高考数学专题《双曲线》习题含答案解析
- 格式:docx
- 大小:813.23 KB
- 文档页数:15
高三数学双曲线试题答案及解析1.已知双曲线,分别是它的左、右焦点,是其左顶点,且双曲线的离心率为.设过右焦点的直线与双曲线C的右支交于两点,其中点位于第一象限内.(1)求双曲线的方程;(2)若直线分别与直线交于两点,求证:;(3)是否存在常数,使得恒成立?若存在,求出的值,若不存在,请说明理由。
【答案】(1);(2)见解析;(3)存在,,理由祥见解析.【解析】(1)由已知首先得到,再由离心率为2可求得的值,最后利用双曲线中基本量的关系求出值,从而就可写出所求双曲线的标准方程;(2)设直线的方程为:,与双曲线方程联立,消去得到关于的一个一元二次方程;再设,则由韦达定理就可用的式子表示出,再用点P,Q的坐标表示出直线AP及AQ的方程,再令就可写出点M,N的坐标,进而就可写出向量的坐标,再计算得,即证明得;(3)先取直线的斜率不存在的特列情形,研究出对应的的值,然后再对斜率存在的情形给予一般性的证明:不难获得,从而假设存在使得恒成立,然后证明即可.试题解析:(1)由题可知: 1分2分∴双曲线C的方程为: 3分(2)设直线的方程为:,另设:4分5分又直线AP的方程为,代入 6分同理,直线AQ的方程为,代入 7分9分(3)当直线的方程为时,解得. 易知此时为等腰直角三角形,其中,即,也即:. 10分下证:对直线存在斜率的情形也成立.11分12分13分∴结合正切函数在上的图像可知, 14分【考点】1.双曲线的标准方程;2.直线与双曲线的位置关系;3.探索性问题.2.已知双曲线C:(a>0,b>0)的一条渐近线与直线l:垂直,C的一个焦点到l的距离为1,则C的方程为__________________.【答案】x2-=1【解析】由已知,一条渐近线方程为,即又,故c=2,即a2+b2=4,解得a=1,b=3双曲线方程为x2-=1考点:双曲线的渐近线,直线与直线的垂直关系,点到直线距离公式3.若点P在曲线C1:-=1上,点Q在曲线C2:(x-5)2+y2=1上,点R在曲线C3:(x+5)2+y2=1上,则|PQ|-|PR|的最大值是________.【答案】10【解析】依题意得,点F1(-5,0),F2(5,0)分别为双曲线C1的左、右焦点,因此有|PQ|-|PR|≤|(|PF2|+1)-(|PF1|-1)|≤||PF2|-|PF1||+2=2×4+2=10,故|PQ|-|PR|的最大值是10.4.(本小题满分13分)已知双曲线的两条渐近线分别为.(1)求双曲线的离心率;(2)如图,为坐标原点,动直线分别交直线于两点(分别在第一,四象限),且的面积恒为8,试探究:是否存在总与直线有且只有一个公共点的双曲线?若存在,求出双曲线的方程;若不存在,说明理由.【答案】(1) ;(2)存在【解析】(1) 已知双曲线的两条渐近线分别为,所以根据即可求得结论.(2)首先分类讨论直线的位置.由直线垂直于x轴可得到一个结论.再讨论直线不垂直于x轴,由的面积恒为8,则转化为.由直线与双曲线方程联立以及韦达定理,即可得到直线有且只有一个公共点.试题解析:(1)因为双曲线E的渐近线分别为和.所以,从而双曲线E的离心率.(2)由(1)知,双曲线E的方程为.设直线与x轴相交于点C.当轴时,若直线与双曲线E有且只有一个公共点,则,又因为的面积为8,所以.此时双曲线E的方程为.若存在满足条件的双曲线E,则E的方程只能为.以下证明:当直线不与x轴垂直时,双曲线E:也满足条件.设直线的方程为,依题意,得k>2或k<-2.则,记.由,得,同理得.由得, 即. 由得, .因为,所以,又因为.所以,即与双曲线E有且只有一个公共点.因此,存在总与有且只有一个公共点的双曲线E,且E的方程为.【考点】1.双曲线的性质.2.直线与双曲线的位置关系.3. 三角形的面积的表示.5.设的离心率为,则的最小值为( )A.B.C.D.【答案】B【解析】由题意得,所以.【考点】双曲线及重要不等式.6.设圆锥曲线I’的两个焦点分别为F1,F2,若曲线I’上存在点P满足::= 4:3:2,则曲线I’的离心率等于( )A.B.C.D.【答案】A【解析】由::= 4:3:2,可设,,,若圆锥曲线为椭圆,则,,;若圆锥曲线为双曲线,则,,,故选A.7.已知点F是双曲线的左焦点,点E是该双曲线的右焦点,过点F且垂直于x轴的直线与双曲线交于A,B两点,△ABE是锐角三角形,则该双曲线的离心率e的取值范围是() A.(1,+∞)B.(1,2)C.D.【答案】B【解析】由AB⊥x轴,可知△ABE为等腰三角形,又△ABE是锐角三角形,所以∠AEB为锐角,即∠AEF<45°,于是|AF|<|EF|,,即,解得,又双曲线的离心率大于1,从而,故选B。
高考数学专题复习:双曲线(含解析)本文存在大量的格式错误和段落问题,需要进行修正和删减。
修正后的文章如下:研究目标:1.理解双曲线的定义、几何图形、标准方程以及简单几何性质。
2.理解数形结合的思想。
3.了解双曲线的实际背景及其简单应用。
一、单选题1.设 $F_1,F_2$ 分别是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,点 $P$ 在双曲线 $C$ 的右支上,且 $F_1P=F_2P=c$,则 $\frac{c^2}{a^2-b^2}$ 的值为:A。
$1$B。
$\frac{1}{2}$C。
$\frac{1}{3}$D。
$\frac{1}{4}$答案】B解析】根据双曲线的性质求出 $c$ 的值,结合向量垂直和向量和的几何意义进行转化求解即可。
点睛】本题主要考查双曲线性质的意义,根据向量垂直和向量和的几何意义是解决本题的关键。
2.设 $F_1(-1,0),F_2(1,0)$ 是双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左右焦点,$A(0,b)$ 为左顶点,点$P$ 为双曲线右支上一点,且 $AP=\frac{a}{2}$,则$\frac{b^2}{a^2}$ 的值为:A。
$1$B。
$\frac{1}{2}$C。
$\frac{1}{3}$D。
$\frac{1}{4}$答案】D解析】先求出双曲线的方程为 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,再求出点 $P$ 的坐标,最后求$\frac{b^2}{a^2}$。
点睛】本题主要考查双曲线的几何性质和向量的数量积运算,考查双曲线方程的求法,意在考查学生对这些知识的掌握水平和分析推理计算能力。
双曲线的通径为 $2a$。
3.已知直线$l$ 的倾斜角为$\theta$,且$l: y=x\tan\theta$,直线 $l$ 与双曲线 $C: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 的左、右两支分别交于 $A,B$ 两点,$OA\perp$轴,$OB\perp$轴(其中 $O$、$F_1,F_2$ 分别为双曲线的坐标原点、左、右焦点),则该双曲线的离心率为:A。
双曲线习题练习及答案解析1、已知双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点.则C 的方程为( )A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=【答案】B 因为双曲线的一条渐近线方程为2y x =,则b a =.① 又因为椭圆221123x y +=与双曲线有公共焦点,双曲线的焦距26c =,即c =3,则a 2+b 2=c 2=9.②.由①②解得a =2,b =,则双曲线C 的方程为22145x y -=.故选:B.2已知双曲线22221x y a b-=(a 、b 均为正数)的两条渐近线与直线1x =-围成的三)A.B. C. D. 2【答案】D解:双曲线的渐近线为by x a=±,令1x =-,可得b y a=,不妨令1,b A a ⎛⎫- ⎪⎝⎭,1,b B a ⎛⎫-- ⎪⎝⎭,所以2b AB a =,所以12AOBA S AB x =⋅=AB ∴=,即2b a =b a =2c e a ===;故选:D3已知双曲线C 的中心为坐标原点,一条渐近线方程为2y x =,点()22,2P -在C 上,则C 的方程为A. 22124x y -=B. 221714x y -=C. 22142x y -=D. 221147y x -=【答案】B由于C 选项的中双曲线的渐近线方程为22y x =±,不符合题意,排除C 选项.将点()22,2P -代入A,B,D 三个选项,只有B 选项符合,故本题选B.4已知双曲线C :2218y x -=的左、右焦点分别为1F 、2F ,O 为坐标原点,点P在C 的一条渐近线上,若2OP PF =,则12PF F △的面积为 ( )A .B .C .D .【答案】C双曲线C :2218y x -=中,1(3,0)F -,2(3,0)F ,渐近线方程:y =±,因2OP PF =,则点P 在线段2OF 的中垂线:32x =上,则P 点纵坐标y 0有0||y =所以12PF F △面积121201||||2PF F SF F y =⋅=故选:C 5已知双曲线C :()22102y x m m m -=>+,则C 的离心率的取值范围为( )A .(B .()1,2C .)+∞D .()2,+∞【答案】C双曲线()22102y x m m m -=>+的离心率为e ===,因为0m >,所以e =>C的离心率的取值范围为)+∞.故选:C.6若双曲线2288ky x -=的焦距为6,则该双曲线的离心率为( )A.4B.32C. 3D.103因为2288ky x -=为双曲线,所以0k ≠,化为标准方程为:22181y x k -=. 由焦距为6可得:3c ==,解得:k =1.所以双曲线为22181y x -=.所以双曲线的离心率为4c e a ===.故选:A7已知1F ,2F 分别是双曲线22124y x -=的左,右焦点,若P 是双曲线左支上的点,且1248PF PF ⋅=.则12F PF △的面积为( ) A. 8B. 16C. 24D. 【答案】C 因为P 是双曲线左支上的点,所以2122PF PF a -==,22124100F F c ==. 在12F PF △中,()22221212121212121212cos 22cos F F PF PF PF PF F PF PF PF PF PF PF PF F PF=+-∠=-+-∠,即110049696cos F PF=+-∠,所以1cos 0F PF ∠=,12in 1s P F F =∠,故12F PF △的面积为121242PF PF ⋅=.故选:C .8已知双曲线()222:1016x y C a a -=>的一条渐近线方程为20x y -=,1F ,2F 分别是双曲线C 的左、右焦点,P 为双曲线C 上一点,若15PF =,则2PF = A.1B.9C.1或9D.3或93.B 由题意知42a=,所以2a =,所以c ==,所以152PF a c =<+=+,所以点Р在双曲线C 的左支上,所以214PF PF -=,所以29PF =.