华东师大版八年级数学下全册教案
- 格式:doc
- 大小:3.43 MB
- 文档页数:135
华东师大版八年级下册数学教案及配套课件篇一:华东师大版八年级下册数学教案全册华东师大版教师:2022年2月第17章分式17.1.1 分式的概念教学目标:1、学问与技能:经受实际问题的解决过程,从中熟悉分式,并能概括分式的意义。
2、过程与方法:使学生能正确地推断一个代数式是否是分式,能通过回忆分数的意义,类比地探究分式的意义。
3、情感态度与价值观:渗透数学中的类比,分类等数学思想。
教学重点:探究分式的意义及分式的值为某一特定状况的条件。
教学难点:能通过回忆分数的意义,探究分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S平方米的长方形一边长a米,则它的另一边长为________米;(3)一箱苹果售价p元,总重m千克,箱重n千克,则每千克苹果的售价是___元;二、概括: A形如(A、B是整式,且B中含有字母,B≠0)的式子,叫做分式.其中 A叫做分式的B分子,B叫做分式的分母.整式,整式和分式统称有理式, 即有理式分式.三、例题:例1 以下各有理式中,哪些是整式?哪些是分式?(1)1x3x?y2xy;(2);(3);(4). 3x2x?y解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).留意:在分式中,分母的值不能是零.假如分母的值是零,则分式没有意义.例如,在分S9式中,a≠0;在分式中,m≠n. m?na 例2 当x取什么值时,以下分式有意义?1x?2(1);(2). x-12x?3分析要使分式有意义,必需且只须分母不等于零.解(1)分母x-1≠0,即x≠1.1所以,当x≠1时,分式有意义. x-13(2)分母2x?3≠0,即x≠-. 23x?2所以,当x≠-时,分式有意义. 22x?3四、练习:P5习题17.1第3题(1)(3)1.推断以下各式哪些是整式,哪些是分式? 9x+4, 7 , 9?y, m?4, 8y?3,1 xx?9520y22. 当x取何值时,以下分式有意义?(1)(2)(3)x2?43?2xx?23. 当x为何值时,分式的值为0? 3x?52x?5五、小结:什么是分式?什么是有理式?六、作业:P5习题17.1第1、2题,第3题(2)(4)七、教学反思:通过分式概念的教学,让学生懂得了什么时分式,知道了分式与整式的区分,了解了分式成立的条件,为以后的学习打好了根底。
华东师大第四版八年级下册数学教案华东师大第四版八年级下册数学教案精选篇1数据的波动教学目标:1、经历数据离散程度的探索过程2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。
教学重点:会计算某些数据的极差、标准差和方差。
教学难点:理解数据离散程度与三个差之间的关系。
教学准备:计算器,投影片等教学过程:一、创设情境1、投影课本P138引例。
(通过对问题串的解决,使学生直观地估计从甲、乙两厂抽取的20只鸡腿的平均质量,同时让学生初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差)2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。
二、活动与探究如果丙厂也参加了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?2、如何刻画丙厂这20只鸡腿质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。
3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?(在上面的情境中,学生很容易比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。
这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致学生思想认识上的矛盾,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。
三、讲解概念:方差:各个数据与平均数之差的平方的平均数,记作s2设有一组数据:x1, x2, x3,xn,其平均数为则s2= ,而s= 称为该数据的标准差(既方差的算术平方根)从上面计算公式可以看出:一组数据的极差,方差或标准差越小,这组数据就越稳定。
四、做一做你能用计算器计算上述甲、丙两厂分别抽取的20只鸡腿质量的方差和标准差吗?你认为选哪个厂的鸡腿规格更好一些?说说你是怎样算的?(通过对此问题的解决,使学生回顾了用计算器求平均数的步骤,并自由探索求方差的详细步骤)五、巩固练习:课本第172页随堂练习六、课堂小结:1、怎样刻画一组数据的离散程度?2、怎样求方差和标准差?七、布置作业:习题5.5第1、2题。
数据的整理与初步处理一. 教学内容:§21.1 算术平均数与加权平均数§21.2 平均数、中位数和众数的选用[学习目标]⑴理解平均数的概念和意义,会计算一组数据的算术平均数和加权平均数.⑵能利用计算器计算一组数据的平均数.⑶在具体情境中理解加权平均数的概念,体会“权”的意义,知道算术平均数与加权平均数的联系与区别.⑷理解中位数、众数的概念和意义,会求一组数据的中位数、众数.二. 重点、难点:1. 重点:⑴加权平均数的计算方法.⑵掌握中位数、众数等数据代表的概念.2. 难点:⑴加权平均的原理.⑵选择恰当的数据代表对数据做出判断.三. 知识梳理:1. 算术平均数的意义如果有n个数:,,…,那么这组数据的平均数=,这个平均数叫做算术平均数.平均数是我们日常生活中经常用到的、比较熟悉的的概念,如平均分、平均身高、平均体重、平均产量等等,由公式可知,平均数与给出的一组数据中的每一个数的大小都有关系,所以平均数是这组数据的“重心”,反映了这组数据的平均状态,是描述一组数据集中趋势的特征数字中最重要的数据,也是衡量一组数据波动大小的基准.2. 加权平均数一般地,对于f1个x1,f2个x2,…,f n个x n,共f1+f2+…+f n个数组成的一组数据的平均数为.这个平均数叫做加权平均数,其中f1,f2,…,f n叫做权,这个“权”,含有权衡所占份量的轻重之意,即(i=1,2,…k)越大,表明的个数越多,“权”就越重.加权平均数的计算公式与算术平均数的计算公式,实际上是一回事.一般情况下,当一组数据中有很多数据多次重复出现时,加权平均数的计算公式是算术平均数计算公式的另一种表现形式,用加权平均数公式计算更简便.3. 用计算器求平均数.4. 扇形统计图的制作⑴扇形统计图:利用圆和扇形来表示总体和部分的关系,即用圆代表总体,圆中的各个扇形分别代表总体中的各个部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫扇形统计图.⑵扇形统计图的特点:扇形的大小反映部分占总体的百分比的大小.根据统计图可以直接看出统计对象所占的比例和每部分相对总体的大小.⑶制作步骤:①利用各部分与总体间的百分比关系求出各个扇形的圆心角,计算方法是:圆心角=360°×百分比;②画出表示总体的圆,并在圆上画出表示各部分的扇形的区域,加以标注;③写出所绘制的扇形统计图的名称.扇形统计图利用圆和扇形来表示总体和部分的关系,统计图中圆的大小与具体数据无关.各扇形所占的百分比之和为1.5. 中位数与众数①中位数:把一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数;②中位数的计算:先将数据按从小到大的顺序重新排列,如果有奇数个数据,则处在最中间的那个数就是中位数;如果有偶数个数据,则处在最中间的两个数据的平均数就是中位数.③众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.④众数的计算:求众数时只要看在一组数中重复出现次数最多的数据就是众数.如果有两个或两个以上数据重复出现的都最多,那么这几个数据都是这组数据的众数.当一组数据中有不少数据多次重复出现时,我们往往关心众数.通常的“最佳”、“最受欢迎”、“最畅销”等等的评选活动都是用投票的方法取众数得到的.6. 平均数、中位数和众数的选用⑴平均数、中位数和众数的特点:平均数、中位数、众数都是用来描述一组数据的集中趋势.这三个统计量的各自特点是:平均数的大小与一组数据里的每个数据均有关系,其中任何数据的变动都会相应引起平均数的变动;众数着眼于对各数据出现频率的考察,其大小只与这组数据中的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量;中位数则仅与数据的排列位置有关,即当一组数据按从小到大的顺序排列后,最中间的数据为中位数,因此,某些数据的变动对它的中位数没有影响.平均数、中位数、众数从不同的侧面提供了一组数据的面貌,正因为如此,我们把这三种数作为一组数据的代表.