Matlab求解微积分的实例 附程序
- 格式:pdf
- 大小:117.43 KB
- 文档页数:5
matlab 微积分基本运算§1 解方程和方程组解1. 线性方程组求解对于方程 AX = B ,其中 A 是( m ×n )的矩阵有三种情形:1)当n=m 且A 非奇异时,此方程为“恰定”方程组。
2)当 n > m 时,此方程为“超定”方程组。
3)当n<m 时,此方程为“欠定”方程组。
下面就三种情形的求解分别作一说明:(1) MATLAB 解恰定方程 A* X = B 的方法1)采用求逆运算解方程x=inv(A)*B2)采用左除运算解方程x=A\B例1 “求逆”法和“左除”法求下列方程组的解⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x xx x x x x x x在Matlab 编辑器中建立M 文件fanex1.m :A=[5 6 0 0 01 5 6 0 00 1 5 6 00 0 1 5 60 0 0 1 5];B=[1 0 0 0 1]';R_A=rank(A) %求秩X1=A\B %用"左除"法解恰定方程所得的解X2=inv(A)*B %用"求逆"法解恰定方程所得的解运行后结果如下R_A =5X1 =2.2662-1.72181.0571-0.59400.3188X2 =2.2662-1.72181.0571-0.59400.3188两种方法所求方程组的解相同。
(2)MATLAB 解超定方程AX=B 的方法对于方程 AX = B ,其中 A 是( m ×n )的矩阵, n > m ,如果A 列满秩,则此方程是没有精确解的。
然而在实际工程应用中,求得其最小二乘解也是有意义的。
基本解法有:1)采用求伪逆运算解方程x=pinv(A)*B说明:此解为最小二乘解x=inv(A ’*A)*A*B,这里pinv(A) =inv(A ’*A)*A.2)采用左除运算解方程x=A\B例2 “求伪逆”法和“左除”法求下列方程组的解⎪⎩⎪⎨⎧=+=+=+12214212212121x x x x x x命令如下:>> a=[1 2;2 4;2 2];>> b=[1,1,1]';>> xc=a\b %用左除运算解方程运行得结果:xc =0.40000.1000>> xd=pinv(a)*b %用求伪逆运算解方程运行得结果:xd =0.40000.1000>> a*xc-b %xc 是否满足方程ax=b运行得结果:ans =-0.40000.20000.0000可见xc 并不是方程的精确解。
第九章微积分基础1函数的极限(符号解法)一元函数求极限函数 limit格式 limit(F,x,a) %计算符号表达式F=F(x) 当x→a时的极限值。
limit(F,a) %用命令findsym(F)确信F中的自变量,设为变量x,再计算F当x→a时的极限值。
limit(F) %用命令findsym(F)确信F中的自变量,设为变量x,再计算F当x→0时的极限值。
limit(F,x,a,'right')或limit(F,x,a,'left') %计算符号函数F的单侧极限:左极限x →a- 或右极限x→a+。
【例1】>>syms x a t h n;>>L1 = limit((cos(x)-1)/x)>>L2 = limit(1/x^2,x,0,'right')>>L3 = limit(1/x,x,0,'left')>>L4 = limit((log(x+h)-log(x))/h,h,0)>>v = [(1+a/x)^x, exp(-x)];>>L5 = limit(v,x,inf,'left')>>L6 = limit((1+2/n)^(3*n),n,inf)计算结果为:L1 =L2 =infL3 =-infL4 =1/xL5 = [ exp(a), 0] L6 = exp(6)注:在求解之前,应该先声明自变量x,再概念极限表达式fun,假设0x 为∞,那么能够用inf 直接表示。
若是需要求解左右极限问题,还需要给出左右选项。
【例2】 试别离求出tan 函数关于pi/2点处的左右极限。
>> syms t;f=tan(t);L1=limit(f,t,pi/2,'left'), L2=limit(f,t,pi/2,'right') L1 = Inf L2 = -Inf【例3】求以下极限1)312lim20+-→x x x 2)x x x t 3)21(lim +∞→解:编程如下:>>syms x t ;L1 = limit((2*x-1)/(x^2+3)) >>L2 = limit((1+2*t/x)^(3*x),x,inf)回车后可得: L1 = -1/3 L2 = exp(6*t) 多元函数求极限求多元函数的极限能够嵌套利用limit()函数,其挪用格式为:limit(limit(f,x,x0),y,y0)或limit(limit(f,y,y0),x,x0)【例4】求极限:x xy y x )sin(lim 30→→>> syms x y;f=sin(x*y)/x;limit(limit(f,x,0),y,3)ans = 3注:若是x0或y0不是确信的值,而是另一个变量的函数,如)(y g x →,那么上述的极限求取顺序不能互换。