故选B9如图,F 1,F 2分别是双曲线22221x y a b-=(a >0,b >0)的两个焦点,以坐标原点O为圆心,|OF 1|为半径的圆与该双曲线左支交于A ,B 两点,若△F 2AB 是等边三角形,则双曲线的离心率为( )B. 211【答案】D 连接1AF ,依题意知:21AF =,12122c F F AF ==,所以21121)a AF AF AF =-=1c e a ===. 10已知双曲线22214x y b-=()0b >的左右焦点分别为1F 、2F ,过点2F 的直线交双曲线右支于A 、B 两点,若1ABF ∆是等腰三角形,且120A ∠=︒.则1ABF ∆的周长为( ) A.83+ B.)41C.83+ D.)22【答案】A双曲线的焦点在x 轴上,则2,24a a ==;设2||AF m =,由双曲线的定义可知:12||||24AF AF a m =+=+, 由题意可得:1222||||||||||AF AB AF BF m BF ==+=+, 据此可得:2||4BF =,又 ,∴12||2||8BF a BF =+=,1ABF 由正弦定理有:11||||sin120sin 30BF AF =︒︒,即11|||BF AF =所以8)m =+,解得:m =1ABF ∆的周长为: 11||||||AF BF AB ++=122(4)8162833m ++=+⨯=+故选:A11已知双曲线C :2218y x -=的左、右焦点分别为1F 、2F ,O 为坐标原点,点P在C 的一条渐近线上,若2OP PF =,则12PF F △的面积为 ( ) A.B.C. D.【答案】C双曲线C :2218y x -=中,1(3,0)F -,2(3,0)F,渐近线方程:y =±,因2OP PF =,则点P 在线段2OF 的中垂线:32x =上,则P 点纵坐标y 0有0||y = 所以12PF F △面积121201||||2PF F S F F y =⋅=故选:C12双曲线22221x y a b-=与22221x y a b -=-的离心率分别为12,e e ,则必有( )A. 12e e =B. 121e e ⋅=C.12111e e += D. 2212111e e += 【答案】D13多选以已知双曲线的虚轴为实轴、实轴为虚轴的双曲线叫做原双曲线的共轭双曲线,则以下说法,正确的有( ) A. 双曲线与它的共轭双曲线有相同的准线 B. 双曲线与它的共轭双曲线的焦距相等 C. 双曲线与它的共轭双曲线的离心率相等 D. 双曲线与它的共轭双曲线有相同的渐近线 【答案】BD由双曲线对称性不妨令双曲线C 的方程为:22221(0,0)x y a b a b-=>>,则其共轭双曲线C '的方程为22221y x b a-=,对于A ,双曲线C 的准线垂直于x 轴,双曲线C '的准线垂直于y 轴,A 不正确;对于B ,双曲线C 和双曲线C '的半焦距均为:c =,所以焦距相同,B 正确;对于C ,由B 选项知,双曲线C 的离心率为1ce a=,而双曲线C '的离心率为2c e b =,而a ,b 不一定等,C 不正确;对于D ,双曲线C 和双曲线C '的渐近线均为by x a=±,D 正确. 故选:BD13多选已知双曲线C :()222104x y b b-=>的离心率为72,1F ,2F 分别为C 的左右焦点,点P 在C 上,且26PF =,则( )A .7b =B .110PF =C .OP =D .122π3F PF ∠=【答案】BCD72=,可得b =A 不正确,而7c ==,因为27||6c PF =>=,所以点P 在C 的右支上,由双曲线的定义有:121||||||624PF PF PF a -=-==,解得1||10PF =,故选项B 正确,在12PF F △中,有2222221271076cos cos 02727OP OP POF POF OP OP +-+-∠+∠=+=⨯⨯⨯⨯,解得||OP =,22212106141cos 21062F PF +-∠==-⨯⨯,所以1223F PF π∠=,故选项C ,D 正确. 故选:BCD.多选若方程22151x y t t +=--所表示的曲线为C ,则下面四个命题中正确的是A .若1<t <5,则C 为椭图B .若t <1.则C 为双曲线 C .若C 为双曲线,则焦距为4D .若C 为焦点在y 轴上的椭圆,则3<t <5 【答案】BD 14多选已知双曲线C 1:)0,0(12222>>=-b a b y a x 的实轴长是2,右焦点与抛物线C 2:y 2=8x 的焦点F 重合,双曲线C 1与抛物线C 2交于A 、B 两点,则下列结论正确的是 ( ▲ )A .双曲线C 1的离心率为2 3B .抛物线C 2的准线方程是x =-2 C .双曲线C 1的渐近线方程为y =±3x D. |AF |+|BF |=320 【答案】BC【解析】由题意可知对于C 1:()0012222>>=-b a by a x ,,实轴长为2a =2,即a =1,而C 2:y 2=8x 的焦点F 为(2,0),所以c =2,则双曲线C 1的方程为1322=-yx ,则对于选项A ,双曲线C 1的离心率为212==a c ,所以选项A 错误;对于选项B ,抛物线C 2的准线方程是x =-2,所以选项B 正确;对于选项C ,双曲线C 1的渐近线方程为y =±abx =±3x ,所以选项C 正确;对于选项D ,由y 2=8x 与1322=-y x 联立可得A (3,62),B (3,62-),所以由抛物线的定义可得 |AF |+|BF |=10433=++=++p x x B A ,所以选项D 错误,综上答案选BC.14多选12,F F 分别是双曲线2221(0)y x b b-=>的左右焦点,过2F 作x 轴的垂线与双曲线交于,A B 两点,若1ABF 为正三角形,则( )A.b = B.C. 双曲线的焦距为D.1ABF 的面积为【答案】ABD在正三角形1ABF 中,由双曲线的对称性知,12F F AB ⊥,12||2||AF AF =, 由双曲线定义有:12||||2AF AF -=,因此,1||4AF =,2||2AF =,12||F F ==即半焦距c =b =,A 正确;双曲线的离心率1ce ==B 正确;双曲线的焦距12F F =C 不正确;1ABF 的面积为21||4AF =D 正确.故选:ABD15多选已知双曲线C 的左、右焦点分别为1F 、2F ,过2F 的直线与双曲线的右支交于A 、B 两点,若122||||2||AF BF AF ==,则( )A. 11AF B F AB ∠=∠B. 双曲线的离心率e =C. 直线的AB 斜率为±D. 原点O 在以2F 为圆心,2AF 为半径的圆上 【答案】ABC 如图:设122||||2||2(0)AF BF AF m m ===>,则22||||||3AB AF BF m =+=,由双曲线的定义知,12||||22AF AF m m a -=-=,即2m a =;12||||2BF BF a -=, 即1||22BF m a -=,∴1||3||BF m AB ==,即有11AF B F AB ∠=∠,故选项A 正确;由余弦定理知,在1ABF 中,22222211111||||||4991cos 2||||2233AF BF AB m m m AF B AF BF m m +-+-∠===⋅⋅,在△12AF F 中,22222212121112||||||441cos cos 2||||223AF AF F F m m c F AB AF B AF AF m m +-+-∠===∠=⋅⋅, 化简整理得,222121144c m a ==,∴离心率ce a ==,故选项B 正确; 在△21AF F中,2222222211134443cos 224m m c m m c m AF F c m cm -+--∠===⋅⋅,21sin AF F ∠==,∴212121sin tan cos AF F AF F AF F ∠∠==∠ ∴根据双曲线的对称性可知,直线AB的斜率为±,故选项C 正确; 若原点O 在以2F 为圆心,2AF 为半径的圆上,则2c m a ==,与3c a =不符,故选项D 错误.故选:ABC .16多选已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F,一条渐近线过点(,则下列结论正确的是( )A. 双曲线CB. 双曲线C 与双曲线22124y x -=有相同的渐近线C. 若F 到渐近线的距离为2,则双曲线C 的方程为22184x y -=D. 若直线2:a l x c=与渐近线围成的三角形面积为则焦距为【答案】BCD 渐近线的方程为by x a=±,因为一条渐近线过点(,故b a ⨯=a ===,故A 错误.又渐近线的方程为2y x =±,而双曲线22124y x -=的渐近线的方程为2y x =±, 故B 正确.若F 到渐近线的距离为2,则2b =,故a =C 的方程为22184x y -=,故C 正确. 直线2:a l x c =与渐近线的两个交点的坐标分别为:2,a ab c c ⎛⎫ ⎪⎝⎭及2,a ab cc ⎛⎫- ⎪⎝⎭,故2122a ab c c =⨯⨯⨯即23a b =,而a =,故b =,a =,所以23=,所以c =,故焦距为D 正确.故选:B CD.16多选已知点P 在双曲线221169x y -=上,1F ,2F 分别是左、右焦点,若12PF F △的面积为20,则下列判断正确的有( ) A. 点P 到x 轴的距离为203B. 12503PF PF += C. 12PF F △为钝角三角形 D. 123F PF π∠=【答案】BC由双曲线方程得4a =,3b =,则5c =,由△12PF F 的面积为20,得112||10||2022P P c y y ⨯⨯=⨯=,得||4P y =,即点P 到x 轴的距离为4,故A 错误, 将||4P y =代入双曲线方程得20||3P x =,根据对称性不妨设20(3P ,4),则213||3PF =, 由双曲线的定义知12||||28PF PF a -==,则11337||833PF =+=, 则12133750||||333PF PF +=+=,故B 正确,在△12PF F 中,113713||210||33PF c PF =>=>=, 则24012020553PF k -==>-,21PF F ∠为钝角,则△12PF F 为钝角三角形,故C 正确, 2222121212121212121337641002||||||(||||)2||||10033cos 13372||||2||||233PF PF F F PF PF PF PF F PF PF PF PF PF -+⨯⨯+--+-∠===⨯⨯3618911121337133729⨯=-=-≠⨯⨯⨯,则123F PF π∠=错误,故正确的是BC ,故选16双曲线:C 2214x y -=的渐近线方程为__________,设双曲线1:C 22221(0,0)x y a b a b -=>>经过点(4,1),且与双曲线C 具有相同渐近线,则双曲线1C 的标准方程为__________.