涡流检测2
- 格式:ppt
- 大小:371.00 KB
- 文档页数:38
涡流检测原理
涡流检测是一种非破坏性的测试方法,常用于检测导体中的表面缺陷和材料的导电性能。
它的原理基于一个重要的物理现象,即当导体中的电流受到变化时,会在导体附近产生涡流。
涡流产生的基本原理是法拉第电磁感应定律。
根据这个定律,当导体中通过电流或者导体相对于磁场的运动时,会在导体的表面上产生电位差。
这个电位差会导致电流在导体表面形成一个闭合环路,即涡流。
通过测量涡流的强度和分布情况,可以得出导体表面的不均匀性和缺陷信息。
当涡流在表面遇到缺陷或者不均匀性时,它们会改变涡流的强度和分布情况。
这些变化可以通过传感器检测到,并转化为电信号进行分析和处理。
涡流检测的实施过程通常包括以下步骤:首先,将被测试的导体放置在磁感应装置中,通过施加交变电流或者交变磁场来产生涡流。
接下来,将传感器放置在导体表面,用于测量涡流的强度和分布情况。
通过对传感器信号的分析,可以确定导体表面的缺陷和不均匀性。
涡流检测的优点包括快速、准确、非接触和适用于各种导体。
然而,它也有一些限制,如对导体材料和几何形状的要求,以及无法检测深层缺陷等。
总之,涡流检测利用涡流的产生和变化来检测导体表面的缺陷
和不均匀性。
它是一种非破坏性的测试方法,在工业领域中广泛应用于质量控制和产品检测中。
涡流检测标准涡流检测是一种常用的无损检测方法,广泛应用于航空航天、石油化工、铁路运输、机械制造等领域。
涡流检测的标准化对于确保检测结果的准确性和可靠性至关重要。
本文将介绍涡流检测的相关标准,以及在实际应用中需要注意的问题。
首先,涡流检测的标准主要包括ISO9712、GB/T 4162、JB/T 4730等。
这些标准规定了涡流检测的设备、操作、人员资质、检测程序等方面的要求,确保了检测过程的科学性和规范性。
在进行涡流检测时,必须严格按照相关标准进行操作,以确保检测结果的准确性。
其次,涡流检测中需要注意的问题包括表面处理、探头选择、缺陷评定等。
在进行涡流检测之前,被检测物体的表面必须进行清洁处理,以消除表面杂质对检测结果的影响。
同时,选择合适的探头对于检测结果的准确性也至关重要。
在检测过程中,对于检测到的缺陷,需要进行科学的评定,以确定缺陷的性质和大小。
此外,涡流检测的标准化还涉及到人员培训和资质认证。
涡流检测人员必须经过专业的培训,并取得相应的资质证书,才能进行涡流检测工作。
这样可以确保检测人员具备足够的专业知识和操作技能,从而保证检测结果的准确性和可靠性。
在实际应用中,涡流检测的标准化不仅可以提高检测的准确性和可靠性,还可以降低操作风险,提高工作效率。
因此,各行各业都应当重视涡流检测的标准化工作,加强对涡流检测标准的学习和应用,从而更好地发挥涡流检测在质量控制和安全保障中的作用。
总之,涡流检测的标准化对于确保检测结果的准确性和可靠性至关重要。
只有严格按照相关标准进行操作,才能保证涡流检测的有效性和可靠性。
希望各行各业能够重视涡流检测的标准化工作,加强标准的学习和应用,从而更好地发挥涡流检测在质量控制和安全保障中的作用。
如何利用无损检测技术进行涡流检测无损检测技术是一种在不破坏被检测对象的情况下进行材料或构件缺陷检测的技术。
涡流检测作为无损检测技术的一种,主要用于对导电材料进行缺陷检测。
本文将介绍如何利用无损检测技术进行涡流检测,并探讨其在工业领域的应用。
涡流检测技术利用高频交流电场在导电材料中产生涡流,并通过检测涡流产生的电磁信号来判断材料中是否存在缺陷。
下面将介绍如何利用无损检测技术进行涡流检测的步骤和方法。
