5) 2.2 万向节的设计与强度校核 (6) 2.2.1 万向节结构与尺寸设计 (6) (1)基本构造与基本原理 (6) (2)确定十字轴尺寸 (6) (3)滚针轴承的设计与校核 (6) 2.2.2 十字轴万向节强度校核 (6) 2.3 万向传动轴设计及强度校核 (7) 2.3.1 万向节传动轴结构与尺寸设计 (7) 2.3.2 万向节传动轴强度校核 (7) 3参考文献 (10)

前言 本次课程设计的任务是对一汽解放CA1130PK2L2进行万向传动轴的设计、研究。在指导老师的细心指导下,通过对汽车万向传动装置的了解,进一步进行万向传动轴的设计。通过实际的市场调查和客观的实际观察,全面了解万向传动轴的结构,充分了解到万向传动装置的工作原理与意义,及其在汽车行驶中的重要作用。在汽车的正常工作中,是一个必不缺少的部件,也是一个不可替代的关键部件。对于万向传动轴的研究,有很大的发展空间,具有相当大的研究意义。在充分与指导老师讨论、研究后,故选此课题进行设计任务时,分析了万向传动装置类型的,根据题目所要求的原始数据要求,确定了所选用万向传动轴的种类。在初定各个部件的相关尺寸后,根据要求进行了校核,确定了所设计部件的尺和参数,并选择了零部件的材料 本文介绍了一汽解放CA1130PK2L2 型货车的万向传动装置的结构和工作原理,及相关参数的确定。全文的中心内容共分为三章:第一章为一汽解放CA1130PK2L2汽车原始数据及设计要求;第二章十字轴的结构特点及基本特点和设计要求;第三章为万向传动轴结构方案的分析及设计; 在原始数据确定的前提下,设计所要完成的任务有:查找、收集相关资料,进一步确定万向传动装置的基本尺寸的选取、材料选择和传动过程中的接触应力等工作,其中传动过程中零件内部的接触应力最为关键,在此文中着重做到了应力校核这一步。最后的工作是工程制图,实实在在的电脑绘图,发现了一些知识点的死角,都进行一定程度的纠正,验证了许多以前只有在书本上学的知识点。

传动轴结构分析与设计

传动轴结构分析与设计 传动轴总成主要由传动轴及其两端焊接的花键轴和万向节叉组成。传动轴中一般设有由滑动叉和花键轴组成的滑动花键,以实现传动长度的变化。为了减小滑动花键的轴向滑动阻力和磨损,有时对花键齿进行磷化处理或喷涂尼龙层;有的则在花键槽中放入滚针、滚柱或滚珠等滚动元件,以滚动摩擦代替滑动摩擦,提高传动效率。但这种结构较复杂,成本较高。有时对于有严重冲击载荷的传动,还采用具有弹性的传动轴。传动轴上的花键应有润滑及防尘措施,花键齿与键槽间隙不宜过大,且应按对应标记装配,以免装错破坏传动轴总成的动平衡。 传动轴的长度和夹角及它们的变化范围由汽车总布置设计决定。设计时应保证在传动轴长度处在最大值时,花键套与轴有足够的配合长度;而在长度处在最小时不顶死。传动轴夹角的大小直接影响到万向节十字轴和滚针轴承的寿命、万向传动的效率和十字轴旋转的不均匀性。 在长度一定时,传动轴断面尺寸的选择应保证传动轴有足够的强度和足够高的临界转速。所谓临界转速,就是当传动轴的工作转速接近于其弯曲固有振动频率时,即出现共振现象,以致振幅急剧增加而引起传动轴折断时的转速。传动轴的临界转速为 22 2 8 10 2.1 C c C k L d D n + ? = (4—13) 式中,n k为传动轴的临界转速(r/min);L C为传动轴长度(mm),即两万向节中心之间的距离;d c和D c分别为传动轴轴管的内、外径(mm)。 在设计传动轴时,取安全系数K=n k/n max=1.2~2.0,K=1.2用于精确动平衡、高精度的伸缩花键及万向节间隙比较小时,n max为传动轴的最高转速(r/min)。 由式(4—13)可知,在D c和L c相同时,实心轴比空心轴的临界转速低,且费材料。另外,当传动轴长度超过1.5m时,为了提高n k以及总布置上的考虑,常将传动轴断开成两根或三根,万向节用三个或四个,而在中间传动轴上加设中间支承。 传动轴轴管断面尺寸除满足临界转速的要求外,还应保证有足够的扭转强度。轴管的扭转切应力τc应满足

相关主题
文本预览
相关文档 最新文档