【答案】12y x =± 221123y x -=【解析】(1)双曲线:C 2214x y -=的焦点在y 轴上,且1,2a b ==,渐近线方程为ay x b=±, 故渐近线方程为12y x =±;(2)由双曲线1C 与双曲线C 具有相同渐近线,可设221:4y C x λ-=,代入(4,1)有224134λλ-=⇒=-,故212:34x C y -=-,化简得221123y x -=.17已知O 为坐标原点,抛物线C :()220y px p =>的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则PF =______. 【答案】3抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直,所以P 的横坐标为2p ,代入抛物线方程求得P 的纵坐标为p ±,不妨设(,)2pP p , 因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =,(6,0)2pQ +,(6,)PQ p =-,因为PQ OP ⊥,所以2602pPQ OP p ⋅=⨯-=, 0,3p p >∴=,所以PF =3故答案为△3.若双曲线1C :()2230y x λλ-=≠的右焦点与抛物线2C :28y x =的焦点重合,则实数λ=( ) A. 3±B.C. 3D. -3【答案】D双曲线1C 的右焦点与抛物线的焦点(2,0)重合,所以双曲线1C 方程化:()22103y x λλλ-=≠,再转化为:()22103x y λλλ-=<--,所以23a λ=-, 2b λ=-,所以222433c a b λλλ=+=--=-,所以c =2=平方得 3.λ=-故选:D.17设双曲线:的右焦点为,点,已知点在双曲线的左支上,若的周长的最小值是,则双曲线的标准方程是__________,此时,点的坐标为__________.【答案】【解析】如下图,设为双曲线的左焦点,连接,,则,,故的周长, 因为,所以的周长, 因为的周长的最小值是,,,所以,的方程为, 当的周长取最小值时,点在直线上,因为,,所以直线的方程为,联立,解得,或(舍去), 故的坐标为.故答案为:,.C 2221(0)y x b b-=>F ()0,Q b P CPQF △8C P 2214y x -=⎛⎫ ⎪ ⎪⎝⎭D C PD QD QD QF =2PFPD =+PQF△2l PQ PF QF PQ PD QD =++=+++PQ PD QD +≥=PQF△2l ≥PQF △82228,9c b +=+=22221cbab2b =c =C 2214y x -=PQF △P QD ()0,2Q ()D QD 25y x =+222514y x y x ⎧=+⎪⎪⎨⎪-=⎪⎩1x y ⎧=⎪⎨⎪=⎩4x y ⎧=⎪⎨=⎪⎩P 2⎛⎫- ⎪ ⎪⎝⎭2214y x -=,12⎛⎫- ⎪ ⎪⎝⎭18已知双曲线()221112211:10,0x y C a b a b -=>>与()222222222:10,0y x C a b a b -=>>有相同的渐近线,若1C 的离心率为2,则2C 的离心率为__________.双曲线()221112211:10,0x y C a b a b -=>>的渐近线方程为11b y x a =± ,()222222222:10,0y x C a b a b -=>>的渐近线方程为22a y x b =±,由题意可得1212b a a b =,由1C 的离心率为2得:22211121()b e a ==+ ,则222()3a b = , 所以设2C 的离心率为2e ,则22222141()133b e a =+=+=,故2=e ,故答案为:19知双曲线()222210,0x y a b a b-=>>,焦点()()()12,0,00F c F c c ->,,左顶点(),0A a -,若过左顶点A 的直线和圆22224a a x y ⎛⎫-+= ⎪⎝⎭相切,与双曲线在第一象限交于点P ,且2PF x ⊥轴,则直线的斜率是 _____, 双曲线的离心率是 _________. 【答案】如图,设圆22224a a x y ⎛⎫-+= ⎪⎝⎭的圆心为B ,则圆心坐标(,0)2a B ,半径为2a ,则32a AB =,设过左顶点A 的直线和圆22224a a x y ⎛⎫-+= ⎪⎝⎭相切于点C ,连接BC ,则2a BC =,所以AC ==,得tan aBC BAC AC ∠===;2PF x ⊥轴,由双曲线的通径可得,22b PF a=,又2AF a c =+,所以222tan PF AF b a BAC a c ∠===+,化简得24(40e -=,求解得e =.已知双曲线C :﹣y 2=1.(Ⅰ)求以C 的焦点为顶点、以C 的顶点为焦点的椭圆的标准方程; (Ⅱ)求与C 有公共的焦点,且过点(2,﹣)的双曲线的标准方程,并且求出这条双曲线的实轴长、焦距、离心率以及渐近线方程.解:(Ⅰ)双曲线C :﹣y 2=1的焦点为(±,0),顶点为(±2,0),设椭圆的标准方程为+=1(a >b >0),可得c =2,a =,b ==1,则椭圆的方程为+y 2=1;(Ⅱ)设所求双曲线的方程为﹣=1(m .n>0),由题意可得m 2+n 2=5,﹣=1,解得m =,n =,即所求双曲线的方程为﹣=1,则这条双曲线的实轴长为2、焦距为2、离心率为以及渐近线方程为y=±x .20已知双曲线C :﹣=1(a >0,b >0)与双曲线﹣=1有相同的渐近线,且经过点M (,﹣).(Ⅰ)求双曲线C 的方程;(Ⅱ)求双曲线C 的实轴长,离心率,焦点到渐近线的距离.:(Ⅰ)∵双曲线C 与双曲线﹣=1有相同的渐近线,∴设双曲线的方程为(λ≠0),代入M (,﹣).得λ=,故双曲线的方程为:.(Ⅱ)由方程得a =1,b =,c =,故离心率e =. 其渐近线方程为y =±x ;实轴长为2, 焦点坐标F (,0),解得到渐近线的距离为:=.21已知双曲线C :22221(0,0)x y a b a b-=>>,点)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点2F 作倾斜角为30°的直线,直线与双曲线交于不同的两点A ,B ,求AB .(1)由题可得c a a ⎧=⎪⎨⎪=⎩3c =,b =,所以双曲线的方程为22136x y-=;(2)双曲线22136x y -=的右焦点为()23,0F所以经过双曲线右焦点2F 且倾斜角为30°的直线的方程为3)y x =-.联立221363)x y y x ⎧-=⎪⎪⎨⎪=-⎪⎩得256270x x +-=,设()11,A x y ,()22,B x y ,则1265x x +=-,12275x x =-.所以5AB ==. 22已知双曲线()2222:10,0x y C a b a b -=>>与双曲线22162y x -=的渐近线相同,且经过点()2,3.(1)求双曲线C 的方程;(2)已知双曲线C 的左右焦点分别为12,F F ,直线l 经过2F ,倾斜角为3,4l π与双曲线C 交于,A B 两点,求1F AB 的面积.(1)设所求双曲线C 方程为2262y x λ-=,代入点()2,3得:223262λ-=,即12λ=-, 所以双曲线C 方程为221622y x -=-,即2213y x -=.(2)由(1)知:()()122,0,2,0F F -,即直线AB 的方程为()2y x =--.设()()1122,,,A x y B x y ,联立()22213y x y x ⎧=--⎪⎨-=⎪⎩得22470x x +-=,满足>0∆且122x x +=-,1272x x =-,由弦长公式得12||AB x x =-=6==,点()12,0F -到直线:20AB x y +-=的距离d ===所以111622F ABS AB d =⋅=⋅⋅=。
专题13 双曲线目录一览2023真题展现考向一 双曲线的离心率真题考查解读近年真题对比考向一 双曲线的渐近线方程命题规律解密名校模拟探源易错易混速记/二级结论速记考向一 双曲线的离心率1.(2023•新高考Ⅰ•第16题)已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2.点A 在C 上,点B 在y 轴上,→F 1A ⊥→F 1B ,→F 2A =−23→F 2B ,则C 的离心率为 .解:(法一)如图,设F 1(﹣c ,0),F 2(c ,0),B (0,n ),设A (x ,y ),则→F 2A =(x−c ,y),→F 2B =(−c ,n),又→F 2A =−23→F 2B ,则x −c =23c y =−23n,可得A(53c ,−23n),又→F 1A ⊥→F 1B ,且→F 1A =(83c ,−23n),→F 1B =(c ,n),则→F 1A ⋅→F 1B =83c 2−23n 2=0,化简得n 2=4c 2.又点A 在C 上,则259c 2a 2−49n 2b 2=1,整理可得25c 29a2−4n 29b 2=1,代n 2=4c 2,可得25c 2a 2−16c 2b 2=9,即25e 2−16e 2e 2−1=9,解得e 2=95或15(舍去),故e(法二)由→F 2A =−23→F 2B ,得|→F 2A ||→F 2B |=23,设|→F 2A |=2t ,|→F 2B |=3t ,由对称性可得|→F 1B |=3t ,则|→AF 1|=2t +2a ,|→AB |=5t ,设∠F 1AF 2=θ,则sin θ=3t5t =35,所以cos θ=45=t =a ,所以|→AF 1|=2t +2a =4a ,|→AF 2|=2a ,在△AF 1F 2 中,由余弦定理可得cos θ45,即5c 2=9a 2,则e【命题意图】考查双曲线的定义、标准方程、几何性质、直线与双曲线.考查运算求解能力、逻辑推导能力、分析问题与解决问题的能力、数形结合思想、化归与转化思想.【考查要点】双曲线的定义、方程、性质是高考常考内容,以小题出现,常规题,难度中等.【得分要点】一、双曲线的定义把平面内与两个定点F 1,F 2的距离的差的绝对值等于非零常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.注:1、集合语言表达式2、对双曲线定义中限制条件的理解(1)当||MF 1|-|MF 2||=2a >|F 1F 2|时,M 的轨迹不存在.(2)当||MF 1|-|MF 2||=2a =|F 1F 2|时,M 的轨迹是分别以F 1,F 2为端点的两条射线.(3)当||MF 1|-|MF 2||=0,即|MF 1|=|MF 2|时,M 的轨迹是线段F 1F 2的垂直平分线.(4)若将定义中的绝对值去掉,其余条件不变,则动点的轨迹为双曲线的一支.具体是哪一支,取决于1||MF与2||MF 的大小.