首先,在进行涡流检测之前,需要准备一台涡流检测设备和一个适合的探头。
涡流检测设备通常由交流电源、发生器、检测探头和信号处理器组成。
根据被检测材料的特点和需要检测的缺陷类型,选择合适的探头和检测参数。
然后,在进行涡流检测之前,需要对被检测材料进行表面处理。
通常情况下,被检测材料的表面应该光滑、干净,并且去除掉可能影响检测结果的腐蚀物、油脂等物质。
接下来,将准备好的探头放置在被检测材料的表面,并将涡流检测设备与探头连接。
设备启动后,交流电源产生的交流电场会在探头的激励下在被检测材料中产生涡流。
被检测材料表面的涡流在遇到缺陷时会产生电磁信号,通过探头收集并传输给信号处理器进行分析。
最后,通过信号处理器对收集到的电磁信号进行分析和判断。
根据信号的幅值、相位、频率等特征参数,可以判断材料中是否存在缺陷。
常见的缺陷类型包括裂纹、腐蚀、疲劳等。
无损检测技术的涡流检测方法具有许多优点。
首先,与传统的破坏性检测方法相比,涡流检测无需对被检测材料进行损坏,大大减少了材料的浪费和成本。
其次,涡流检测方法对不同缺陷类型有着较高的灵敏度和准确性,可以检测到微小缺陷,并且能够对缺陷进行三维成像。
此外,涡流检测方法响应速度快,适用于自动化生产线上的实时监测。
利用无损检测技术进行涡流检测在工业领域有着广泛的应用。
首先,涡流检测方法可用于航空航天、汽车、船舶等交通工具的结构检测。
在航空航天领域,涡流检测方法可以用来检测飞机发动机制成材料中的裂纹、腐蚀等缺陷,确保飞行的安全性。
涡流检测ect检测技术标准涡流检测(ECT)是一种常用的无损检测技术,它利用涡流场对导体材料的检测,以实现对材料表面和近表面缺陷的检测。
下面是关于涡流检测技术的详细说明。
一、涡流检测的原理涡流检测是基于电磁感应原理的无损检测方法。
当一个交流电磁线圈靠近被检测的导电材料时,线圈中会产生交变磁场。
这个磁场会在被检测材料中产生涡流。
如果材料中存在缺陷或异常,如裂纹、气孔、夹杂物等,这些缺陷会改变涡流的分布和强度,从而改变线圈中的感应电动势。
通过测量这个感应电动势的变化,可以确定被检测材料中的缺陷。
二、涡流检测的优点1.高灵敏度:涡流检测对材料表面和近表面的缺陷非常敏感,可以检测出微小的裂纹和其他缺陷。
2.快速高效:涡流检测可以在线进行,且不需要对材料进行特殊处理,因此可以快速高效地检测大量材料。
3.无需耦合剂:与其他无损检测方法相比,涡流检测不需要使用耦合剂,因此可以减少污染和操作成本。
4.适应性强:涡流检测适用于各种导电材料,包括金属、合金、复合材料等。
三、涡流检测的局限性1.检测深度有限:涡流检测主要适用于材料表面和近表面的缺陷检测,对于深层缺陷的检测能力有限。
2.对材料形状和大小敏感:涡流检测的灵敏度受到材料形状和大小的影响,因此对于不同形状和大小的零件需要进行不同的检测设置。
3.不能检测非导电材料:涡流检测只能用于导电材料的检测,对于非导电材料的检测无能为力。
四、涡流检测的标准为了规范涡流检测的技术要求和应用范围,国际上制定了一系列相关标准。
下面是几个主要的涡流检测标准:1.ISO 18564-1: 无损检测-涡流检测-第1部分:一般原则和方法:该标准规定了涡流检测的一般原则和方法,包括检测设备的选择、检测程序、缺陷评定等方面。
2.ISO 18564-2: 无损检测-涡流检测-第2部分:设备:该标准规定了涡流检测设备的性能要求和测试方法,包括电磁线圈的设计、制造和测试要求等。
3.ISO 18564-3: 无损检测-涡流检测-第3部分:人员:该标准规定了从事涡流检测工作的人员要求,包括培训、资格认证、技能要求等方面。