⑵平均数、中位数、众数分别表示一组数据的一般水平、中等水平、和多数水平,都能反映一组数据的集中趋势.它们互相之间可能相等也可能不相等,没有固定的大小关系,但是三个统计量不总是有实际意义、总是合适的,它们都有各自的适用范围.这就产生了该选用哪一个统计量的问题了.相比之下,平均数是最常用的指标.由于计算平均数时,要用到每一个数据,所以它对数据的变化比较敏感.有时能获得较多的信息.但当数据中含有极个别特别大或特别小的数据时,它就不能很好地反映一般水平了.这时就要选用其它的统计量或者像歌唱比赛那样去掉一个最高分,去掉一个最低分了.【典型例题】例1:某班第一小组有12人,一次数学测验成绩如下:85、96、74、100、96、85、79、65、74、85、65、80,试计算这12人的数学平均分.分析:最简单的方法就是把12个数据全部加起来,再除以12即可.但是面对这样一组数字相对比较大的数组时,可以想办法,把数字的大小先降下来,这里可以以80为基准,每个数都减去80组成一个新数组,计算出平均数后,再加上80就得到原数组的平均数.解:(解法一)利用平均数公式得:平均分==82(分);(解法二)每个数都减去80后建立新数组为:5、16、-6、20、16、5、-1、-15、-6、5、-15、0,则新数组的平均数为:=2.所以原数组的平均分=80+2=82(分).例2:我校举行文艺演出,由参加演出的10个班各派一名同学担任评委,每个节目演出后的得分⑵你对5号和9号评委的给分有什么看法?⑶你认为怎样计算该节目的分数比较合理?为什么?分析:本题涉及到关于样本的选取要具有代表性的问题,因为有些数据对样本平均数的影响很大(如5号和9号的数据),因此,为了公正、合理应去掉一个最高分和一个最低分,以减少它们对平均数的负面影响,保证评判的公正性.解:⑴平均分为:=7.35(分).此得分不能反映该节目的水平;⑵5号评委的给分偏高,9号评委的给分偏低,他们都脱离实际,不能公正地代表节目的实际水平;⑶去掉一个最高分和一个最低分,这样可以避免某些特殊数据带来的负面影响,保持评判的公正性.例3:若一组数据的平均数是12,那么另一组数据的平均数是多少?分析:平均数是将各个数据的和除以数据的个数求得的,因此,我们可以先求出已知数据的总数,再找出另一组数据与它的联系,从而求解.解:因为=12.所以=60.所以===15.例4:某人事部经理按下表所示的五个方面给应聘者记分,每一方面均以10分为满分,如果各方分析:了.解:张三的平均分==6.8(分);李四的平均分==7.32(分);何五的平均分==6.86(分);白六的平均分=7.28(分).平均分结果显示李四的分数最高,所以李四受聘的可能性最大.例5:下表是某班20名学生的一次语文测验成绩统计表:成绩(分)50 60 70 80 90人数(人) 2 3 x y 2 若20分析:这里有两个未知量,就应得到关于它们的两个等量关系,不难发现,一个是从总人数方面,另一个是从平均数方面得到两个等量关系,从而列方程组进行求解.解:由题意得:解得例6:如图,这是某晚报“百姓热线”一周内接热线电话的统计图,其中有关环境保护问题的电话最多,共70个,请回答下列问题.⑴本周“百姓热线”共接到热线电话多少个?⑵根据以上数据绘成扇形统计图.分析:学会读图获取信息是关键.图中“环境保护问题的电话”达35%,共70个,可求出“百姓热线”电话的总数,再根据各种电话所占的百分比计算出扇形圆心角的度数.解:⑴70÷35%=200,即本周“百姓热线”共接到热线电话200个;⑵分别计算出其他项目在扇形统计图中的圆心角的度数:奇闻轶事:360O×5%=18°;其他投拆:360°×15%=54O;道路交通:360°×20%=72O;环境保护:360°×35%=126°;房产建筑:360°×15%=54°;表扬建议:360°×10%=36°.画扇形统计图,如图所示.例7:为了培养学生的环境保护意识,某校组织课外小组对该市做空气含尘调查,下面是一天每隔2小时测得的数据如下:0.03,0.04,0.02,0.03,0.04,0.01,0.03,0.03,0.04,0.05,0.01,0.03.(单位:克/立方米)⑴求出这组数据的众数和中位数.⑵若国家环保局对大气飘尘的要求为平均值不超过每立方米0.025克,问这天该城市的空气是否符合国家环保局的要求?分析:⑴这组数据的众数就是出现次数最多的数据,是0.03;中位数需按从小到大的顺序排列,然后取中间两个数的平均数即是中位数.⑵能否符合要求,关键是看平均数与0.025的大小,若平均数小于0.025就符合,否则,就不符合.解:⑴由众数的定义和题意知这组数据中0.03出现的次数最多,故这组数据的众数是0.03.将这组数据按从小到大的顺序排列得到:0.01,0.01,0.02,0.03,0.03,0.03,0.03,0.03,0.04,0.04,0.04,0.05.其中最中间的两个数据都是0.03,所以这组数据的中位数是0.03.⑵这天测得的数据的平均数为:==0.03.也就是说这天城市的空气飘尘的平均值为0.03克/立方米,大于国家环保局的规定0.025克/立方米,所以这天该城市的空气不符合国家环保局要求.例8:某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某每人销售件数1800 510 250 210 150 120人数 1 1 3 5 3 2⑴求这⑵假设销售部负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请制定一个比较合理的销售定额,并说明理由.分析:平均数受极个别数据影响,而中位数和众数不受极个别数据影响.根据这些知识对本题进行解答即可.解:⑴平均数为:=320(件);中位数是210件,众数是210件.⑵不合理.因为15人中有13人的销售额达不到320件,320件虽然是这组数据的平均数,但它受1800件这个特殊值的影响,使它不能反映营销人员的一般水平.而中位数反映的一组数据的中等水平,众数反映的是一组数据的大多数的水平,所以把每位营销员的月销售额定为210件比较合适.例9:如图,公园里有甲、乙两群游客正在做团体游戏,甲群游客的年龄分别是12,12,12,13,14,15,16,16,27;乙群游客的年龄分别为:3,4,4,5,5,6,6,6,55,60.⑴分别求出两群游客年龄的平均数、众数和中位数.⑵甲、乙两群游客年龄的平均数能代表他们各自的年龄特征吗?如果不能代表,那么哪个数据能代表?分析:我们把一组数据中其值过大(或过小)的数据看作异常数(或异常值),如本例中乙群游客的55和60就是异常数,有异常数时,其平均数可能相差较大,这时用中位数或众数来描述这组数据的一般水平比较合适.解:⑴甲群游客:平均数=≈15(岁),众数是12岁,中位数是14岁.乙群游客:平均数==15.4 (岁),众数是6岁,中位数是5.5岁.⑵甲群游客年龄的平均数能代表他们的年龄特征,乙群游客年龄平均数不能代表他们的年龄特征.用中位数或众数来代表他们各自的年龄特征比较合适.一.教学内容:§21.3 极差、方差与标准差第21章数据的整理与初步处理小结与复习二. 重点、难点:1. 重点:⑴认识算术平均数、加权平均数,并能灵活计算、应用;⑵认识平均数、中位数和众数,会选择恰当的数据代表对数据进行评价;⑶会求一组数据的极差、方差与标准差,并会用它们表示一组数据的离散程序;⑷能借助计算器求平均数、标准差.2. 难点:⑴灵活计算算术平均数、加权平均数、极差、方差与标准差;⑵在理解平均数、中位数、众数、极差、方差与标准差意义的基础上,对生活中的某些数据发表自己的看法,做出合理的判断和预测,解决一些实际问题,培养统计意识,提高数据处理能力.三. 知识梳理:(一)极差、方差与标准差:⑴极差用一组数据中的最大数据减去最小的数据所得到的差来反映这组数据的变化范围,这个差就称为极差.⑵方差①定义一组数据中各数据与这组数据的平均数的差的平方和的平均数叫做这组数据的方差.②方差的意义方差是反映一组数据波动大小的量,它表示的是一组数据偏离平均值的情况.方差越大,数据组的波动就越大.③方差的计算公式数据x1,x2,x3,…,x n的方差是S2=(x1-)2+(x2-)2+(x3-)2+…+(x n-)注意:①上面的计算公式是一般情况下计算方差的办法;②当数据组中的数据个数比较少且绝对值比较小时,又可以采用下面的公式来计算方差:S2=[(x12+x22+x32+…+x n2)-n2]③如果数据组中的每一个数比较接近于常数a时,•也可以采用下面的公式计算方差:S=[(x’12+x’22+x’32+…+x’x n2)-n’2](其中x1’、x2’、x3’……x n’分别等于x1-a、x2-a、x3-a……x n-a,•’是数据组x1’、x2’、x3’……x n’的平均数)⑶标准差方差的算术平方根叫做标准差.标准差和方差一样,也是反映一组数据波动大小的指标.同样,标准差越大,数据组的波动就越大.(二)本章知识回顾:1. 平均数、众数与中位数平均数、众数、中位数都是描述数据的“集中趋势”的“特征数”.