①若12||||MF MF >,则12||||0MF MF ->,点M 的轨迹是靠近定点2F 的那一支;②若12||||MF MF <,则21||||0MF MF ->,点M 的轨迹是靠近定点1F 的那一支.二、双曲线的方程及简单几何性质F (-c,0),F (c,0)F (0,-c ),F (0,c )双曲线上的一点与两焦点所构成的三角形称为焦点三角形.解决焦点三角形问题常利用双曲线的定义和正弦定理、余弦定理.以双曲线)0,0(12222>>=-b a by a x 上一点P (x 0,y 0)(y 0≠0)和焦点F 1(-c,0),F 2(c,0)为顶点的△PF 1F 2中,若∠F 1PF 2=θ,则(1)双曲线的定义:aPF PF 2||||||21=-(2)余弦定理:221||F F =|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos θ.(3)面积公式:S △PF 1F 2=12|PF 1||PF 2|·sin θ,重要结论:S △PF 1F 2=2tan2θb 推导过程:由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos θ得2224||-|||-2||||(1cos 121c PF PF PF PF θ=+(|))2212442||||(1cos )c a PF PF θ=+-2122||||1cos b PF PF θ=-由三角形的面积公式可得S △PF 1F 2=121|PF ||PF |sin 2θ=222222sincos12sin 22sin 21cos 1cos 2sin tan22b b b b θθθθθθθθ⋅⋅===--四、直线与双曲线的位置关系1、把直线与双曲线的方程联立成方程组,通过消元后化为ax 2+bx +c =0的形式,在a ≠0的情况下考察方程的判别式.(1)Δ>0时,直线与双曲线有两个不同的公共点.(2)Δ=0时,直线与双曲线只有一个公共点.(3)Δ<0时,直线与双曲线没有公共点.当a =0时,此时直线与双曲线的渐近线平行,直线与双曲线有一个公共点.注:直线与双曲线的关系中:一解不一定相切,相交不一定两解,两解不一定同支.2、弦长公式直线被双曲线截得的弦长公式,设直线与椭圆交于11(,)A x y ,22(,)B x y 两点,则===(k 为直线斜率)3、通径的定义:过焦点且垂直于实轴的直线与双曲线相交于A 、B两点,则弦长ab AB 22||=.考向一 双曲线的渐近线方程2.(2021•新高考Ⅱ)已知双曲线﹣=1(a>0,b>0)的离心率e=2,则该双曲线的渐近线方程为 .【解答】解:∵双曲线的方程是,∴双曲线渐近线为y=又∵离心率为e==2,可得c=2a∴c2=4a2,即a2+b2=4a2,可得b=a由此可得双曲线渐近线为y=故答案为:y=查考近几年真题推测以小题出现,常规题,难度中等.双曲线的定义、方程、性质是高考常考内容,一.双曲线的标准方程(共5小题)1.(2023•郑州模拟)已知双曲线(a>0,b>0)的离心率为2,则该双曲线的渐近线方程为( )A.x±y=0B.C.D.2x±y=0【解答】解:∵双曲线的方程是(a>0,b>0),∴双曲线渐近线为y=±x.又∵离心率为e==2,∴c=2a,∴b==a,由此可得双曲线渐近线为y=±x=±x,即:故答案为:.故选:C.2.(2023•宝山区校级模拟)若双曲线经过点,且渐近线方程是,则这条双曲线的方程是 .【解答】解:根据题意,双曲线的渐近线方程是,则可设双曲线的标准方程为,(λ≠0);又因为双曲线经过点,代入方程可得,λ=﹣1;故这条双曲线的方程是;故答案为:.3.(2023•通州区模拟)双曲线的焦点坐标为( )A.(±1,0)B.(±,0)C.(±,0)D.(±,0)【解答】解:双曲线,可知a=,b=1,c=,所以双曲线的焦点坐标为(,0).故选:C.4.(2023•西山区校级模拟)已知双曲线的一条渐近线的倾斜角为,则双曲线的离心率为( )A.B.C.D.2【解答】解:双曲线的一条渐近线的倾斜角为,则tan=,所以该条渐近线方程为y=x;所以=,解得a=;所以c===2,所以双曲线的离心率为e===.故选:A.5.(2023•青羊区校级模拟)已知双曲线的右焦点为F,O为坐标原点,以OF为直径的圆与双曲线C的一条渐近线交于点O及点,则双曲线C的方程为( )A.B.C.D.【解答】解:由双曲线的方程可得渐近线的方程:y=x,因为A(,)在渐近线上,故=所以a=,又A在以OF为直径的圆上,所以OA⊥AF,所以AF2+OA2=OF2,即(﹣c)2+()2+()2+()2=c2解得:c=2,a=,b=1,所以双曲线的方程为:﹣y2=1,故选:C.二.双曲线的性质(共33小题)6.(2023•天山区校级模拟)已知双曲线(a>0,b>0)的左右焦点分别为F1、F2,过F2且垂直于x轴的直线与双曲线交于A、B两点,若△F1AB为等腰直角三角形,则该双曲线的离心率为( )A.2B.C.D.【解答】解:已知双曲线的左右焦点分别为F1、F2,过F2且垂直于x轴的直线与双曲线交于A、B两点,若△F1AB为等腰直角三角形,此时|AF1|=|BF1|,且∠AF1B=90°,因为∠AF1F2=∠BF1F2=45°,而|AF2|=|F1F2|,则,即b2=2ac,①又b2=c2﹣a2,②联立①②,解得,因为e>1,所以.故选:C.7.(2023•朝阳区一模)过双曲线的右焦点F作一条渐近线的垂线,垂足为A.若∠AFO=2∠AOF(O为坐标原点),则该双曲线的离心率为( )A.B.C.2D.或2【解答】解:在Rt△AFO中,因为∠AFO=2∠AOF,所以∠AOF=30°,则,所以,故选:B.8.(2023•博白县模拟)已知F1,F2分别是双曲线C:﹣=1(a>0,b>0)的左、右焦点,P为双曲线右支上一点,若∠F 1PF2=60°,=ac,则双曲线的离心率为( )A.B.C.D.2【解答】解:设PF 1=m,PF2=n,则==ac,∴mn=4ac,由余弦定理可得:|F1F2|2=4c2=m2+n2﹣mn=(m﹣n)2+mn,由双曲线的定义可知m﹣n=2a,∴4c2=4a2+4ac,即c2﹣a2=ac,∴e2﹣e﹣1=0,解得e=或e=(舍).故选:A.9.(2023•郑州模拟)点(4,0)到双曲线Γ:的一条渐近线的距离为,则双曲线的离心率为( )A.B.C.D.5【解答】解:由题意可得双曲线的一条渐近线为:ay﹣bx=0,所以(4,0)到ay﹣bx=0的距离为,不妨设b=4m(m>0),则.故选:C.10.(2023•武鸣区校级二模)双曲线x2﹣=1的焦点坐标为( )A.(±1,0)B.(0,±)C.(±,0)D.(0,±1)【解答】解:根据题意,双曲线的方程为x2﹣=1,其中a=1,b=,其焦点在x轴上,则c==,所以双曲线的焦点坐标为(±,0);故选:C.11.(2023•河南模拟)已知双曲线的左、右焦点分别为F1,F2,P是双曲线C的一条渐近线上的点,且线段PF1的中点M在另一条渐近线上.若∠PF2F1=45°,则双曲线C 的离心率为( )A.B.C.2D.【解答】解:因为M,O分别是PF1,F1F2的中点,所以MO∥PF2,又∠PF2F1=45°,所以∠MOF1=45°,即,所以a=b,故.故选:A.12.(2023•源汇区校级模拟)已知F1、F2分别为双曲线=1(a>0,b>0)的左、右焦点,P为双曲线右支上任意一点,若的最小值为2c,c=,则该双曲线的离心率是( )A.3B.4C.D.【解答】解:由双曲线的性质可得|PF1|=2a+|PF2|,所以|PF1|2=4a2+4a|PF2|+|PF2|2,所以=|PF2|++4a≥2+4a=8a,由题意可2c=8a,即c=4a,所以双曲线的离心率为e==4.故选:B.13.(2023•四川模拟)已知双曲线C:x2﹣=1(a>b>0)的左,右顶点分别为A,B,点P在双曲线C 上,过点B作x轴的垂线BM,交PA于点M.若∠PAB=∠PBM,则双曲线C的离心率为( )A.B.C.2D.3【解答】解:设P(m,n),可得m2﹣=1,双曲线C:x2﹣=1(a>b>0)的左,右顶点分别为A,B,点P在双曲线C上,过点B作x轴的垂线BM,交PA于点M.∠PAB=∠PBM,过P作x轴的垂线,垂足为N,所以△PAN∽△BPN,可得,结合m2﹣=1,可得b=1,又a=1,所以双曲线的离心率为:e==.故选:A.14.(2023•贺兰县校级模拟)人们在进行工业设计时,巧妙地利用了圆锥曲线的光学性质.从双曲线右焦点F2发出的光线通过双曲线镜面反射出发散光线,且反射光线的反向延长线经过左焦点F1.已知双曲线的方程为x2﹣y2=1,则当入射光线F2P和反射光线PE互相垂直时(其中P为入射点),∠F1F2P的余弦值大小为( )A.B.C.D.【解答】解:设|PF1|=m,|PF2|=n,则m﹣n=2,m2+n2=,解得m=+1,n=﹣1,∴cos∠F1F2P==,故选:D.15.(2023•海淀区校级模拟)若双曲线的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为,则双曲线C的离心率为( )A.B.C.D.【解答】解:由双曲线的方程可得渐近线的方程为:y=±x,即ax±2y=0,由圆(x﹣2)2+y2=4的方程可得圆心C(2,0),半径r=2,可得d=,所以可得弦长2=2=,解得a2=,可得离心率e====,故选:B.16.(2023•广西模拟)双曲线C:(a>0,b>0)的左顶点为A,点P,Q均在C上,且关于y 轴对称.若直线AP,AQ的斜率之积为,则C的离心率为( )A.B.C.2D.【解答】解:由题意知双曲线左顶点为A(﹣a,0),设P(x0,y0),则Q(﹣x0,y0),则有,又,将代入中,得,即a2=4b2,所以,故,故选:A.17.(2023•未央区模拟)设O为坐标原点,F1,F2是双曲线C:的左、右焦点,已知双曲线C的离心率为,过F2作C的一条渐近线的垂线,垂足为P,则=( )A.B.2C.D.【解答】解:设双曲线的一条渐近线为y=,过F2作C的一条渐近线的垂线,垂足为P,则|PF2|=b,则|OP|=a,cos∠PF2O=,在△PF1F2中,cos∠PF2O==,得|PF1|2=4c2﹣3b2=4(a2+b)2﹣3b2=4a2+b2,∵e=,得=1+=3,得=2,则=====,故选:A.18.(2023•贵阳模拟)已知双曲线C:mx2﹣ny2=1(m>0,n>0)的离心率为,虚轴长为4,则C 的方程为( )A.3x2﹣4y2=1B.C.D.【解答】解:由双曲线C:mx2﹣ny2=1(m>0,n>0),得,可得a=,b=,c=,∵双曲线的离心率为,虚轴长为4,∴,解得.∴C的方程为.故选:D.19.(2023•郑州模拟)已知双曲线的左焦点为F,过原点O的直线与C交于点A,B,若|OF|=|OA|,则|AF||BF|=( )A.2B.4C.8D.16【解答】解:双曲线,则a=2,b=1,,由|OF|=|OA|可得AF⊥BF,设A为右支上一点,F2为右焦点,连接AF2、BF2,则四边形AFBF2为矩形,所以|AF2|=|BF|,设|AF|=m,|BF|=n,则m﹣n=4,m2+n2=20,所以.故选:A.20.