涡流、电磁阻尼和电磁驱动一、涡流1.涡流:当线圈中的电流随时间变化时,线圈附近的任何导体中都会产生感应电流,电流在导体中组成闭合回路,很像水中的旋涡,所以把它叫做涡电流,简称涡流.2.涡流大小的决定因素:磁场变化越快(ΔB Δt 越大),导体的横截面积S 越大,导体材料的电阻率越小,形成的涡流就越大.3.产生涡流的两种情况(1)块状金属放在变化的磁场中.(2)块状金属进出磁场或在非匀强磁场中运动.4.产生涡流时的能量转化(1)金属块在变化的磁场中,磁场能转化为电能,最终转化为内能.(2)金属块进出磁场或在非匀强磁场中运动,由于克服安培力做功,金属块的机械能转化为电能,最终转化为内能.5.涡流的应用与防止(1)应用:真空冶炼炉、探雷器、安检门等.(2)防止:为了减小电动机、变压器铁芯上的涡流,常用电阻率较大的硅钢做材料,而且用相互绝缘的硅钢片叠成铁芯来代替整块硅钢铁芯.二、电磁阻尼当导体在磁场中运动时,导体中产生的感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动,这种现象称为电磁阻尼.1.闭合回路的部分导体在做切割磁感线运动产生感应电流时,导体在磁场中就要受到磁场力的作用,根据楞次定律,磁场力总是阻碍导体的运动,于是产生电磁阻尼现象.2.电磁阻尼是一种十分普遍的物理现象,任何在磁场中运动的导体,只要给感应电流提供回路,就会存在电磁阻尼作用.三、电磁驱动若磁场相对导体运动,在导体中会产生感应电流,感应电流使导体受到安培力的作用,安培力使导体运动起来,这种作用常常称为电磁驱动.电磁阻尼与电磁驱动的比较1.电磁阻尼中安培力的方向与导体运动方向相反,阻碍导体运动;电磁驱动中导体所受安培力的方向与导体运动方向相同,推动导体运动.2.电磁阻尼中克服安培力做功,其他形式的能转化为电能,最终转化为内能;电磁驱动中由于电磁感应,磁场能转化为电能,通过安培力做功,部分电能转化为导体的机械能而对外做功.1.(多选)如图所示是用涡流金属探测器探测地下金属物的示意图,下列说法中正确的是()A.探测器内的探测线圈会产生交变磁场B.只有有磁性的金属物才会被探测器探测到C.探测到地下的金属物是因为探头中产生了涡流D.探测到地下的金属物是因为金属物中产生了涡流2.(多选)1824年,法国科学家阿拉果完成了著名的“圆盘实验”.实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示.实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后.下列说法正确的是()A.圆盘上产生了感应电动势B.圆盘内的涡电流产生的磁场导致磁针转动C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动3.如图所示为高频电磁炉的工作示意图,它是采用电磁感应原理产生涡流加热的,它利用变化的电流通过线圈产生变化的磁场,当变化的磁场通过含铁质锅的底部时,即会产生无数小涡流,使锅体本身自行高速升温,然后再加热锅内食物.电磁炉工作时产生的电磁波,完全被线圈底部的屏蔽层和顶板上的含铁质锅所吸收,不会泄漏,对人体健康无危害.关于电磁炉,以下说法中正确的是()A.电磁炉是利用变化的磁场在食物中产生涡流对食物加热的B.电磁炉是利用变化的磁场产生涡流,使含铁质锅底迅速升温,进而对锅内食物加热的C.电磁炉是利用变化的磁场使食物中的极性水分子振动和旋转来对食物加热的D.