⑴平均数:求个数,,…,的平均数为=(++…+),当给出的一组数据,都在某一常数a上下波动时,一般选用简化的平均数计算公式,其中是每个数值与a 的差的平均数,a是取接近于这组数据平均数中比较“整”的数.•当所给个数据中出现次,出现次,…,出现次,且++…+=,则=(++…+)这个平均数叫做加权平均数,其中,,…,叫做权.加权平均数的权:当一组数据中各数据分布情况(或者说比重大小)不同,分布情况(比重大小)称为各个数据的权.注意:这三种计算平均数的方法,在具体问题中要灵活使用.⑵众数:在一组数据中,出现次数最多的数据,叫做这组数据的众数.众数不唯一,可以有一个,也可以有几个,也可以没有.⑶中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.⑷平均数、中位数和众数的区别与联系:联系:平均数、中位数和众数都反映了一组数据的集中趋势,其中以平均数最为重要.区别:①平均数的大小与这组数据里每个数据均有关系,任一数据的变动都会引起平均数的变动.②中位数仅与数据的排列位置有关,某些数据的变动对它的中位数没有影响.当一组数据中的个别数据变动较大时,可用它来描述其集中趋势.③众数主要研究各数据出现的情况的考查,其大小只与这组数据中的某些数据有关,当一组数据中有不少数据多次重复出现时,我们往往关心众数.注意:在实际问题中,到底选择哪一个去说明一组数据的特征,要视情况而定.2. 扇形统计图⑴绘制扇形统计图的基本步骤:①根据有关数据先算出各部分在总体中所占的百分数= 100%×各部分数据/总体数据;②根据百分数计算出各部分扇形圆心角的度数=部分总体的百分数×360°;③按比例,取适当半径画一个圆;④按扇形圆心角的度数用量角器在圆内量出各个扇形圆心角的度数;⑤在各扇形内写上相应的名称及百分数,并用不同的标记把各扇形区别开来;⑥写上统计图的名称及制作日期等.(2)扇形统计图的特征:扇形统计图适合相对统计数据,可清楚地表示出各部分数量占总量的百分比.3. 极差、方差与标准差⑴极差:用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值.⑵方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s2来表示,计算公式是:=[(-)2+(-)2+…+(-)2].说明:这一公式可简单记忆为“方差等于差方的平均数”.⑶标准差:标准差=⑷极差、方差与标准差异同点:共同点:极差、方差与标准差都是表示一组数据离散程度的特征数.不同点:极差表示一组数据波动范围的大小,一组数据极差越大,则它的波动范围越大;方差和标准差反映了一组数据与其平均值的离散程度的大小.方差(或标准差)越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.4. 实际应用通过计算平均数、方差来判断数据的集中或离散程度,从而对现实生活中的实例进行分析和判断,并做出评价或提出建议.注意评价要客观、合理,建议要符合实际.同时这部分知识还可以与方程、不等式等知识结合,出现一些综合题.解决这类题必须弄清基本概念,掌握一些典型题的解法,灵活运用题中的数据和信息,明确解题目标.【典型例题】例1. 小明所在小组的12位学生身高如下(单位:cm):160,160,l70,158,170,168,158,170,158,160,l60,168.求小明所在小组学生的平均身高(保留整数).分析:求平均数有3种方法,可根据实际情况选择.解:方法一:=(160+160+l70+158+170+168+158+170+158+160+l60+168)÷12≈163cm;方法二:=(158×3+160×4+168×2+170×3)÷12≈163cm;方法三:以160cm为基准,这12个数据为:0,0,10,-2,10,8,-2,10,-2,0,0,8.=(10-2+10+8-2+10-2+8)÷12≈3.3=160+3.3≈163cm.例2. 经初赛选拔,我市参加省数学竞赛决赛的200人中,一中58人,二中47人,三中45人,四中30人,五中20人,请你绘制扇形统计图表示参赛学生的分布情况.分析:画扇形统计图之前要先计算每部分所占百分比,每部分扇形的圆心角度数.解:例3. 某校学生报要招聘记者一名,小明、小凯和小萍报名进行了三项素质测试,成绩如下:(单位:分)⑵学校把采访写作、计算机和创意设计成绩按5:2:3的比例来计算三人的测试平均成绩,那么谁将被录取?分析:注意算术平均数与加权平均数在实际问题中的应用.解:⑴小明平均分=(70+60+86)÷3=72(分),小凯平均分=(90+75+51)÷3=72(分),小萍平均分=(60+84+78)÷3=74(分),所以,小萍被录取.⑵按照5:2:3比例,则小明的平均分==72.8(分);小凯的平均分==75.3(分);小萍的平均分==70.2(分)所以,小凯被录取.例4.用计算器求下列数据的平均数.91,189,37,98,103,103,107,86,97,99.分析:按键顺序为:例5.有甲、乙、丙三种可混合包装的食品,它们的单价分别是:每千克1.80元、2.50元、3.20元.现取甲种食品50千克,乙种食品40千克,丙种食品10千克,把这三种食品混合后,每千克的价格是多少?分析:混合后的单价不仅与每种食品的单价有关,而且还与每种食品的质量(千克)有关,应选加权平均数公式来计算.本题也可以理解为求混合后的单价.解:根据加权平均数公式,得=2.22元.答:混合后每千克的价格是2.22元.例6.分析:20个数据中,50出现2次,60出现3次,70出现6次,80出现7次,90出现2次,所以由加权平均数公式可得平均数.又因为80出现的次数最多,所以众数是80.将20个数据从小到大排列,最中间的两个数据都是70,所以这组数据的中位数是70.解答:在这20个数据中,80出现了7次,出现的次数最多,即这组数据的众数是80.表中的20个数据可看成按从小到大的顺序排列,其中最中间的两个数据都是70,即这组数据的中位数是70.这组数据的平均数是:(50×2+60×3+70×6+80×7+90×2)÷20=72故20名学生成绩的众数是80分,中位数是70分,平均数是72分.例7.则这如果商场每10天进一次货,对以上尺码的运动鞋应怎样进货?说明理由.分析:运用所学知识对市场经济中某些问题进行科学预测,从而使其合理决策是十分重要的,对商场的销售情况进行了解,通过对数据的计算、处理,从而对以后的进货情况作出了相对准确地估算.解答:⑴众数是25,中位数是24.75.⑵由⑴知,25码的鞋销售量最大,一天销售了6双,其次是24.5码,24码,26码,23.5码.其一天的销售量分别为4双,3双,2双,1双.依此估计商场10天的销售量约为:25码60双,24.5码40双,24码30双,26码20双,23.5码10双.所以商场可以参照以上数据进货.例8. 杂交稻专家袁隆平院士为了考察甲、乙两种水稻,从甲、乙两块实验田中,各任意抽取了10株水稻,测得株高(单位:cm)如下:甲:78、79、89、82、79、9l、89、82、85、86乙:76、90、86、87、82、83、85、86、81、84请问:哪种水稻长得比较整齐?分析:要考察哪种水稻长得比较整齐,显然平均数不能反映,需要考察的应是两组数据的离散程度,故需要求方差.解答:=(78+79+89+…+86)÷10=84(cm)=(76+90+86+…+84)÷1O=84(cm)=0.1×[(78-84) 2+(79-84) 2+…+(86-84) 2]=19.8=0.1×[(76-84) 2+(90+84) 2+…+(84-84) 2]=13.2因为S2甲>S2乙,所以乙种水稻长得比较整齐.例9.某校要从A、B两名优秀选手中送一名选手参加全市中学生田径百米比赛,在最近的8次选拔赛中,他们的成绩(单位:秒)如下:A:12.1、l2.5、l3.0、12.5、12.8、12.2、l2.4、12.5;B:12.0、12.9、l2.2、13.1、12.2、13.0、12.1、12.9.⑴他们的平均成绩分别是多少?⑵他们这8次比赛成绩的方差是多少?⑶这两名运动员的运动成绩各有什么特点?分析:方差是反映数据波动大小的特征数,当两组数据的平均数相等或比较接近时,方差越小(即越稳定)越好,这是一种思维定势,其实并不然,在实际应用中需结合具体情况具体分析.解答:⑴A=a(12.1+l2.5+…+12.5)÷8=l2.5(秒),B=(12.0+12.9+…+12.9)÷8=12.55(秒).⑵S2A=[(12.1-12.5) 2+(12.5-12.5) 2+…+(12.5-12.5) 2] ÷8=0.075,S2B=[(12.0-l2.55)2+(12.9-12.55) 2+…+(12.9-12.55) 2]÷8=0.1875.⑶可从平均成绩,成绩的稳定性,运动员的潜力等方面去比较.因为A<B,故A的平均成绩比B好.又因为S2A<S2B,故A的成绩比B更稳定.