(2023•蕉城区校级二模)已知双曲线的左、右焦点分别为F1、F2,过F2的直线l交双曲线的右支于A、B两点.点M满足,且,者,则双曲线的离心率是( )A.B.C.D.【解答】解:如下图所示,取线段BF1的中点E,连接AE,因为,则,因为E为BF1的中点,则AE⊥BF1,且∠ABF1=∠AF1B,由双曲线的定义可得2a=|AF1|﹣|AF2|=|AB|﹣|AF2|=|BF2|,所以|BF1|=|BF2|+2a=4a,则|BE|=|EF1|=2a,由余弦定理可得==,所以,因此该双曲线的离心率为.故选:C.21.(2023•凉山州模拟)已知以直线y=±2x为渐近线的双曲线,经过直线x+y﹣3=0与直线2x﹣y+6=0的交点,则双曲线的实轴长为( )A.6B.C.D.8【解答】解:由,解得,则双曲线过点(﹣1,4).若双曲线的焦点在x轴,设为,由双曲线的渐近线方程为y=±2x,得,即b=2a,将(﹣1,4)代入方程,得,有,无解,不符合题意;若双曲线的焦点在y轴,设为,由双曲线的渐近线方程为y=±2x,得,即a=2b,将(﹣1,4)代入方程,得,有,解得,所以双曲线的实轴长为.故选:C.22.(2023•滨海新区校级三模)点F是抛物线x2=8y的焦点,A为双曲线C:的左顶点,直线AF平行于双曲线C的一条渐近线,则实数b的值为( )A.2B.4C.8D.16【解答】解:抛物线x2=8y的焦点为(0,2).设A为双曲线C:的左顶点(﹣2,0),渐近线方程为y=±x,因为直线AF平行于双曲线C的一条渐近线,所以=,解得b=4,故选:B.23.(2023•恩施市校级模拟)已知F1,F2分别为双曲线C:的左右焦点,且F1到渐近线的距离为1,过F2的直线l与C的左、右两支曲线分别交于A,B两点,且l⊥AF1,则下列说法正确的为( )A.△AF1F2的面积为2B.双曲线C的离心率为C.D.【解答】解:设双曲线C的半焦距为c>0,因为双曲线C的焦点在x轴上,且a=2,则其中一条渐近线方程为,即bx﹣2y=0,且F1(﹣c,0),则F1到渐近线的距离为,可得,对于A:因为|AF2|﹣|AF1|=4且,可得,解得|AF1|⋅|AF2|=2,所以△AF1F2的面积为,故A错误;对于B:双曲线C的离心率为,故B错误;对于C:因为,可得,所以•=•=•(•+)=2+•=2=10﹣4,故C错误;对于D:设|BF 2|=m,则,因为,即,解得,所以=+=,故D正确.故选:D.24.(2023•郑州模拟)已知F1,F2分别是双曲线Γ:的左、右焦点,过F1的直线分别交双曲线左、右两支于A,B两点,点C在x轴上,,BF2平分∠F1BC,则双曲线Γ的离心率为( )A.B.C.D.【解答】解:因为,则CB∥F2A,所以△F1AF2∽△F1BC,设|F1F2|=2c,则|F2C|=8c,设|AF1|=t,则|BF1|=5t,|AB|=4t.因为BF2平分∠F1BC,由角平分线定理可知,,所以|BC|=4|BF1|=20t,所以,由双曲线定义知|AF2|﹣|AF1|=2a,即4t﹣t=2a,,①又由|BF1|﹣|BF2|=2a得|BF2|=5t﹣2a=2t,在△ABF2中,由余弦定理知,在△F1BF2中,由余弦定理知,即,化简得c2=6t2,把①代入上式得,解得.故选:A.25.(2023•沙坪坝区校级模拟)已知双曲线C:的左、右焦点分别为F1,F2,过双曲线C上一点P向y轴作垂线,垂足为Q,若|PQ|=|F1F2|且PF1与QF2垂直,则双曲线C的离心率为( )A.B.C.D.【解答】解:设双曲线焦距为2c,不妨设点P在第一象限,由题意知PQ∥F1F2,由|PQ|=|F1F2|且PF1与QF2垂直可知,四边形PQF1F2为菱形,且边长为2c,而△QF1O为直角三角形,|QF1|=2c,|F1O|=c,故∠F1QO=30°,∴∠QF1O=60°,则∠F1QP=120°则,|PF2|=2c,故,即离心率.故选:B.26.(2023•林芝市二模)已知双曲线的左、右焦点分别是F1,F2,双曲线C上有两点A,B满足,且,若四边形F1AF2B的周长l与面积S满足,则双曲线C的离心率为( )A.B.C.D.【解答】解:不妨设|AF1|=m,|AF2|=n(m>n),由双曲线的定义可知,m﹣n=2a,则m2+n2﹣2mn=4a2①,又,所以由余弦定理可得m2+n2+mn=4c2②,由①②可得,所以.又四边形F1AF2B为平行四边形,故四边形F1AF2B的周长l=2(m+n),则,面积,因为,所以,整理得2c2=3a2,故双曲线C的离心率为,故选:A.27.(2023•安徽模拟)在平面直角坐标系xOy中,已知双曲线的左、右焦点分别为F1,F2,过F1的直线与双曲线C的右支相交于点P,过点O,F2作ON⊥PF1,F2M⊥PF1,垂足分别为N,M,且M为线段PN的中点,|ON|=a,则双曲线C的离心率为( )A.2B.C.D.【解答】解:因为F1,F2为双曲线C的左、右焦点,所以|F1F2|=2c,因为ON⊥PF1,F2M⊥PF1所以ON∥F2M,又O为线段F1F2的中点,所以N为线段F1M的中点,且,又M为线段PN的中点,所以,在Rt△OF1N中,|ON|=a,|OF1|=b,所以,所以|PF1|=3b,|MP|=b,因为点P在双曲线的右支上,所以|PF1|﹣|PF2|=2a,故|PF2|=3b﹣2a,在Rt△MF2P中,|MF2|=2a,|MP|=b,|PF2|=3b﹣2a,由勾股定理可得:(2a)2+b2=(3b﹣2a)2,所以8b2=12ab,即2b=3a,所以4b2=9a2,又b2=c2﹣a2,故4c2=13a2,所以,故选:D.28.(2023•长沙模拟)已知双曲线4x2﹣=1的左、右焦点分别为F1,F2,点M是双曲线右支上一点,满足•=0,点N是线段F1F2上一点,满足=λ.现将△MF1F2沿MN折成直二面角F1﹣MN﹣F2,若使折叠后点F1,F2距离最小,则λ=( )A.B.C.D.【解答】解:易知双曲线中,,则,又,即,又,∴,如图,设∠NMF2=θ,F2G⊥MN,F1H⊥MN,则,∴=4sin2θ+(2cosθ﹣3sinθ)2+9cos2θ=13(sin2θ+cos2θ)﹣12sinθcosθ=13﹣6sin2θ,由三角函数知识可知,当时,F1F2取得最小值,此时MN为△MF1F2的角平分线,由角平分线性质可知,此时,则,∴.故选:C.29.(2023•濠江区校级模拟)已知双曲线的右焦点为F,过点F且斜率为k(k≠0)的直线l交双曲线于A、B两点,线段AB的中垂线交x轴于点D.若,则双曲线的离心率取值范围是( )A.B.C.D.【解答】解:设双曲线的右焦点为F(c,0),A(x1,y1),B(x2,y2),则直线l:y=k(x﹣c),联立方程,消去y得:(b2﹣a2k2)x2+2a2k2cx﹣a2(k2c2+b2)=0,则可得,则,设线段AB的中点M(x0,y0),则,即,且k≠0,线段AB的中垂线的斜率为,则线段AB的中垂线所在直线方程为,令y=0,则,解得,即,则,由题意可得:,即,整理得,则,注意到双曲线的离心率e>1,∴双曲线的离心率取值范围是.故选:A.30.(2023•洛阳模拟)已知双曲线C:的左、右焦点分别为F1(﹣c,0),F2(c,0),过点F1的直线l与双曲线C的左支交于点A,与双曲线C的一条渐近线在第一象限交于点B,且|F1F2|=2|OB|(O为坐标原点).下列四个结论正确的是( )①;②若,则双曲线C的离心率;③|BF1|﹣|BF2|>2a;④.A.①②B.①③C.①②④D.①③④【解答】解:如图,∵|F1F2|=2|OB|,O为F1F2的中点,∴|OF1|=|OF2|=|OB|,得BF1⊥BF2,则,即|BF1|=,故①正确;设∠BOF2=θ,则tanθ=,cosθ=,sinθ=,作AA1⊥x轴,垂足为A1,BB1⊥x轴,垂足为B1,则|OB1|=|OB|cosθ=c•=a,|BB1|=|OB|sinθ=c•=b,∵,∴=,得|AA1|=b,|A1F1|=(a+c),则A((a﹣2c),b),∴,得(2c﹣a)=a,则e=,故②正确;设直线l与C右支的交点为M,则|MF1|﹣|MF2|=2a,∵||MB|﹣|MF2||<|BF2|,∴|MB|﹣|MF2|>﹣|BF2|,则|MF1|﹣|MF2|=|BF1|+|MB|﹣|MF2|>|BF1|﹣|BF2|,则|BF1|﹣|BF2|<2a,故③错误;设A(x0,y0),则|AF1|====||,得|AF1|=﹣(+a),由题意可知,0<y0<|BB1|=b,则a2<=a2(1+)<2a2,则﹣a<x0<﹣a,故c﹣a<|AF1|=﹣﹣a<c﹣a,故④正确.故选:C.31.(2023•江西二模)已知双曲线E:,其左右顶点分别为A1,A2,P在双曲线右支上运动,若∠A1PA2的角平分线交x轴于D点,A2关于PD的对称点为A3,若仅存在2个P使直线A3D与E仅有一个交点,则E离心率的范围为( )A.B.C.D.(2,+∞)【解答】解:设直线PA1的倾斜角为α,直线PA2的倾斜角为β,由题设可得P不为右顶点.设P(x0,y0),则.双曲线在P(x0,y0)处的切线斜率必存在,设切线方程为y=k(x﹣x0)+y0,由可得,整理得到:,故,整理得:即,故,故切线方程为:即.因为存在2个P使直线A3D与E仅有一个交点,故由双曲线的对称性不妨设P在第一象限,此时α,β均为锐角且存在唯一的P满足题设条件.故直线PD与渐近线平行或与双曲线相切或.若直线PD与渐近线平行,则,而PD为∠A1PA2的平分线,故其倾斜角γ满足γ﹣α=β﹣γ,故,故,故,但,故,而,由基本不等式可得,当且仅当tanα=tanβ即α=β时等号成立,此时PA1∥PA2,这不可能,故直线PD与渐近线不平行.若直线PD与双曲线相切,且切点为P(x0,y0),双曲线在P的切线方程为:,故且该切线的斜率为,所以直线A3D的斜率为.此时,而,即,故a2=a2+b2,矛盾.故直线,所以,而直线A3D的倾斜角为α+β,因为直线A3D与双曲线有且只有一个交点,且D在OA2之间,故,由P在第一象限内的唯一性可得存在唯一的α,β,使得,而,故,所以即b2>3a2,所以,故选:D.32.(2023•江西模拟)双曲线的左焦点为F,过点F的直线l与双曲线C交于A,B两点,若过A,B和点的圆的圆心在y轴上,则直线l的斜率为( )A.B.C.±1D.【解答】解:由题意可知:F(﹣2,0),设A(x1,y1),B(x2,y2),AB的中点为P,过点A,B,M的圆的圆心坐标为G(0,t),则,由题意知:直线AB的斜率存在且不为0,设直线AB的方程为:x=my﹣2,联立方程组化简整理可得,(m2﹣3)y2﹣4my+1=0,则m2﹣3≠0,Δ=16m2﹣4(m2﹣3)=12m2+12>0,,故AB的中点P的纵坐标,横坐标,则,由圆的性质可知:圆心与弦中点连线的斜率垂直于弦所在的直线,所以,化简整理可得:①,则圆心G(0,t)到直线AB的距离,,,即,将①代入可得:,即,整理可得:m4﹣5m2+6=0,则(m2﹣2)(m2﹣3)=0,因为m2﹣3≠0,所以m2﹣2=0,解得,所以.故选:A.33.