电磁炉跟电炉一样是让电流通过电阻丝产生热量来对食物加热的4.如图所示,上端开口、内壁光滑的铜管P和塑料管Q竖直放置.小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块(不计空气阻力)()A.在P和Q中都做自由落体运动B.在两个下落过程中的机械能都守恒C.在P中的下落时间比在Q中的长D.落至底部时在P中的速度比在Q中的大5.(多选)如图所示,闭合金属环从光滑曲面上h高处滚下,又沿曲面的另一侧上升,设环的初速度为零,摩擦不计,曲面处在图中磁场中,则()A.若是匀强磁场,环上升的高度小于h B.若是匀强磁场,环上升的高度等于hC.若是非匀强磁场,环上升的高度等于h D.若是非匀强磁场,环上升的高度小于h6.弹簧上端固定,下端挂一条形磁铁,使磁铁上下振动,磁铁的振动幅度不变.若在振动过程中把线圈靠近磁铁,如图所示,观察磁铁的振幅将会发现()A.S闭合时振幅逐渐减小,S断开时振幅不变B.S闭合时振幅逐渐增大,S断开时振幅不变C.S闭合或断开,振幅变化相同D.S闭合或断开,振幅都不发生变化7.如图所示,在光滑绝缘水平面上,有一铝质金属球以一定的初速度通过有界匀强磁场,则从球开始进入磁场到完全穿出磁场的过程中(磁场宽度大于金属球的直径),小球()A.整个过程匀速运动B.进入磁场过程中做减速运动,穿出磁场过程中做加速运动C.整个过程都做匀减速运动D.穿出时的速度一定小于初速度8.扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌.为了有效隔离外界振动对STM的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图5所示.无扰动时,按下列四种方案对紫铜薄板施加恒定磁场;出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是()9.一个半径为r、质量为m、电阻为R的金属圆环,用一根长为L的绝缘细绳悬挂于O点,离O点下方L2处有一宽度为L4、垂直纸面向里的匀强磁场区域,如图所示.现使圆环从与悬点O等高位置A处由静止释放(细绳张直,忽略空气阻力),摆动过程中金属圆环所在平面始终垂直磁场,则在达到稳定摆动的整个过程中,金属圆环产生的热量是()A.mgL B.mg(L2+r) C.mg(34L+r) D.mg(L+2r)10.(多选)位于光滑水平面上的小车上放置一螺线管,一个比螺线管长的条形磁铁沿着螺线管的轴线以初速度v水平穿过,如图所示,在此过程中()A.磁铁做匀速直线运动B.磁铁做减速运动C.小车向右做加速运动D.小车先加速后减速涡流、电磁阻尼和电磁驱动1.答案AD2.答案AB3.答案 B解析电磁炉的工作原理是利用变化的电流通过线圈产生变化的磁场,变化的磁场通过含铁质锅的底部产生无数小涡流,使锅体温度升高后加热食物,故选项A、D错误,B正确;而选项C是微波炉的加热原理,C错误.4.答案 C解析小磁块下落过程中,在铜管P中产生感应电流,小磁块受到向上的磁场力,不做自由落体运动,而在塑料管Q中只受到重力,在Q中做自由落体运动,故选项A 错误;根据功能关系知,在P中下落时,小磁块机械能减少,在Q中下落时,小磁块机械能守恒,故选项B错误;在P中加速度较小,在P中下落时间较长,选项C正确;由于在P中下落时要克服磁场力做功,机械能有损失,故落至底部时在P中的速度比在Q中的小,选项D错误.5.答案BD解析若磁场为匀强磁场,穿过环的磁通量不变,不产生感应电流,即无机械能向电能转化,机械能守恒,故A错误,B正确;若磁场为非匀强磁场,环内要产生电能,机械能减少,故C错误,D正确.6.