又因为B的最好成绩比A的最好成绩要好,故B运动员的潜力较大.【模拟试题1】(答题时间:40分钟)一. 填空题:1. 如果一组数据5,x,3,4的平均数是5,那么x=_______.2. 某班共有学生50人,平均身高为168cm,其中30名男生平均身高为170cm,•则20名女生的平均身高为________.3. 某中学举行歌咏比赛,六位评委对某位选手打分如表:77、82、78、95、83、75去掉一个最高分和一个最低分后的平均分是________分.4. 在航天知识竞赛中,包括甲同学在内的6•名同学的平均分为74分,其中甲同学考了89分,则除甲以外的5名同学的平均分为_______分.5 . 为了增强市民的环保意识,某初中八年级(二)班的50名学生在今年6月5日(•世界环境日)个.⑵该校所在的居民区有1万户,则该居民区每天丢弃的废旧塑料袋约_____万个.6. 某商场四月份随机抽查了6天的营业额,结果分别如下(单位:万元):2.8,•3.2,3.4,3.0,3.1,3.7,试估算该商场四月份的总营业额,大约是______万元.7.二. 选择题:8. 如果一组数据x1,x2,x3,x4的平均数是,那么另一组数据x1,x2+1,x3+2,x4+3的平均数是()A. B. +1 C. +1. 5 D. +69. 某居民院内月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均每户用电()A. 41度B. 42度C. 45.5度D. 46度10. 某校四个绿化小组一天植树的棵数如下:10,10,x,8,•已知这组数据的众数和平均数相等,那么这组数据的中位数是()A. 8B. 9C. 10D. 1211. 在某次数学测验中,随机抽取了10份试卷,其成绩如下:85,81,89,81,72,•82,77,81,79,83,则这组数据的众数,平均数与中位数分别为()A. 81,82,81B. 81,81,76. 5C. 83,81,77D. 81,81,8112. 已知一组数据-3,-2,0,6,6,13,20,35,那么这组数据的中位数和众数分别是()A. 6和6B. 3和6C. 6和3D. 9.5和613.)A. 所需27cm鞋的人数太少,27cm鞋可以不生产B. 因为平均数为24,所以这批男鞋可以一律按24cm的鞋生产C. 因为中位数是24,故24cm的鞋的生产量应占首位D. 因为众数是25,故25cm的鞋的生产量要占首位14. 10名工人某天生产同一种零件,生产的件数分别是15,17,14,10,16,17,•17,15,14,12,设其平均数为a,中位数为b,众数为c,则有().A. a>b>cB. b>c>aC. c>a>bD. c>b>a三. 解答题:15. (2006其中,w≤50150时,空气质量为轻微污染.⑴请用扇形统计图表示这30天中空气质量的优、良、轻微污染的分布情况;⑵估计该城市一年(365天)有多少天空气质量达到良以上.。
20.1平均数教学目标1、知识与技能(1)在实际情境中理解平均数的概念和意义,会计算一组数据的算术平均数。
(2)能利用计算器计算一组数据的平均数和加权平均数。
(3)在具体情境中理解加权平均数的概念,体会“权"的意义,知道算术平均数与加权平均数的联系与区别。
2、过程与方法初步经历数据的收集、加工整理的过程,能利用平均数、加权平均数解决一些实际问题,发展学生的数学应用能力。
3、情感、态度与价值观培养学生互相合作与交流的能力,增强学生的数学应用意识.重点与难点1、重点:加权平均数的计算方法。
2、难点:加权平均的原理.教学方法本节课通过计算每月平均使用的电话费引入平均数的概念,并介绍用计算器计算一组数据的平均数的方法。
1、由于学生在小学已经学过算术平均数的概念,所以关于“算术平均数的意义”一小节的教学,主要是要引导学生观察各种统计图.建议首先让学生独立思考,再分组交流,然后共同归纳出怎样通过统计图计算出平均值。
2、让学生验证一组数据中每个数与这组数据的平均数的差的和为0,认识到平均数是将各数据之间的差异互相抵消(抹平)的结果,由此进一步理解平均数的意义。
3、计算器的统计功能键的使用应在教师指导下进行,应使学生熟练掌握计算过程,并将计算结果互相交流.教具准备教学用三角板、圆规、画好图的小黑板.加权平均数的应用教学过程 一、复习引入教师讲解:上节课我们介绍了加权平均的概念,初步会计算一个量在不同取值时的加权平均.这节课我们将应用加权平均概念解决实际问题.首先我们来思考下列问题来加深我们对权重的认识:商店里有两种苹果,一种单价是3.50元/千克,另一种单价为4元/千克.如妈妈各买了2千克,那么妈妈所买苹果的平均价格为3.543.752+=(元/千克),这种算法对吗?为什么? 如果妈妈买了单价为3。
50元/千克的苹果1千克,单价为4元/千克的苹果3千克,那么这种算法对吗?为什么?学生回答后教师提出:如果不同价格的苹果买的数量一样,也就是权重一样,那么采用上述方法取平均数是合理的.如果按加权计算,每种苹果价格的权重都为50%,其价格的平均数为3。
华东师大版八年级下册数学教案华东师大版八年级下册数学教案【精选5篇】聪明出于勤奋,天才在于积累。
数学是无穷的科学。
观察可能导致发现,观察将揭示某种规则、模式或定律。
这里给大家分享一些关于华东师大版八年级下册数学教案,供大家参考学习。
华东师大版八年级下册数学教案(篇1)一、学习目标1.多项式除以单项式的运算法则及其应用。
2.多项式除以单项式的运算算理。
二、重点难点重点:多项式除以单项式的运算法则及其应用。
难点:探索多项式与单项式相除的运算法则的过程。
三、合作学习(一)回顾单项式除以单项式法则(二)学生动手,探究新课1.计算下列各式:(1)(am+bm)÷m;(2)(a2+ab)÷a;(3)(4x2y+2xy2)÷2xy。
2.提问:①说说你是怎样计算的;②还有什么发现吗?(三)总结法则1.多项式除以单项式:先把这个多项式的每一项除以__________X,再把所得的商______2.本质:把多项式除以单项式转化成______________四、精讲精练例:(1)(12a3—6a2+3a)÷3a;(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);(3)[(x+y)2—y(2x+y)—8x]÷2x;(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。
随堂练习:教科书练习。
五、小结1、单项式的除法法则2、应用单项式除法法则应注意:A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;E、多项式除以单项式法则。
反比例函数的图象和性质
(1)是非零常数;
学做思一:你能作出反比例函数的图像
例:画出函数
导学:画出函数图象一般分为列表,描点、连线三个步骤,
这个
的取值
范围是不等于零的一切
用表里各组对
在直角坐
.连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一分支。
这两个分支合起来,就是反比例函数的图象,如图所示。
这种
画出函数的图象。
学
教师注意指导画函数图象有困难的学生,并评
这个函数的图象在哪两个象限
联系一次函数的性质,你能否总结出反比例函随着自变量
导做:在充分讨论、交流后达成共识:
时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象跟内
时,函数的图象在第二、四象限,在
3。
八年级下册数学华东师范教案大全5篇八年级下册数学华东师范教案大全5篇纯粹数学可以是实际有用的,而应用数学也可以是优美高雅的。
整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。
这里给大家分享一些关于八年级下册数学华东师范教案,供大家参考学习。