(多选)(2023•宜章县模拟)已知F1,F2分别为双曲线C:=1(a>0,b>0)的左、右焦点,P为双曲线C的渐近线在第一象限部分上的一点,线段PF2与双曲线交点为Q,且|F1P|=|F1F2|=2|PF2|,O为坐标原点,则下列结论正确的是( )A.|OP|=2aB.双曲线C的离心率e=C.|QF1|=aD.若△QF1F2的内心的横坐标为3,则双曲线C的方程为=1【解答】解:对于A,如图,过F2作F2H⊥PO,垂足点为H,∵F2(c,0)到直线y=x的距离d==b,∴|F2H|=b,又|OF2|=c,tan∠POF2=,∴易得|OH|=a,又|F1F2|=2|PF2|=2|OF2|,∴|PF2|=|OF2|,∴H为PO的中点,∴|OP|=2|OH|=2a,故A正确;对于B,设∠POF2=θ,则tanθ=,∴cosθ=,sinθ=,又由A知|OP|=2a,∴P(2a cosθ,2a sinθ),即P(,),又F1(﹣c,0),|F1P|=|F1F2|=2c,∴=2c,两边平方化简,可得4a4+c4+4a2c2+4a2b2=4c4,∴4a4+c4+4a2c2+4a2(c2﹣a2)=c4,∴8a2=3c2,∴e2==,∴e=,故B错误;对于C,设|QF1|=t,则QF2|=t﹣2a,又|F1P|=|F1F2|=2|PF2|=2c,∴cos∠QF2F1==,∴在△QF2F1中,由余弦定理,可得=,∴t=,又由B知c=a,∴t==,故C正确;对于D,设△QF1F2的内心为I,且内切圆I与F1F2切于点E,则根据双曲线的定义及内切圆的几何性质,可得|QF1|﹣|QF2|=|F1E|﹣|F2E|=2a,又|F1E|+|F2E|=2c,∴|F1E|=c+a,|F2E|=c﹣a,∴切点E为右顶点,又△QF1F2的内心的横坐标为3,∴a=3,又由B知e=,∴c=2,∴b2=c2﹣a2=24﹣9=15,∴双曲线C的方程为=1,故D正确,故选:ACD.34.(2023•万州区校级模拟)已知F1,F2为双曲线C:=1(a>0,b>0)的左右焦点,过点F1作一条渐近线的垂线交双曲线右支于点P,直线PF2与y轴交于点Q(P,Q在x轴同侧),连接QF1,如图,若△PQF1内切圆圆心恰好落在以F1F2为直径的圆上,则∠F1PF2= ;双曲线的离心率e = .【解答】解:设F1(﹣c,0),F2(c,0),如图可得△QF1F2为等腰三角形,则△PQF1的内切圆圆心I在y轴上,又I恰好落在以F1F2为直径的圆上,可设I(0,c),双曲线的一条渐近线方程设为bx+ay=0,则直线PF1的方程设为ax﹣by+ac=0,则I到直线PF1的距离为=|a﹣b|,由图象可得a<b,则|a﹣b|=b﹣a,设Q(0,t),且t>c,则直线QF2的方程为tx﹣cy+tc=0,由内心的性质可得I到直线QF2的距离为b﹣a,即有=b﹣a,化简可得abt2﹣tc3+abc2=0,由Δ=c6﹣4a2b2c2=c2(a2﹣b2)2,解得t=或<c(舍去),则Q(0,),直线QF2的斜率为=﹣,可得直线QF2与渐近线OM:bx+ay=0平行,可得∠F1PF2=,由F1到渐近线OM的距离为=b,|OM|==a,由OM为△PF1F2的中位线,可得|PF2|=2|OM|=2a,|PF1|=2|MF1|=2b,又|PF1|﹣|PF2|=2a,则b=2a,e===.故答案为:,.另解:设由F1向渐近线y=﹣x所作垂线的垂足为M,△PQF1的内心为I,由于|QF1|=|QF2|,所以内心I在y轴上.又内心I在以线段F1,F2为直径的圆上,所以|OF1|=|OF2|=c,连接IF1.IF2,则∠IF1O=∠IF2O=45°,设∠QF1I=∠QF2I=α,则∠IF1P=∠QF1I=α,因此∠PF1F2=45°﹣α,而∠PF2F1=∠QF2I+∠IF2O=45°+α,因此∠PF1F2+∠PF2F1=45°﹣α+45°+α=90°,故∠F1PF2=90°.又F1M⊥OM,所以OM∥PF2,所以M为PF的中点,易求得|OM|=a,于是|PF2|=2a.由双曲线定义可得|PF1|=2a+2a=4a,在Rt△PF1F2中,由勾股定理可得(4a)2+(2a)2=(2c)2,于是c2=5a2,故得双曲线的离心率e=.故答案为:,.35.(2023•淮北一模)已知双曲线C:过点,则其方程为 ,设F1,F2分别为双曲线C的左右焦点,E为右顶点,过F2的直线与双曲线C的右支交于A,B两点(其中点A在第一象限),设M,N分别为△AF1F2,△BF1F2的内心,则|ME|﹣|NE|的取值范围是 .所以双曲线C的方程为.②如图:设△AF1F2的内切圆与AF1,AF2,F1F2分别切于H,D,G,所以|AH|=|AD|,|HF1|=|GF1|,|DF2|=|GF2|,所以|AF1|﹣|AF2|=|AH|+|HF1|﹣|AD|﹣|DF2|=|HF1|﹣|DF2|=|GF1|﹣|GF2|=2a,又|GF1|+|GF2|=2c,所以|GF1|=a+c,|GF2|=c﹣a,又|EF1|=a+c,|EF2|=c﹣a,所以G与E(a,0)重合,所以M的横坐标为a,同理可得N的横坐标也为a,设直线AB的倾斜角为θ.则,,====,当时,|ME|﹣|NE|=0,当时,由题知,a=2.c=4,.因为A,B两点在双曲线的右支上,∴,且,所以或,∴.且,,综上所述,.故答案为:;.36.(多选)(2023•芜湖模拟)双曲线的光学性质:从双曲线一个焦点出发的光线,经双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点.已知O为坐标原点,F1,F2分别是双曲线C:的左右焦点,过F2的直线交双曲线C的右支于M,N两点,且M(x1,y1)在第一象限,△MF1F2,△NF1F2的内心分别为I1,I2,其内切圆半径分别为r1,r2,△MF1N的内心为I.双曲线C在M处的切线方程为,则下列说法正确的有( )A.点I1、I2均在直线x=3上B.直线MI的方程为C.D.【解答】解:由双曲线得a=3,b=4,c=5,设△MF1F2的内切圆I1与MF1,MF2,F1F2分别切于点A,B,H,则|MA|=|MB|,|F1A|=|F1H|,|F2B|=|F2H|,所以|MF1|﹣|MF2|+|F1F2|=|F1A|+|MA|﹣|F2B|﹣|MB|﹣|F1H+F2H|=2a+2c=16,又|OF1|=5,所以|OH|=3,即圆I1与x轴的切点是双曲线的右顶点,即I1在直线x=3上,同理可得圆I2与x轴的切点也是双曲线的右顶点,即I2也在直线x=3上,故选项A正确;因为△MF1N的内心为I,所以MI平分∠F1MF2,根据双曲线的光学性质,双曲线C在M处的切线就平分∠F1MF2,故直线MI的方程为,故B正确;设△NF1F2的内切圆I2与MN切于点D,连接I1B,I2D,I1F2,I2F2,设∠I2I1F2=θ,∠I1I2F1=α,因为IB⊥MN,I2D⊥MN,所以I1B∥I2D,所以2θ+2α=π,即,所以tanθ•tanα=1,又|F2H|=2,所以tan,tan,即tan=1,所以r1r2=4,故C不正确;由B可得MI的方程为,①设N(x2,y2),同理可得NI的方程为,②联立①②可得x=,可设MN的方程为x=my+5,可得x1=my1+5,x2=my2+5,则x==,所以I在直线x=上,所以I到I1I2的距离为d3=3﹣=,F2到I1I2的距离为d4=5﹣3=2,所以==.故D正确.故选:ABD.37.(多选)(2023•广东模拟)双曲线的左右焦点分别为F1,F2,P为双曲线右支上异于顶点的一点,△PF1F2的内切圆记为圆I,圆I的半径为r,过F1作PI的垂线,交PI的延长线于Q,则( )A.动点I的轨迹方程为x=4(y≠0)B.r的取值范围为(0,3)C.若r=1,则tan∠F1PF2=D.动点Q的轨迹方程为x2+y2=16(x≠4且x>﹣)【解答】解:设Ⅰ(x,y),设△PF1F2的内切圆分别与边PF1,PF2,F1F2切于A,B,C三点,如图所示,对于A:由题知,a=4,b=3,c=5,F1(﹣5,0),F2(5,0),8=|PF1|﹣|PF2|=(|PA|+|F1A|)﹣(PB|+|F2B|)=|F1A|﹣|F2B|=|F1C|﹣|F2C|,所以(x+5)﹣(5﹣x)=8,x=4,显然y≠0,故A正确;对于B:根据对称性,不妨假设P点在x轴上方,根据A选项可设Ⅰ(4,r),双曲线的一条渐近线为,考虑P点在无穷远时,直线PF1的斜率趋近于,此时PF1的方程为,圆心到直线的距离为=3,所以r的取值范围为(0,3),故B正确;对于C:r=1时,|IB|=|IC|=1,|F2C|=1,此时PF2⊥F1F2,所以,,因为|F1F2|=10,PF2⊥F1F2,所以,故C错误;对于D:分别延长F1Q,PF2交于点M,因为PQ过内切圆圆心I,所以PQ为角平分线,且PQ⊥F1M,所以|PF1|=|PM|,且Q为F1M的中点,所以|PF1|﹣|PF2|=|PM|﹣|PF2|=|MF2|=8,又因为点O为F1F2的中点,Q为F1M的中点,所以,所以动点Q的轨迹方程为x2+y2=16,显然x≠4,又考虑P点在无穷远时,此时直线OP趋近于渐近线,直线F1Q为,联立方程组,解得,则,所以点Q的横坐标,动点Q的轨迹方程为,故D正确;故选:ABD.38.(2023•赤峰模拟)初中时代我们就说反比例函数的图像是双曲线,建立适当的平面直角坐标系可以求得这个双曲线的标准方程,比如,把的图象顺时针旋转可以得到双曲线.已知函数,在适当的平面直角坐标系中,其标准方程可能是( )A.B.C.D.【解答】解:对函数,其定义域为{x|x≠0},定义域关于原点对称,用﹣x,﹣y替换x,y,方程不变,故其图象关于原点对称.又当x>0,且x趋近于0时,y趋近于正无穷,当x趋近于正无穷时,趋近于0,此时的图象与y=无限靠近,故的两条渐近线为y轴与y=,为使其双曲线的方程为标准方程,故应建立的坐标轴x′,y′必须平分两条渐近线的夹角,又y=,其斜率为k=,此时其在原坐标系中其倾斜角为30°,与y轴夹角为60°,故新坐标系中,x′轴与x轴的夹角应为60°,故x′轴所在直线在原坐标系中的方程为y=x,y′轴与其垂直,在如图所示的新坐标系中,设双曲线的方程为,联立,可得x2=3,y2=9,则a2=x2+y2=12,又在新坐标系下,双曲线的渐近线x=0与x轴的夹角为30°,故=,即,故在新坐标系下双曲线方程为.故选:A.三.直线与双曲线的综合(共22小题)39.(2023•射洪市校级模拟)已知双曲线的右焦点为F,点A(0,m),若直线AF与C 只有一个交点,则m=( )A.±2B.C.D.±4【解答】解:双曲线的右焦点为F(4,0),点A(0,m),双曲线的渐近线方程:y=x,直线AF与C只有一个交点,可得,解得m=.故选:B.40.(2023•赤峰三模)2022年卡塔尔世界杯中的数字元素——会徽(如图)正视图近似伯努利双纽线.定义:在平面直角坐标系xOy中,把到定点F1(﹣a,0)F2(a,0)的距离之积等于a2(a>0)的点的轨迹称为双纽线C.已知P(x0,y0)是双纽线C上的一点,下列说法错误的是( )A.双纽线C关于原点O成中心对称B.C.双曲线C上满足|PF1|=|PF2|的点P有两个D.