答案 A解析S断开时,磁铁振动穿过线圈的磁通量发生变化,但线圈中无感应电流,振幅不变;S闭合时有感应电流,有电能产生,磁铁的机械能越来越少,振幅逐渐减小,A正确.7.答案 D8.答案 A解析紫铜薄板上下及左右振动,都存在磁通量变化的为选项A所示方案.9.答案 C解析圆环在进入磁场和离开磁场时,磁通量发生变化,产生感应电流,机械能减少,最后圆环在磁场下面摆动,机械能守恒.在整个过程中减少的机械能转变为焦耳热,在达到稳定摆动的整个过程中,金属圆环减少的机械能为mg(34L+r).10.答案BC解析磁铁水平穿入螺线管时,管中将产生感应电流,由楞次定律知该电流产生的磁场阻碍磁铁的运动.同理,磁铁穿出时该电流产生的磁场也阻碍磁铁的运动,故整个过程中,磁铁做减速运动,B项对.而对于小车上的螺线管来说,在此过程中,螺线管受到的安培力都是水平向右,这个安培力使小车向右一直做加速运动,C项对.。
3300系列电涡流传感器系统一.系统组成:3300电涡流趋近传感器系统是由趋近式探头、延伸电缆、前置器和信号电缆、监测器所组成。
催化装置应用在监测机组的轴振动、轴位移、转速、轴温上。
二. 工作原理电涡流传感器是通过传感器端部线圈与被测物体间的间隙变化来测量物体的振动和静位移的。
趋近式探头使用专用电缆,安全方便的连接到探头端部,能承受很大的拉力。
探头由通有高频信号的线圈构成,被测轴金属表面与探头相对位置变化时,形成的电涡流大小改变,使探头内高频信号能量损失大小变化,这个变化信号通过前置器转换成与位置变化相对应的电压信号送到监测器显示或报警。
三、前置器具有一个电子线路,它可以产生一个无线电频率信号,它能探测到能量的损耗,并能产生一个输出电压,该电压正比于所测间隙。
前置器电源的要求:无安全栅时要求-17.5--26VDC,电流最大12MA;有安保器时要求-23--26VDC。
四、电涡流探头的优点和缺点;优点:①可测量转速及相位角。
②校准很方便。
③传感器系统是一整体,其中没有相对运动部分,不会产生磨损、疲劳。
④可用于永久性检测,从所测轴的振动曲线可得到很多有用信息,可用来对机械进行故障诊断。
⑤可测量轴的振动、轴的位置以及慢速转动时轴的弯曲。
缺点:①对被测材料的成分以及表面缺陷比较敏感。
②需要外部电源。
③有时安装比较困难。
五、电涡流探头安装及校准先将配套的延伸电缆和前置放大器安装就绪,在机组不旋转时,把探头拧进安装孔,一直到探头端部接触到轴表面然后退回到1.25圈,再把探头延伸电缆以及前置器统一连接起来。
用测量前置放大器输出电压的方式调整间隙,首先供给前置器电源电压(-18--26VDC)。
在前置放大器的输出端连接一数字万用表,再调整探头直到达到零点间隙电压为止。
最后稍微拧紧紧固螺母,再利用间隙电压测量方式细调探头,使放大器输出达到零点间隙电压,最后上紧固定螺母使探头固定,小心别破坏螺纹。
一般情况下,己调整好线性范围的传感器,检测系统的零点间隙电压,调整为正常范围的中间值-9±0.25VDC。
涡流检测原理摘要结合宝钢热札厂采用Smart SCAN涡流探伤设备对乳辊表面进行探伤的使用情况,简介美国ASKO公司生产的SmartSCAN涡流探伤设备的工作原理、主要故障和解决方法。
一、涡流检测原理1.涡流检测的原理在涡流检测中,通常用探头线圈产生激励磁场,计算通过探头线圈的正弦电流ip为:ip =Imsin(ωt) (1)式中 Im—正弦电流幅值该正弦电流所产生的磁通量φP也按正弦规律变化,令相对于Im的磁通量为φm,则正弦电流产生的磁通量φP,按下式计算:φP=φmsin(ωt) (2)将探头线圈靠近导体材料(如轧辊)时,在导体中感应出涡流,涡流磁场总是阻碍激励磁场的变化。