八年级下册数学华东师范教案(精选篇1)一、课堂引入1.什么叫做平行四边形?什么叫做矩形?2.矩形有哪些性质?3.矩形与平行四边形有什么共同之处?有什么不同之处?4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?通过讨论得到矩形的判定方法.矩形判定方法1:对角钱相等的平行四边形是矩形.矩形判定方法2:有三个角是直角的四边形是矩形.(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)二、例习题分析例1(补充)下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形;(×)(2)有四个角是直角的四边形是矩形;(√)(3)四个角都相等的四边形是矩形;(√)(4)对角线相等的四边形是矩形;(×)(5)对角线相等且互相垂直的四边形是矩形;(×)(6)对角线互相平分且相等的四边形是矩形;(√)(7)对角线相等,且有一个角是直角的四边形是矩形;(×)(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)(9)两组对边分别平行,且对角线相等的四边形是矩形.(√)指出:(l)所给四边形添加的条件不满足三个的肯定不是矩形;(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.例2(补充)已知ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4cm,求这个平行四边形的面积.分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.解:∵ 四边形ABCD是平行四边形,∴AO=A C,BO=BD.∵ AO=BO,∴ AC=BD.∴ ABCD是矩形(对角线相等的平行四边形是矩形).在Rt△ABC中,∵ AB=4cm,AC=2AO=8cm,∴BC=(cm).例3(补充)已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明八年级下册数学华东师范教案(精选篇2)一、学生起点分析通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.二、教学任务分析《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节.本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.本节课的教学目标是:①通过拼图活动,让学生感受客观世界中无理数的存在;②能判断三角形的某边长是否为无理数;③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;三、教学过程设计本节课设计了6个教学环节:第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:质疑内容:【想一想】⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的进行起了很好的铺垫的作用第二环节:课题引入内容:1.【算一算】已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长的平方,并提出问题:是整数(或分数)吗?2.【剪剪拼拼】把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.效果:巧设问题背景,顺利引入本节课题.第三环节:获取新知内容:【议一议】→【释一释】→【忆一忆】→【找一找】【议一议】:已知,请问:① 可能是整数吗?② 可能是分数吗?【释一释】:释1.满足的为什么不是整数?释2.满足的为什么不是分数?【忆一忆】:让学生回顾“有理数”概念,既然不是整数也不是分数,那么一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.第四环节:应用与巩固内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】【画一画1】:在右1的正方形网格中,画出两条线段:1.长度是有理数的线段2.长度不是有理数的线段【画一画2】:在右2的正方形网格中画出四个三角形(右1)2.三边长都是有理数2.只有两边长是有理数3.只有一边长是有理数4.三边长都不是有理数【仿一仿】:例:在数轴上表示满足的解:(右2)仿:在数轴上表示满足的【赛一赛】:右3是由五个单位正方形组成的纸片,请你把它剪成三块,然后拼成一个正方形,你会吗?试试看!(右3)目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上效果:加深了对“新知”的理解,巩固了本课所学知识.第五环节:课堂小结内容:1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会? 2.客观世界中,的确存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?目的`:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:学生总结、相互补充,学会进行概括总结.第六环节:布置作业习题2.1六、教学设计反思(一)生活是数学的源泉,兴趣是学习的动力大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.(二)化抽象为具体常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.(三)强化知识间联系,注意纠错既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.八年级下册数学华东师范教案(精选篇3)平方差公式学习目标:1、能推导平方差公式,并会用几何图形解释公式;2、能用平方差公式进行熟练地计算;3、经历探索平方差公式的推导过程,发展符号感,体会特殊一般特殊的认识规律.学习重难点:重点:能用平方差公式进行熟练地计算;难点:探索平方差公式,并用几何图形解释公式.学习过程:一、自主探索1、计算:(1)(m+2) (m-2) (2)(1+3a) (1-3a)(3) (x+5y)(x-5y) (4)(y+3z) (y-3z)2、观察以上算式及其运算结果,你发现了什么规律再举两例验证你的发现.3、你能用自己的语言叙述你的发现吗4、平方差公式的特征:(1)、公式左边的两个因式都是二项式。
平顺二中课堂教学设计(首页)平顺二中课堂教学设计(流程)检查双基判断对错,并说明理由或举出反例:1.对角线相等的四边形是矩形。
(×)2.对角线互相平分且相等的四边形是矩形。
(√)3.有一个角是直角的四边形是矩形。
(×)4.四个角都相等的四边形是矩形。
(√)5.对角线相等,且有一个角是直角的四边形是矩形。
(×)6.一组邻边垂直,一组对边平行且相等的四边形是矩形。
(√)7.对角线相等且互相垂直的四边形是矩形。
(×)1、教师出示判断题,强调学习要求。
通过小组讨论完成。
具体做法,前排学生与后一排学生组成四人小组进行讨论,然后选派代表发言。
2、学生按要求进行讨论,教师巡回检查指导,发现问题及时纠正。
3、鼓励学生,动手实践,画出反例图形,从而做出正确的判断。
4、教师适当点拨,让学生观察,然后做出判断。
第5题第7题本环节放手让学生之间合作学习,互相交流,交换观点,自主构建知识体系,能灵活运用所学知识进行正确判断,给学生自主学习交流提供空间。
同时,通过交流让学生用自己的语言清楚表达解决问题的过程,可以培养学生语言表达能力和积极发言的胆略。
体现开放性原则、过程性原则性教学原则。
解决问题例1:已知M为ABCD 的AD边的中点,且MB=MC。
求证:ABCD是矩形1、教师组织学生熟悉题意后,指名说出证明思路,其余学生判断正误。
2、教师出示证明过程让学生对照检查。
并强调证明过程的逻辑性和严密性,注意书写格式。
证明:∵ABCD是平行四边形∴∠A+∠C=180。
AB=DC1、通过学生回答证明过程,培养学生数学推理能力和思维能力。
培养学生良好的数学素养和品质。
2、通过变式训练,培养学生思维的灵活性和创造性。
变式训练一,利用“同一三角形中,布置作业19.2 第一题和第二题。
预习下节课的内容。
通过学生评价和反思,理清知识结构,掌握本节课的重点内容。
最后一个环节,让学生为学习下一课时《菱形》做准备。
19.1.2矩形的判定一、教学目标1、理解并掌握矩形的判定方法;2、会用矩形的判定定理进行有关的论证或计算;二、教学重点、难点掌握矩形的判定方法以及应用.三、教学过程环节一:探究矩形的判定※复习引入1. 复习提问矩形的定义是什么?(有一个角是直角......的平行四边形.....是矩形.板书定义)强调矩形的定义是矩形的一种判定方法.此时要分析命题的题设和结论,题设的两个条件缺一不可.2.引出问题除此之外,我们能否找到其他判定矩形的方法呢?今天我们进一步来研究矩形的判定.(板书课题)※探究新知1.知识回顾(1)平行四边形的判定方法除了可以用定义来判定外,还有哪几种?(2)这些判定方法是通过什么方式得到的? (平行四边形的性质的逆命题猜测、操作验证、逻辑推理证明方式得到的).同样,我们可以通过类似的方法寻找判定矩形的其他方法。