|OP|的最大值为【解答】解:对于A,因为定义在平面直角坐标系xOy中,把到定点F1(﹣a,0),F2(a,0),距离之积等于a2(a>0)的点的轨迹称为双纽线C,所以,用(﹣x,﹣y)替换方程中的(x,y),原方程不变,所以双纽线C关于原点O中心对称,所以A正确;对于B,根据三角形的等面积法可知=,即|y0|=sin∠F1PF2,所以,所以B正确;对于C,若双纽线C上的点P满足|PF1|=|PF2|,则点P在y轴上,即x=0,所以,得y=0,所以这样的点P只有一个,所以C错误;对于D,因为,所以||2=(﹣cos∠F1PF2+),由余弦定理得4a2=﹣cos∠F1PF2+,所以||2=a2+cos∠F1PF2=a2+a2cos∠F1PF2≤2a2,所以|PO|的最大值为,所以D正确.故选:C.41.(2023•淮北二模)已知A(﹣2,0),B(2,0),过P(0,﹣1)斜率为k的直线上存在不同的两个点M,N满足:.则k的取值范围是( )A.B.C.D.【解答】解:因为,所以M,N是以A(﹣2,0)、B(2,0)为焦点的双曲线的右支上的两点,且c=2,,所以,∴双曲线方程为,则过P(0,﹣1)斜率为k的直线方程为y=kx﹣1,由,消去y整理得(1﹣3k2)x2+6kx﹣6=0,所以,解得,即k的取值范围为.故选:C.42.(2023•河南模拟)设双曲线的左、右焦点分别为F1,F2,B为双曲线E上在第一象限内的点,线段F1B与双曲线E相交于另一点A,AB的中点为M,且F2M⊥AB,若∠AF1F2=30°,则双曲线E的离心率为( )A.B.2C.D.【解答】解:双曲线的左、右焦点分别为F1(﹣c,0),F2(c,0),∠AF1F2=30°,可得AB的方程为:y=(x+c),代入双曲线方程化简可得:(3b2﹣a2)x2﹣2a2cx﹣a2c2﹣3a2b2=0,所以x M=,y M=(+c),=,解得a2=b2,所以双曲线的离心率为:e===.故选:D.43.(2023•天津模拟)双曲线的左右焦点分别是F1,F2,离心率为e,过点F1的直线交双曲线的左支于M,N两点.若△MF2N是以M为直角顶点的等腰直角三角形,则e2等于( )A.B.C.D.【解答】解:设|MF2|=m,因为△MNF2是以M为直角顶点的等腰直角三角形,所以|MN|=m,|NF2|=m,|MF1|=,|NF1|=m﹣,由双曲线的定义知,|MF2|﹣|MF1|=2a,|NF2|﹣|NF1|=2a,又|MF1|=m﹣2a,|NF1|=m﹣2a,,解得m=2a,则,解得,双曲线的离心率为e,可得e2=5﹣2.故选:A.44.(2023•让胡路区校级模拟)已知双曲线的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点,若A为线段BF1的中点,且BF1⊥BF2,则C 的离心率为( )A.B.2C.D.3【解答】解:由题意可知,过F1的直线与C的两条渐近线分别交于A,B两点,当两个交点分别在第二和第三象限时不符合,A为线段BF1的中点,当交点在x轴上方或x轴下方时,根据对称性结果是一样的,选择一种即可,如图.根据双曲线可得,F1(﹣c,0),F2(c,0),两条渐近线方程,∵BF1⊥BF2,O为F1F2的中点,∴BO=OF1=OF2=c,又∵A为线段BF1的中点,∴OA垂直平分BF1,可设直线BF1为①,直线BF2为②,直线BO为③,由②③得,交点坐标,点B还在直线BF1上,∴,可得b2=3a2,c2=a2+b2=4a2,所以双曲线C的离心率,故选:B.。
高三数学双曲线试题答案及解析1.已知双曲线-=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为( )A.-=1B.-=1C.-=1D.-=1【答案】A【解析】由x2+y2-6x+5=0知圆心C(3,0),半径r=2.又-=1的渐近线为bx±ay=0,且与圆C相切.由直线与圆相切,得=2,即5b2=4a2,①因为双曲线右焦点为圆C的圆心,所以c=3,从而9=a2+b2,②由①②联立,得a2=5,b2=4,故所求双曲线方程为-=1,选A.2.若实数满足,则曲线与曲线的()A.离心率相等B.虚半轴长相等C.实半轴长相等D.焦距相等【答案】D【解析】,则,,双曲线的实半轴长为,虚半轴长为,焦距为,离心率为,双曲线的实半轴长为,虚半轴长为,焦距为,离心率为,因此,两双曲线的焦距相等,故选D.【考点】本题考查双曲线的方程与基本几何性质,属于中等题.3.(本小题满分13分)已知双曲线的两条渐近线分别为.(1)求双曲线的离心率;(2)如图,为坐标原点,动直线分别交直线于两点(分别在第一,四象限),且的面积恒为8,试探究:是否存在总与直线有且只有一个公共点的双曲线?若存在,求出双曲线的方程;若不存在,说明理由.【答案】(1) ;(2)存在【解析】(1) 已知双曲线的两条渐近线分别为,所以根据即可求得结论.(2)首先分类讨论直线的位置.由直线垂直于x轴可得到一个结论.再讨论直线不垂直于x轴,由的面积恒为8,则转化为.由直线与双曲线方程联立以及韦达定理,即可得到直线有且只有一个公共点.试题解析:(1)因为双曲线E的渐近线分别为和.所以,从而双曲线E的离心率.(2)由(1)知,双曲线E的方程为.设直线与x轴相交于点C.当轴时,若直线与双曲线E有且只有一个公共点,则,又因为的面积为8,所以.此时双曲线E的方程为.若存在满足条件的双曲线E,则E的方程只能为.以下证明:当直线不与x轴垂直时,双曲线E:也满足条件.设直线的方程为,依题意,得k>2或k<-2.则,记.由,得,同理得.由得, 即. 由得, .因为,所以,又因为.所以,即与双曲线E有且只有一个公共点.因此,存在总与有且只有一个公共点的双曲线E,且E的方程为.【考点】1.双曲线的性质.2.直线与双曲线的位置关系.3. 三角形的面积的表示.4.设分别为双曲线的左、右焦点,双曲线上存在一点使得则该双曲线的离心率为A.B.C.D.3【答案】B【解析】因为是双曲线上一点,所以,又所以,,所以又因为,所以有,,即解得:(舍去),或;所以,所以故选B.【考点】1、双曲线的定义和标准方程;2、双曲线的简单几何性质.5.已知A1,A2双曲线的顶点,B为双曲线C的虚轴一个端点.若△A1BA2是等边三角形,则双曲线的离心率e等于.【答案】2【解析】由题意可知,解得,即,所以.则.【考点】双曲线的简单几何性质.6.已知双曲线的右焦点与抛物线的焦点重合,则该双曲线的焦点到其渐近线的距离为()A.B.C.D.【答案】A【解析】抛物线的焦点坐标为,因此双曲线的右焦点的坐标也为,所以,解得,故双曲线的渐近线的方程为,即,因此双曲线的焦点到其渐近线的距离为,故选A.【考点】1.双曲线的几何性质;2.点到直线的距离7.已知双曲线="1" 的两个焦点为、,P是双曲线上的一点,且满足,(1)求的值;(2)抛物线的焦点F与该双曲线的右顶点重合,斜率为1的直线经过点F与该抛物线交于A、B两点,求弦长|AB|.【答案】(1) (2)16【解析】(1)根据题意,又,,,又|P F|•|PF|="|" F F|=, |P F|<4,得在区间(0,4)上有解,所以因此,又,所以(2)双曲线方程为=1,右顶点坐标为(2,0),即所以抛物线方程为直线方程为由(1)(2)两式联立,解得和所以弦长|AB|==168.设F是抛物线的焦点,点A是抛物线与双曲线的一条渐近线的一个公共点,且轴,则双曲线的离心率为_______.【答案】【解析】由抛物线方程,可得焦点为,不妨设点在第一象限,则有,代入双曲线渐近线方程,得,则,所以双曲线离率为.故正确答案为.【考点】1.抛物线;2.双曲线.9.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线-y2=1的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值为()A.B.C.D.【答案】A【解析】由于M(1,m)在抛物线上,∴m2=2p,而M到抛物线的焦点的距离为5,根据抛物线的定义知点M到抛物线的准线x=-的距离也为5,∴1+=5,∴p=8,由此可以求得m=4,=,而双曲线的渐近线方程为y=±,根据题意得,双曲线的左顶点为A(-,0),∴kAM=,∴a=.10.设双曲线的渐近线方程为,则的值为()A.4B.3C.2D.1【答案】C【解析】由双曲线方程可知渐近线方程为,故可知。
高二数学双曲线试题答案及解析1.双曲线的渐近线方程是A.B.C.D.【答案】A【解析】因为双曲线的方程为,令,所以渐近线方程是.【考点】双曲线的渐近线方程.2.双曲线的虚轴长等于( )A.B.-2t C.D.4【答案】C【解析】由于双曲线,所以其虚轴长,故选C.【考点】双曲线的标准方程.3.在平面直角坐标系中,已知中心在坐标原点的双曲线经过点,且它的右焦点与抛物线的焦点相同,则该双曲线的标准方程为.【答案】.【解析】由于抛物线的焦点坐标为:,由已知得:双曲线C的右焦点F的坐标为,又因为双曲线C的中心在坐标原点,所以可设所求双曲线C的方程为:且,从而有:,故设所求双曲线C的方程为:.【考点】双曲线.4.已知、是双曲线(,)的左右两个焦点,过点作垂直于轴的直线与双曲线的两条渐近线分别交于,两点,是锐角三角形,则该双曲线的离心率的取值范围是()A.B.C.D.【答案】B是锐【解析】根据题意,易得,由题设条件可知为等腰三角形,2角三角形,只要为锐角,即即可;所以有,即解出故选B【考点】双曲线的简单性质5.设P是双曲线上一点,该双曲线的一条渐近线方程是,分别是双曲线的左、右焦点,若,则等于()A.2B.18C.2或18D.16【答案】C【解析】整理准线方程得,∴,a=4,∴=2a=8或=2a=8,∴=2或18,故选C..【考点】双曲线的简单性质;双曲线的应用.6.双曲线的渐近线方程为( )A.B.C.D.【答案】C【解析】令,解得【考点】双曲线渐近线的求法.7.如图,动点到两定点、构成,且,设动点的轨迹为。
(1)求轨迹的方程;(2)设直线与轴交于点,与轨迹相交于点,且,求的取值范围。
【答案】(1)(2)【解析】(1)求动点轨迹方程,一般有四步.第一步,设所求动点的坐标,第二步,将条件转化为坐标表示,本题,两边取正切,转化为斜率关系,第三步,化简关系式为常见方程形式,第四步,根据方程表示图像,去掉不满足的部分.(2)研究取值范围,首先将表示为函数关系式.因为等于,所以先求出,从而有,利用直线与双曲线有两个交点这一限制条件,得到m>1,且m2,这作为所求函数定义域,求出值域即为的取值范围是试题解析:解(1)设M的坐标为(x,y),显然有x>0,.当∠MBA=90°时,点M的坐标为(2,, ±3)当∠MBA≠90°时;x≠2.由∠MBA=2∠MAB,有tan∠MBA=,即化简得:3x2-y2-3=0,而又经过(2,,±3)综上可知,轨迹C 的方程为3x2-y2-3=0(x>1) 5分 (2)由方程消去y ,可得。