有导体存在时,探头线圈中的总磁通量φE为:φE=φP-φs (3)式中φE——探头线圈中的总磁通量φs——涡流的磁通量如果检测时保持φP不变,则由于材料性质引起的涡流变化,会导致线圈总磁通量φE的变化。
所以,涡流检测实质上就是对探头线圈阻抗的变化量的测量。
通过检测探头线圈阻抗的变化,就可以检验导体材料的材质和完整性。
2.探头线圈的等效电路和阻抗平面图当涡流线圈导线的电阻不能忽略时,其等效电路是一个由线圈电感和电阻串联的电路,其中电阻由线圈中导线电阻和电缆线电阻组成。
总阻抗为: Z=Ro+jωLo (4)式中Z——涡流线圈总阻抗Ro——线圈电阻ωLo——线圈电抗图1所示用直角坐标平面显示探头线圈的阻抗,横坐标表示阻抗的实数分量,即电阻分量;纵坐标表示阻抗的虚数分量,即电抗分量。
此矢量图被称为阻抗平面图,它是涡流检测中常用的重要工具。
图中阻抗矢量的端点Po称为“工作点”。
如果将探头线圈接近导体材料,由于电磁感应现象和涡流磁场的作用,使探头线圈的阻抗发生变化,阻抗矢量的端点产生移动,例如从Po移到P1。
如果导体材料有缺陷或材质差异改变了涡流的状况,则阻抗矢量的端点又会在P1点的基点上产生变化。
通过接近导体材料后探头线圈等效电路的分析,可以得到上述阻抗变化的基本规律,再通过一系列的电路来实现利用涡流检测轧辊表面缺陷的目的。
如何使用无损检测技术进行涡流检测涡流检测是一种非破坏性检测技术,常用于检测金属零件中的缺陷和表面裂纹。
该技术基于一个简单的物理原理:当交流电通过导体时,会在导体内产生一个涡流,这些涡流会对导体的电阻和磁场产生影响。
通过检测这些影响,可以确定导体中存在的缺陷和裂纹。
无损涡流检测可用于各种金属材料和成形工艺的检测。
它广泛应用于航空航天、汽车制造、电子设备、管道工程等领域。
接下来,我将介绍如何使用无损涡流检测技术进行涡流检测。
首先,准备好涡流检测仪器和设备。
这包括涡流探头、信号发生器、检测仪和显示装置。
涡流探头是最重要的仪器之一,它通过发出电磁信号并接收反馈信号来检测材料中的涡流。
在进行涡流检测之前,需要对待测材料进行必要的准备。
首先,清洁待测表面以去除杂质和污垢,以保证检测的准确性。
然后,对待测区域涂上导电液体或涡流耦合剂,以增加电流的导电性。
这样可以确保电流在待测区域内流动,以便产生涡流。
接下来,选择合适的涡流探头和频率。
涡流探头的选择应根据待测物体的大小和形状进行,以确保最佳的信号质量。
频率的选择取决于待测物体的厚度和目标缺陷的大小。
一般来说,较高的频率可以检测到较小的缺陷,而较低的频率则适用于较大的缺陷。
在涡流检测过程中,将涡流探头放置在待测表面上,并将信号发生器与涡流探头连接。
信号发生器将生成交流电信号,通过涡流探头传递到待测物体上。
待测物体中的涡流将改变导体的电阻和磁场分布,导致涡流探头接收到反馈信号。
检测仪器将处理和分析涡流探头接收到的反馈信号,并将结果显示在显示装置上。
通过观察显示装置上的图像和数据,操作人员可以判断待测物体中是否存在缺陷或裂纹。
这些结果可以帮助制定后续的维修或替换计划,以确保待测物体的安全运行。
需要注意的是,使用涡流检测技术时应遵守相应的安全操作规程。
由于涡流探头和信号发生器产生的电流可能对人体造成危害,使用者必须配戴适当的个人防护设备。
此外,操作人员还需要接受专业的培训和指导,以确保正确操作检测设备并正确解读结果。