2. 归纳小结学生口述,教师用几何语言表示:1、用定义判定1:∵在□ABCD中,∠ABC=____°∴□ABCD是矩形.2、判定方法2∵在□ABCD中,___________∴□ABCD是矩形.3、判定方法3∵_________________________ ∴四边形ABCD是矩形.环节二、典型例题例:1:如图,□ABCD中,AB=6,BC=8,AC=10.ODC BAHG F EDC B A21DCBA求证:四边形ABCD 是矩形 练一练:1、如图1,□ABCD 中,∠1=∠2. 求证:四边形ABCD 是矩形 环节三、分层练习 A 组1、如图1,四边形ABCD 是平行四边形,添加一个条件_________,可使它成为矩形. 2、如图2,AO=CO ,BO=DO ,使用它变为矩形,需要添加的条件是( ) A、AB=CD , B 、AD=BC C 、AB=BC D 、AC=BD 3、如图3,已知□ABCD ,下列条件:①AC=BD , ②AB=AD ,③∠1=∠2,④AB ⊥BC 中, 能说明□ABCD 是矩形的有(填写序号).2 图3ABCD 的中点,且求证:ABCD 是矩形. B 组5、已知:如图,□ABCD 的四个内角的平分线分别相交于点E 、F 、G 、H .求证:四边形EFGH 是矩形. C 组6、如图,△ABC 中,点O 是AC 上一个动点,过点O 作直线MN ∥BC , 设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F ,(1)求证:OE=OF ; (2)当点O 运动到何处时,四边形AECF 是矩形,并证明你的结论。
课题§21.3极差、方差与标准差课型新授课时1教学目标1、(ABC)理解极差、方差与标准差的概念及作用.2、(ABC)灵活运用极差、方差与标准差来处理数据.3、(AB)培养学生的探索知识的能力,体验用极差、方差与标准差来分析数据,然后作出决策.重点理解极差、方差与标准差的概念及作用教法讲练结合法难点运用极差、方差与标准差来处理数据教具小黑板教学程序教师活动学生活动导入1.某学校初三一班甲、乙两名同学参加最近5次数学测试的成绩(单位:分)!统计如下:甲:65 94 95 98 98乙:62 71 98 99 100(1)分别写出甲、乙成绩的平均分和中位数.(2)写出甲、乙两名同学所有测试成绩的众数.2.用平均数、中位数或众数代表数有什么不同?思考、举例板书课题出示目标认定目标达标导学1.极差根据两段时间的气温情况绘成折线图.观察它们有差别吗?小组讨论、交流看法.(通过观察,可以发现:图(a)中折线波动的范围比较大)从6℃到22℃,图(b)中折线波动的范围则比较小——从9℃到16℃.)思考:什么样的指标可以反映一组数据变化范围的大小?引导学生得出极差:我们可以用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围.用这种方法得到的差称为极差.极差;最大值一最小值在图中,我们可以看出,图.(a)中最高气温与最低气温之间差距很大,相差 16℃,也就是极差为16℃;图(b)中所有气温的极差为7℃,所以从图中看,整个变化的范围不太大.练习:1.求下列各题中的极差(1)某班里个子最高的学生身高为1.75米,个子最矮的学生身高为1.42米,求该班所有学生身高的极差.(2)小华家中,年纪最大的长辈的年龄是78岁,年纪最小的孩子的年龄是9岁,求小华家中所有成员的年龄极差.2.你也结合生活实际,编一道极差的题目,小组交流.同桌对换解题.问题2:(1)极差与数据变化范围大小的关系是什么?(极差越大,变化范围越大,反之亦然.)(2)为什么说本章导图中的两个城市,一个“四季温差不大”,一个“四季分明”?3.方差、标准差.问题3:小明和小兵两人参加体育项目训练,近期的5次测试成绩如表所示,谁的成绩较为稳定?为什么?理解、记忆练习(1)计算出两人的平均成绩.(2)画出两人测试成绩的折线图,如图.(3)观察发现什么?(小明的成绩大部分集中在平均成绩13分的附近,而小兵的成绩与其平均值的离散程度较大.)通常,如果一组数据与其平均值的离散程度较小,我们就说它比较稳定.思考:什么样的数能反映一组数据与其平均值的离散程度?我们已经看出,小兵的测试成绩与平均值的偏差较大,而小明的较小.那么如何加以说明呢?可以直接将各数据与平均值的差进行累加吗?试一试:(1)在下表中(印好,每个学生一份),写出你的计算结果.通过计算,依据最后的结果可以比较两组数据围绕其平均值的波动情况吗?(2)如果不行,请你提出一个可行的方案,在右表中(印好,每个学生一份),格子中写上新的计算方案,并将计算结果填人表中.(3)思考:如果一共进行7次测试,小明因故缺席了两次,怎样比较谁的成绩更稳定?请将你的方法与数据填人右表中.我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况.这令结果通常称为方差.我们通常用S2表示一组数据的方差,用;表示一组数据的平均数,x1、x2、……表示各个数据.方差的计算公式.问题4:观察S2的数量单位与原数据单位一致吗?如何使其一致呢?学生各抒己见.教师总结:在实际应用时常常将求出的方差再开平方,这就是标准差.即:标准差=方差,方差=标准差2.练习:计算(1)小明5次测试成绩的标准差为( ).(2)小兵5次测试成绩的标准差为( ).问题5:从标准差看,谁的成绩较为稳定?与前面依据方差所得到的结论一样吗?口答分析试一试口答思考、回答课堂小结1.极差可反映出一组数据的变化范围.2.方差与标准差可表示出一组数据与其平均值的离散程度、稳定性.总结、记忆达标测试1、(ABC)比较下列两组数据的极差和方差:A组:0,10,5,5,5,5,5,5,5,5;B组:4,6,3,7,2,8,1,9,5,5;2、(AB)算一算:第150页的问题1中哪一年气温的离散程度较大?和你从图21.3.1中直接看出的结果一致吗?生自测。
第17章函数及其图象原创不容易,为有更多动力,请【关注、关注、关注】,谢谢!师者,所以传道,授业,解惑也。
韩愈17.3一次函数1.一次函数【知识与技能】1.理解一次函数和正比例函数的概念;2.根据实际问题列出简单的一次函数的表达式.【过程与方法】探索一次函数图象的特点以及某些一次函数图象的异同点,培养学生发现问题和解决问题的能力【情感态度】通过理解函数与变量之间的关系,一次函数与一次方程的联系,发展学生的数学思维【教学重点】一次函数、正比例函数的概念及关系【教学难点】理解一次函数与正比例函数的联系和区别一、情境导入,初步认识1.作函数图象一般步骤是什么?2.在同个平面直角坐标系中画出下列函数的图象.(1)y=2 (2)y=x+2【教学说明】对上节课的知识进行复习,为本节课作准备.二、思考探究,获取新知探究:一次函数的概念问题1:小明暑假第一次去北京.汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知A地直达北京的高速公路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.分析:我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值,显然,应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是:s=570-95t.问题2:弹簧下端挂重物,弹簧会伸长.弹簧的长度y(厘米)是所挂重物质量x(千克)的函数.已知一根弹簧不挂重物时的长度是6厘米,在一定的弹性限度内,每挂1千克重物弹簧伸长0.3厘米,求这个函数解析式.解:y=0.3x+6以上问题1和问题2表示的这两个函数有什么共同点?【归纳结论】上述两个问题中的函数解析式都是用自变量的一次整式表示的,我们称它们为一次函数.一次函数通常可以表示为y=kx+b的形式,其中k、b是常数,k ≠0.特别地,当b=0时,一次函数y=kx(常数k≠0)也叫正比例函数,正比例函数也是一次函数,它是一次函数的特例.【教学说明】由两个实际问题所列出两个函数关系式,通过观,总结出一次函数的解析式.三、运用新知,深化理解1.下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?(1)面积为10cm2的三角形的底边边长a(cm)与这边上的高h(cm);(2)长为8(cm)的平行四边形的周长L(cm)与宽b(cm);(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;(4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).分析:确定函数是否为一次函数或正比例函数,就是看它们的解析式经过整理后是否符合y=kx+b(k≠0)或y=x(k≠0)形式,所以此题必须先写出函数解析式后解答.解:(1)a=20h,不是一次函数.(2)L=2b+16,L是b的一次函数.(3)y=120-5x,y是x的一次函数.(4)s=40t,s既是t的一次函数又是正比例函数.2.把直线y=32x+1向上平移3个单位所得到的解析式为_______. 解:y=32x+43.已知函数y=+1,求函数图像与坐标轴围成的三角形的面积?解:1 24.已函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求k的值.分析:根据一次函数和正比例函数的定义,易求得k的值.解:若y=(k-2)x+2k+1是正比例函数,则2k+1=0,即k= 。