第三章 微积分的数学实验3.1极限与一元微积分3.1.1 初等运算1.定义单个或多个符号变量:syms x y z t ;定义单个符号变量或者符号函数还可以用单引号定义,如x=’x ’,f=’sin(x^2)+2*x-1’。
符号表达式的反函数运算g=finverse(f),g 是返回函数f 的反函数。
例1 求sin(1)y x =-的反函数>>syms x>>y=sin(x-1); g=finverse(y),结果为 g=1+asin(t)2. f actor(f) 因式分解函数f3.Collect(f) 对函数f 合并同类项4. expand(f) 将函数f 表达式展开5. simple(f) 找出表达式的最简短形式(有时需要用2次)6. roots (p )对多项式p 求根函数。
7. solve(F) 一般方程的求根函数例2 解方程2510x x +-=解 >>syms x>>solve(x^2+5*x-1)结果为x =[ -5/2+1/2*29^(1/2) -5/2-1/2*29^(1/2)]8.fzero(f,x0)或fzero(f,[a,b]) 在初始点x0处开始或在区间[a,b]上搜索函数的零点,f(a)与f(b)需要符号相反。
3.1.2 Matlab计算函数的极限函数形式:1)limit(F,x,a),求函数F在 x ->a时的极限。
2)limit(F,a),默认其中的变量为极限变量.3)limit (F),默认其中的变量为极限变量且趋向于0.4)limit(F,x,a,'right')或limit(F,x,a,’le ft') 求函数F在x->a时的右、左极限.例3 >>syms x a t h; %syms作用是申明x,a,t,h是符号变量,不需先赋值再调用。
>>limit(sin(x)/x) %结果为 1>>limit((x-2)/(x^2-4),2) %结果为 1/4>>limit((1+2*t/x)^(3*x),x,inf) %结果为 exp(6*t)>>limit(1/x,x,0,'right') %结果为 inf>>limit(1/x,x,0,'left') %结果为 -inf>>limit((sin(x+h)-sin(x))/h,h,0) %结果为 cos(x)>>v = [(1 + a/x)^x, exp(-x)];limit(v,x,inf,'left') %结果为[exp(a),0]3.1.3 Matlab计算导数与微分1.一元导数和微分diff函数用以计算函数的微分和导数,相关的函数语法有下列4个:diff(f) 返回f对预设独立变量的一次导数值diff(f,'t')或diff(f,t) 返回f对独立变量t的一次导数(值)diff(f,n) 返回f对预设独立变量的n阶导数(值)diff(f,'t',n) 或diff(f,t,n)返回f对独立变量t的n阶导数(值)这里尽管自变量已经作为符号变量,可以不用syms说明,但是在具体执行diff(f)、diff(f,'t')和diff(f,t)会出现差异,有的能够执行,有的不能够,有的执行符号微分,有的执行数值微分,所以比较麻烦。
第三章微积分问题的计算机求解一、实验内容:题目1.试求出如下极限。
①limx→∞(3x +9x )1/ x,②lim x→∞[(x+2)x+2(x+3)x+3 ]/(x+5)2x+5【分析】:该题为单变量函数的极限。
极限问题可以用limit()函数直接求出。
要注意该函数的调用格式为:L=limit(fun,x,x0)(求极限),L=limit(fun,x,x0,’left’或’right’)(求极限)。
还需注意一开始要对函数的字符进行申明。
【解答】:(1)输入如下语句:>> syms x;f=(3^x+9^x)^(1/x);L=limit(f,x,inf)语句运行后显示如下:L =9(2)输入如下语句:>>syms x;f=(x+2)^(x+2)*(x+3)^(x+3)/(x+5)^(2*x+5);>> L=limit(f,x,inf)语句运行后显示如下:L =exp(-5)题目2.试求下面的双重极限。
①lim x→−1y→2 (x2y+xy3)/(x+y) 3,②limx→0 y→0 xy /√(xy+1)−1,③limx→0y→0 [1−cos(x2+y2)]/(x2+y2)e x2+y2。
【分析】:该题为多变量函数的极限问题。
他可以用嵌套使用limit()函数来解决。
在MATLAB上可以用L=limit(limit(f,x,x0),y,y0)或者L=limit(f,y,y0),x,x0)来解决。
其思想是所有的先关于X求导,再所有的关于y求导。
【解答】:(1)输入如下语句:>> syms x y>> f=(x^2*y+x*y^3)/(x+y)^3;>> L=limit(limit(f,x,-1),y,2)语句运行后显示如下:L =-6(2)输入如下语句:>> syms x yf=(x*y)/(sqrt(x*y+1)-1);L=limit(limit(f,x,0),y,0)按ENTER键,语句运行后显示如下:L =2(3)输入如下语句:>> syms x yf=(1-cos(x^2+y^2))/(sqrt(x^2+y^2)*exp(x^2+y^2));L=limit(limit(f,x,0),y,0)按ENTER键,语句运行后显示如下:L =题目3.求出下面函数的导数。