D9_5隐函数求导
- 格式:ppt
- 大小:2.39 MB
- 文档页数:35
隐函数的求导法则在高等数学中,人们经常要研究使用函数表示不明确的关系的问题。
具有x和y两个自变量的方程通常也称为隐函数。
在这种情况下,求导的方法与单变量函数的情况有所不同。
假设我们有一个方程f(x,y)=0代表一个隐函数。
如果我们将y表示为x的函数,那么我们可以使用求导规则计算dy/dx。
我们用y=f(x)来代表意味着y是x的函数,在这种情况下,我们可以将原始方程看成f(x,f(x))=0。
现在我们需要将它们进行求导:通过链式法则,我们得到:∂f/∂x + ∂f/∂y * dy/dx = 0解决方程,我们可以得到dy/dx:dy/dx = -(∂f/∂x)/(∂f/∂y)这就是隐函数的求导法则。
现在我们来看几个例子。
例子1:考虑方程x^2+y^2 = 1,代表一个圆形。
假设我们需要求通过点(0.5,0.866)的圆的斜率。
我们可以通过对方程隐式地求导来解决这个问题。
从方程中得到:2x + 2y * dy/dx = 0这个时候,我们用点(0.5,0.866)代入求导公式:dy/dx = -(∂f/∂x)/(∂f/∂y) = -x/y = -0.577例子2:考虑方程x^2+y^2+z^2 = 1,代表一个球。
假设要求通过点(0.5, 0.866, 0)的球的切平面。
我们如何确定这个平面的法向量?这里我们可以思考什么会构成法向量:从点(0.5, 0.866, 0)向球的中心(0,0,0)所成的向量,然后我们将这个向量投影在切平面上。
我们可以通过隐函数求导的方法来找到它的方向。
从方程中得到:2x + 2y * dy/dx + 2z * dz/dx = 0我们需要知道dz/dx的值,但只有两个自变量,我们该怎么办?我们可以再次隐式地求导。
我们有这样的等式:∂f/∂x + ∂f/∂y * dy/dx + ∂f/∂z * dz/dx = 0将方程放入这个等式,我们得到:(1) + y * dy/dx + z * dz/dx = 0然后再用我们之前求出的dy/dx代替,得到:(1) + y * (-x/y) + z * dz/dx = 0然后代入我们想要的点,我们得到:dz/dx = -x * z/y = (-0.5) * 0/0.866 = 0现在我们知道了dz/dx = 0。
隐函数的求导公式首先,我们假设存在一个方程f(x,y)=0,其中y是x的函数,即y=g(x)。
我们希望求解函数g(x)的导数。
为了实现这一目标,我们需要对方程两边同时对x求导。
首先,我们对方程f(x,y)=0两边对x求导,得到:∂f/∂x + ∂f/∂y * dy/dx = 0在这个方程中,∂f/∂x 是 f(x, y) 对 x 的偏导数,∂f/∂y 是 f(x, y) 对 y 的偏导数,dy/dx 是 y 对 x 的导数,也就是 g'(x)。
然后,我们将其整理成关于g'(x)的方程:dy/dx = - (∂f/∂x) / (∂f/∂y)最终,我们得到了隐函数的求导公式,即:g'(x)=-(∂f/∂x)/(∂f/∂y)这个公式告诉我们,要求隐函数的导数,只需对方程中的偏导数进行求解并代入到公式中即可。
我们来看几个求解隐函数导数的例子。
例子1:求解方程x^2+y^2=1的导数。
首先,我们对方程两边求导,得到:2x + 2y * dy/dx = 0然后,我们整理得到:dy/dx = -2x / 2y = -x / y所以,方程 x^2 + y^2 = 1 的导数为 dy/dx = -x / y。
例子2:求解方程x^2+y^2-x*y=0的导数。
首先,我们对方程两边求偏导数,得到:2x - y - x * dy/dx + dy/dx = 0然后,我们整理得到:dy/dx = (2x - y) / (y - x)所以,方程 x^2 + y^2 - x * y = 0 的导数为 dy/dx = (2x - y) / (y - x)。
通过这些例子,我们可以看出,在求解隐函数的导数时,我们需要根据具体的方程进行偏导数的计算,然后将其代入到隐函数的求导公式中。
总结起来,隐函数的求导公式为g'(x)=-(∂f/∂x)/(∂f/∂y),其中f(x,y)=0是隐函数所满足的方程,∂f/∂x和∂f/∂y分别是方程对x和y的偏导数。
隐函数求导法则公式隐函数求导法则是微积分中的一个重要概念,它用于求解含有隐式变量的函数的导数。
隐函数求导法则公式可以帮助我们更方便地求解这类函数的导数,从而在实际问题中更加灵活地应用微积分知识。
下面我们将详细介绍隐函数求导法则公式及其应用。
隐函数求导法则公式的表述如下:设有方程 F(x, y) = 0,其中 y 是 x 的函数,即 y = f(x),则 y 对 x 的导数可以通过以下公式求得:dy/dx = - (∂F/∂x) / (∂F/∂y)其中∂F/∂x 表示对 F 进行偏导数运算,∂F/∂y 也是类似的意思。
这个公式是隐函数求导法则的核心,通过它我们可以求解含有隐式变量的函数的导数。
接下来我们将通过一个具体的例子来说明隐函数求导法则公式的应用。
假设有方程 x^2 + y^2 = 1,我们需要求解 y 对 x 的导数。
首先,我们将这个方程表示为 F(x, y) = 0 的形式,即 F(x, y) = x^2 + y^2 - 1 = 0。
然后,我们对 F(x, y) 分别对 x 和 y 求偏导数,得到∂F/∂x = 2x,∂F/∂y = 2y。
最后,代入隐函数求导法则公式,得到 dy/dx = - (2x) / (2y) = -x/y。
通过这个例子,我们可以看到隐函数求导法则公式的应用过程,它可以帮助我们求解含有隐式变量的函数的导数,从而更加灵活地应用微积分知识。
除了上述的基本公式,隐函数求导法则还有一些特殊情况的应用,比如当方程 F(x, y) = 0 不易直接求导时,我们可以先对 x或 y 求导,然后再应用隐函数求导法则公式。
此外,隐函数求导法则还可以应用于求解高阶导数、求解参数方程等问题。
总之,隐函数求导法则公式是微积分中的一个重要工具,它可以帮助我们更方便地求解含有隐式变量的函数的导数,从而在实际问题中更加灵活地应用微积分知识。
希望通过本文的介绍,读者能对隐函数求导法则有更加深入的理解,并能够灵活运用到实际问题中。