华师大版八年级数学下册教案华师大版八年级数学下册教案1教学目标1.使学生正确理解不等式的解,不等式的解集,解不等式的概念,掌握在数轴上表示不等式的解的集合的方法;2.培养学生观察、分析、比较的能力,并初步掌握对比的思想方法;3.在本节课的教学过程中,渗透数形结合的思想,并使学生初步学会运用数形结合的观点去分析问题、解决问题.教学重点和难点重点:不等式的解集的概念及在数轴上表示不等式的解集的方法.难点:不等式的解集的概念.课堂教学过程设计一、从学生原有的认知结构提出问题1.什么叫不等式?什么叫方程?什么叫方程的解?(请学生举例说明)2.用不等式表示:(1)x的3倍大于1; (2)y与5的差大于零;(3)x与3的和小于6; (4)x的小于2.(3)当x取下列数值时,不等式x+36是否成立?-4,3.5,-2.5,3,0,2.9.((2)、(3)两题用投影仪打在屏幕上)一、讲授新课1.引导学生运用对比的方法,得出不等式的解的概念2.不等式的解集及解不等式首先,向学生提出如下问题:不等式x+36,除了上面提到的,-4,-2.5,0,2.9是它的解外,还有没有其它的解?若有,解的个数是多少?它们的分布是有什么规律?(启发学生利用试验的方法,结合数轴直观研究.具体作法是,在数轴上将是x+36的解的数值-4,-2.5,0,2.9用实心圆点画出,将不是x+36的解的数值3.5,4,3用空心圆圈画出,好像是“挖去了”一样.如下图所示)然后,启发学生,通过观察这些点在数轴上的分布情况,可看出寻求不等式x+36的解的关键值是“3”,用小于3的任何数替代x,不等式x+36均成立;用大于或等于3的任何数替代x,不等式x+36均不成立.即能使不等式x+36成立的未知数x的值是小于3的所有数,用不等式表示为x3.把能够使不等式x+36成立的所有x值的集合叫做不等式x+36的集合.简称不等式x+36的解集,记作x3.最后,请学生总结出不等式的解集及解不等式的概念.(若学生总结有困难,教师可作适当的启发、补充)一般地说,一个含有未知数的不等式的所有解,组成这个不等式的解的集合.简称为这个不等式的解集.不等式一般有无限多个解.求不等式的解集的过程,叫做解不等式.3.启发学生如何在数轴上表示不等式的解集我们知道解不等式不能只求个别解,而应求它的解集,一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x3.那么如何在数轴上直观地表示不等式x+36的解集x3呢?(先让学生想一想,然后请一名学生到黑板上试着用数轴表示一下,其余同学在下面自行完成,教师巡视,并针对黑板上板演的结果做讲解)在数轴上表示3的点的左边部分,表示解集x3.如下图所示.由于x=3不是不等式x+36的解,所以其中表示3的点用空心圆圈标出来.(表示挖去x=3这个点)记号“≥”读作大于或等于,既不小于;记号“≤”读作小于或等于,即不大于.例如不等式x+5≥3的解集是x≥-2(想一想,为什么?并请一名学生回答)在数轴上表示如下图.即用数轴上表示-2的点和它的右边部分表示出来.由于解中包含x=-2,故其中表示-2的点用实心圆点表示.此处,教师应强调,这里特别要注意区别是用空心圆圈“。
2017华东师大版八年级数学下册全册学案目录✧16.1.1分式✧16.1.2分式的基本性质约分✧16.1.2分式的基本性质通分✧16.1分式✧16.2.1分式的乘除✧16.2.2分式的加减分式的加减_同分母分式加减✧16.2.2分式的加减分式的加减_异分母分式加减✧16.3可化为一元一次方程的分式方程1✧16.3可化为一元一次方程的分式方程2✧16.4.1零指数幂与负整数指数幂✧16.4.2科学记数法✧16.4零整数幂与负整数指数幂科学记数法✧16分式分式的加减法✧16分式复习✧17.1变量与函数1✧17.1变量与函数2✧17.1变量与函数✧17.2函数的图象✧17.3.2一次函数的图象1✧17.3.2一次函数的图象2✧17.3一次函数✧17.4.1反比例函数✧17.4.2反比例函数的图象和性质✧17.4反比例函数✧17.5实践与探索✧17.5实践与探索第1课时✧17.5实践与探索第2课时✧17.5实践与探索第3课时✧18.1平行四边形的性质1✧18.1平行四边形的性质1✧18.1平行四边形的性质2✧18.1平行四边形的性质✧18.2平行四边形的判定1✧18.2平行四边形的判定23✧18.2平行四边形的判定✧18平行四边形✧19.1.1矩形✧19.1.2矩形的判定✧19.1矩形✧19.2菱形✧19.3正方形✧20.1平均数加权平均数的应用✧20.1平均数平均数的意义✧20.1平均数✧20.2数据的集中趋势✧20.3数据的离散程度✧20数据的整理与初步处理16.1.1 分式教学目标1、经历实际问题的解决过程,从中认识分式,并能概括分式;2、使学生能正确地判断一个代数式是否是分式;3、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。
教学重点探索分式的意义及分式的值为某一特定情况的条件。
教学难点能通过回忆分数的意义,探索分式的意义及分式的值为某一特定情况的条件。
第17章 分式§17.1.1 分式的概念教学目标:1、经历实际问题的解决过程,从中认识分式,并能概括分式2、使学生能正确地判断一个代数式是否是分式3、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。
教学重点:探索分式的意义及分式的值为某一特定情况的条件。
教学难点:能通过回忆分数的意义,探索分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米;(2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元;二、概括: 形如BA (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母. 整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x ; (3)y x xy +2; (4)33y x -. 解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式a S 中,a ≠0;在分式n m -9中,m ≠n.例2 当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x . 分析 要使分式有意义,必须且只须分母不等于零.解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义. (2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义. 四、练习:P5习题17.1第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?(1) (2) (3) 3. 当x 为何值时,分式的值为0? (1) (2) (3) 4522--x xx x 235-+23+x x x 57+x x 3217-x x x --221五、小结:什么是分式?什么是有理式?六、作业:P5习题17.1第1、2题,第3题(2)(4)教学反思:§17.1.2 分式的基本性质教学目标:1、掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义。
2、使学生理解分式通分的意义,掌握分式通分的方法及步骤。
教学重点:让学生知道约分、通分的依据和作用,学会分式约分与通分的方法。
教学难点:1、分子、分母是多项式的分式约分;2、几个分式最简公分母的确定。
教学过程:1、分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是: MB M A B A M B M A B A ÷÷=⨯⨯=, ( 其中M 是不等于零的整式)。
与分数类似,根据分式的基本性质,可以对分式进行约分和通分.2、例3 约分(1)4322016xy y x -; (2)44422+--x x x 分析 分式的约分,即要求把分子与分母的公因式约去.为此,首先要找出分子与分母的公因式.解(1)4322016xyy x -=-y xy x xy 544433⋅⋅=-y x 54. (2)44422+--x x x =2)2()2)(2(--+x x x =22-+x x . 约分后,分子与分母不再有公因式. 分子与分母没有公因式称为最简分式..... 3、练习:P5 练习 第1题:约分(1)(3)4、例4 通分(1)b a 21,21ab; (2)y x -1,y x +1; (3)221y x -,xy x +21 解 (1)b a 21与21ab的最简公分母为a 2b 2,所以 b a 21=b b a b ⋅⋅21=22b a b , 21ab =a ab a ⋅⋅21=22b a a .(2)y x -1与yx +1的最简公分母为(x -y )(x +y ),即x 2-y 2,所以 y x -1=))((1y x y x y x +-+⋅)(=22y x y x -+, y x +1=))(()(1y x y x y x -+-⋅=22y x y x --. 请同学们根据这两小题的解法,完成第(3)小题。
5、练习P5 练习 第2题:通分6、小结:(1)请你分别用数学语言和文字表述分式的基本性质;(2)分式的约分运算,用到了哪些知识?让学生发表,互相补充,归结为:①因式分解;②分式基本性质;③分式中符号变换规律;约分的结果是,一般要求分、分母不含“-”。
(3)把几个异分母的分式,分别化成与原来分式相等的同分母的分式,叫做分式的通分。
分式通分,是让原来分式的分子、分母同乘以一个适当的整式,根据分式基本性质,通分前后分式的值没有改变。
通分的关键是确定几个分式的公分母,从而确定各分式的分子、分母要乘以什么样的“适当整式”,才能化成同一分母。
确定公分母的方法,通常是取各分母所有因式的最高次幂的积做公分母,这样的公分母叫做最简公分母。
7、作业:P5练习 1约分:第(2)(4)题,习题17.1第4题8、课后反思:§17.2 分式的运算§17.2.1 分式的乘除法教学目标:1、让学生通过实践总结分式的乘除法,并能较熟练地进行式的乘除法运算。
2、使学生理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算3、引导学生通过分析、归纳,培养学生用类比的方法探索新知识的能力教学重点:分式的乘除法、乘方运算教学难点:分式的乘除法、混合运算,以及分式乘法,除法、乘方运算中符号的确定。
教学过程:一、复习与情境导入1、(1) :什么叫做分式的约分?约分的根据是什么?(2):下列各式是否正确?为什么?2、尝试探究:计算:(1)a b b a 32232⋅; (2)b a b a 232÷. 概括:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.如果得回忆:如何计算10965⨯、4365÷?从中可以得到什么启示。
到的不是最简分式,应该通过约分进行化简.分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.(用式子表示如右图所示)二、例题:例1计算:(1)xb ay by x a 2222⋅; (2)222222x b yz a z b xy a ÷. 解 (1)x b ay by x a 2222⋅=x b by ay x a 2222⋅⋅=33ba . (2)222222xb yz a z b xy a ÷=yz a x b z b xy a 222222⋅=33z x . 例2计算:493222--⋅+-x x x x . 解 原式=)2)(2()3)(3(32-+-+⋅+-x x x x x x =23+-x x . 三、练习:P7 第1题四、思考怎样进行分式的乘方呢?试计算:(1)(m n )3 (2)(mn )k (k 是正整数) (1)(m n )3 =m n m n m n ⋅⋅=)()(m m m n n n ••••=________; (2)(m n )k =个k m n m n m n ⋅⋅⋅=)()(m m m n n n •••••• =___________. 仔细观察所得的结果,试总结出分式乘方的法则.五、小结:1、怎样进行分式的乘除法?2、怎样进行分式的乘方?六、作业:P9习题19.2第1题 P7练习:第2题:计算七、课后反思:§17.2.2 分式的加减法教学目标:1、使学生掌握同分母、异分母分式的加减,能熟练地进行同分母,异分母分式的加减运算。
2、通过同分母、异分母分式的加减运算,复习整式的加减运算、多项式去括号法则以及分式通分,培养学生分式运算的能力。
3、渗透类比、化归数学思想方法,培养学生的能力。
教学重点:让学生熟练地掌握同分母、异分母分式的加减法。
教学难点:回忆:如何计算5251+、6141+, 从中可以得到什么启示?分式的分子是多项式的分式减法的符号法则,去括号法则应用。
教学过程:一、实践与探索1、回忆:同分母的分数的加减法法则: 同分母的分数相加减,分母不变,把分子相加减。
2、试一试:计算:(1)a a b 2+;(2)aba 322- 3、总结一下怎样进行分式的加减法?概括同分母的分式相加减,分母不变,把分子相加减;异分母的分式相加减,先通分,变为同分母的分式,然后再加减.二、例题 1、例3计算:xyy x xy y x 22)()(--+ 2、例4 计算:1624432---x x . 分析..这里两个加项的分母不同,要先通分.为此,先找出它们的最简公分母. 注意到162-x =)4)(4(-+x x ,所以最简公分母是)4)(4(-+x x解 1624432---x x =)4)(4(2443-+--x x x =)4)(4(24)4)(4()4(3-+--++x x x x x =)4)(4(24)4(3-+-+x x x =)4)(4(123-+-x x x =)4)(4()4(3-+-x x x =43+x 三、练习:P9第1题(1)(3)、第2题(1)(3)四、小结:1、同分母分式的加减法:类似于同分母的分数的加减法;2、异分母分式的加减法步骤:①. 正确地找出各分式的最简公分母。
求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。
取这些因式的积就是最简公分母。
②. 准确地得出各分式的分子、分母应乘的因式。
③. 用公分母通分后,进行同分母分式的加减运算。
④. 公分母保持积的形式,将各分子展开。
⑤. 将得到的结果化成最简分式(整式)。
五、作业:P9习题17.2第2、3、4题六、课后反思:§17.3 可化为一元一次方程的分式方程(1)教学目标:1、使学生理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程.2、使学生理解增根的概念,了解增根产生的原因,知道解分式方程须验根并掌握验根的方法.3、使学生领会“ 转化”的思想方法,认识到解分式方程的关键在于将它转化为整式方程来解.4、培养学生自主探究的意识,提高学生观察能力和分析能力。
教学重点:使学生理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程.教学难点:使学生理解增根的概念,了解增根产生的原因,知道解分式方程须验根并掌握验根的方法.教学过程:一、问题情境导入轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.已知水流的速度是3千米/时,求轮船在静水中的速度.分 析设轮船在静水中的速度为x 千米/时,根据题意,得360380-=+x x . (1) 概 括方程(1)中含有分式,并且分母中含有未知数,像这样的方程叫做分式方程.思 考怎样解分式方程呢?有没有办法可以去掉分式方程中的分母把它转化为整式方程呢?试动手解一解方程(1). 方程(1)可以解答如下:方程两边同乘以(x +3)(x -3),约去分母,得80(x -3)=60(x +3).解这个整式方程,得x =21.所以轮船在静水中的速度为21千米/时.概 括上述解分式方程的过程,实质上是将方程的两边乘以同一个整式,约去分母,把分式方程转化为整式方程来解.所乘的整式通常取方程中出现的各分式的最简公分母.二、例题:1、例1 解方程:12112-=-x x . 解 方程两边同乘以(x 2-1),约去分母,得x +1=2.解这个整式方程,得x =1.解到这儿,我们能不能说x =1就是原分式方程的解(或根)呢?细心的同学可能会发现,当x =1时,原分式方程左边和右边的分母(x -1)与(x 2-1)都是0,方程中出现的两个分式都没有意义,因此,x =1不是原分式方程的解,应当舍去.所以原分式方程无解.我们看到,在将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种根通常称为增根.因此,在解分式方程时必须进行检验.2、例2 解方程:730100-=x x .解 方程两边同乘以x (x -7),约去分母,得100(x -7)=30x .解这个整式方程,得x =10.检验:把x =10代入x (x -7),得10×(10-7)≠0所以,x =10是原方程的解.三、练习:P14第1题四、小结:⑴、什么是分式方程?举例说明;⑵、解分式方程的一般步骤:在方程的两边都乘以最简公分母,约去分母,化为整式方程.解这个整式方程..验根,即把整式方程的根代入最简公分母,看结果是不是零,若结果不是0,说明此根是原方程的根;若结果是0,说明此根是原方程的增根,必须舍去.⑶、解分式方程为什么要进行验根?怎样进行验根?五、作业:P14 习题17.3第1题(1)(2)、第2题六、课后反思:§17.3 可化为一元一次方程的分式方程(2)教学目标:1、进一步熟练地解可化为一元一次方程的分式方程。