高考真题一、单选题A .221913x y -=B .221139x y -=C .2213x y -=D .2213y x -=【答案】D 【解析】试题分析:依题意有222{3bac c a b ===+,解得1,a b ==2213y x -=.考点:双曲线的概念与性质. A .2 B .C .D .1【答案】D 【解析】试题分析:由离心率e =ca 可得:e 2=a 2+3a2=22,解得:a =1.考点:复数的运算 A .B .3C .D .【答案】A 【解析】试题分析:由已知得,双曲线C 的标准方程为x 23m −y 23=1.则c 2=3m +3,c =√3m +3,设一个焦点F(√3m +3,0),一条渐近线l 的方程为y =√3√3m=√m,即x −√my =0,所以焦点F 到渐近线l 的距离为d =√3m+3√m+1=√3,选A .【考点定位】1、双曲线的标准方程和简单几何性质;2、点到直线的距离公式.A .B .C .D .【答案】A 【解析】2=,所以,b a ,双曲线的渐近线方程为y x =,即0x ±=,选A. 考点:椭圆、双曲线的几何性质. A .B .C .D .3【答案】B 【解析】试题分析:因为P 是双曲线x 2a2−y 2b 2=1(a >0,b >0)上一点,所以||PF 1|−|PF 2||=2a ,又|PF 1|+|PF 2|=3b所以,(|PF 1|+|PF 2|)2−(|PF 1|−|PF 2|)2=9b 2−4a 2,所以4|PF 1|⋅|PF 2|=9b 2−4a 2 又因为|PF 1|⋅|PF 2|=94ab ,所以有,9ab =9b 2−4a 2,即9(ba )2−9(ba )−4=0 解得:ba =−13(舍去),或ba =43; 所以e 2=c 2a 2=a 2+b 2a 2=1+(b a )2=1+(43)2=259,所以e =53故选B.考点:1、双曲线的定义和标准方程;2、双曲线的简单几何性质. A .(1,3) B .(]1,3C .(3,+∞)D .[)3,+∞ 【答案】B 【详解】可用三角形的两边和大于第三边,及两边差小于第三边,但要注意前者可以取到等号成立,因为可以三点一线.也可用焦半径公式确定a 与c 的关系.A.B.C.D.【答案】B【解析】由题意,所以,由双曲线的定义,有,∴.A.(√2,2)B.(√2,√5)C.(2,5)D.(2,√5)【答案】B【详解】由题意得,双曲线的离心率e2=(ca )2=a2+(a+1)2a2=1+(1+1a)2,因为1a 是减函数,所以当a>1时,0<1a<1,所以2<e2<5,所以√2<e<√5,故选B.考点:双曲线的几何性质.【方法点晴】本题主要考查了双曲线的几何性质及其应用,其中解答中涉及到双曲线的标准方程及简单的几何性质的应用,函数的单调性及函数的最值等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算、转化与化归思想的应用,本题的解得中把双曲线的离心率转化为1a的函数,利用函数的单调性是解答的关键,试题有一定的难度,属于中档题.A .3B .C .D .【答案】C 【解析】可得双曲线的准线为21a x c =±=±,又因为椭圆焦点为(1=.即b 2=3故b=故C.A .B .2C .3D .6【答案】A 【解析】试题分析:先根据双曲线得到其渐近线的方程,再利用圆心到渐近线的距离等于半径,就可求出r 的值.22163x y -=的渐近线方程是2y =±20y ±=,又圆心是(3,0),所以由点到直线的距离公式可得r =A .考点:1、双曲线;2、双曲线的渐近线;3、直线与圆相切;4、点到直线的距离.A .2 BC .32D .1【答案】D 【详解】由222123x y c b e a a 可知虚轴-=====,解得a=1,应选D. A .B .5C .D .【答案】D 【解析】由题意知:双曲线的一条渐近线为,由方程组2{1b y x a y x ==+,消去y,得210bx x a-+=有唯一解,所以△=2()40ba-=,所以2b a =,2c e a a ====故选D. 【考点定位】本小题考查双曲线与抛物线的基本知识,求离心率、直线与抛物线的位置关系等.A .22124x y -=B .22142-=x yC .22146x y -= D .221410x y -= 【答案】B 【解析】由2e =得222222331,1,222c b b a a a =+==,选B.A .221090x y x +-+=B .2210160x y x +-+=C .2210160x y x +++=D .221090x y x +++=【答案】A 【详解】圆心为(5,0),渐近线方程为430x y ±=,所以半径为4545⨯=,所以圆的方程是22(5)16x y -+=,即221090x y x +-+=,选A.A .B .12C .D .24【答案】B 【解析】试题分析:由已知可得121212|:|3:2,26,4,PF PF PF PF PF PF =-=⇒==又22212121212||||F F PF PF F F PF F =+=⇒∆是直角三角形146122S =⨯⨯=,故选B .考点:双曲线标准方程及其性质. A.2B.2CD【答案】B 【解析】本小题主要考查双曲线的几何性质、第二定义、余弦定理,以及转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000[()]1a PF e x a ex c =--=+=+,22000[)]1aPF e x ex a c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||2PF PF F F PF PF +-,即cos60222=,解得2052x =,所以2200312y x =-=,故P 到x轴的距离为0y =.A .√2B .√3C .√3+12D .√5+12【答案】D 【解析】试题分析:设该双曲线方程为x 2a 2−y 2b 2=1(a >0,b >0),得点B (0,b ),焦点为F (c ,0),直线FB 的斜率为−bc 由垂直直线的斜率之积等于-1,建立关于a 、b 、c 的等式,变形整理为关于离心率e 的方程,解之即可得到该双曲线的离心率;设该双曲线方程为x 2a 2−y 2b 2=1(a >0,b >0),可得它的渐近线方程为y =±ba x ,焦点为F (c ,0),点B (0,b )是虚轴的一个端点,∴直线FB 的斜率为k FB =0−b c−0=−b c ,∵直线FB 与直线y =ba x 互相垂直,∴−bc ×ba =−1,∴b 2=ac,∵b 2=c 2−a 2,∴c 2−a 2=ac ,∴e 2−e −1=0,∴e =1±√52∵双曲线的离心率e >1,∴e=√5+12,故选:D考点:双曲线的简单性质A .By=0 C .="0" D±y=0【答案】D 【解析】不妨设12(,0),(,0)F c F c -,则11221222OF F P OF F P F P F POP ++++==因为1260F PF ∠=,所以121212cos602F P F PF P F P F P F P ⋅⋅=⋅=,22212121212||||1cos 22PF PF F F F PF PF PF +-∠==⋅ 所以2221212||4PF PF PF PF c +=⋅+ 因为P 在双曲线上,所以122PF PF a -=则2222212121212()||244PF PF PF PF PF PF c PF PF a -=+-⋅=-⋅= 所以221244PF PF c a ⋅=-,故122212222F P F PF P F P c a ⋅⋅==-222221212||484PF PF PF PF c c a +=⋅+=-因为OP =,所以1272F P F POP +==故22121212||274F P F P F P F Pa ++⋅=,即222327ca a -=故22237b a a +=,解得b =所以双曲线的渐近线方程为0x a =0y ±=,故选DA .3B .3C .D .【答案】A 【详解】由点P 到双曲线右焦点的距离是2知P 在双曲线右支上.又由双曲线的第二定义知点P 到双曲线,双曲线的右准线方程是3x =,故点P 到y 轴的距离是3.A .12m >B .1m ≥C .1m >D .2m >【答案】C 【解析】试题分析:由题可知1a =,b =c =ce a==>1m >,故选C . 考点:双曲线的离心率.A .12B .2C .1 D【答案】B 【解析】由于对称性,我们不妨取顶点(1,0)A ,取渐近线为0x y -=,所以由点到直线的距离公式可得d ==450得到. 【考点定位】 本题考查了双曲线的渐近线及点到直线的距离公式,如果能画图可简化计算,属于简单题.A .22182x y +=B .221126x y +=C .221164x y +=D .221205x y +=【答案】D 【详解】由题意,双曲线221x y -=的渐近线方程为y x =±,∵以这四个交点为顶点的四边形为正方形,其面积为16,故边长为4,∴(2,2)在椭圆C :()222210x y a b a b+=>>上,∴22441a b +=,∵e =∴22234a b a -=,∴224b a =, ∴22205a b ==,∴椭圆方程为:221205x y +=.故选D.考点:椭圆的标准方程及几何性质;双曲线的几何性质. A .12或32B .23或2 C .12或2 D .23或32【答案】A 【分析】设1122432PF t F F t PF t ===,,,讨论两种情况,分别利用椭圆与双曲线的定义求出,a c 的值,再利用离心率公式可得结果. 【详解】因为1122::PF F F PF 4:3:2=,所以可设1122432PF t F F t PF t ===,,, 若曲线为椭圆则123262a PF PF t c t =+==,,则12c e a ==; 若曲线为双曲线则,324222a t t t a t c t ,,=-===,∴32c e a ==,故选A . 【点睛】本题主要考查椭圆的定义及离心率以及双曲线的定义及离心率,属于中档题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解. A .2B .C .4D .【答案】C 【解析】2228x y -=可变形为22148x y -=,则24a =,2a =,24a =.故选C.A .4B .3C .2D .1【答案】C 【分析】先根据双曲线()222109x y a a -=>求出渐近线方程,再与320x y ±=比较即可求出a 的值. 【详解】由双曲线的几何性质可得,双曲线()222109x y a a -=>的渐近线方程为3y x a=±,又因为渐近线方程为320x y ±=,即32y x =±,故2a =,选C .【点睛】本题主要考查双曲线的渐近线方程的求法,属基础题.ABC .2D .3【答案】B 【分析】先设2(,),0aP t t c>,由两直线垂直,结合直线的斜率公式可得221tta a c c c c⋅=-+-,再结合三角形的面积公式可得24ct ab =,然后由双曲线离心率的求法求解即可. 【详解】解: 由P 是准线上一点,设2(,),0a P t t c>,又1(,0)F c -,2(,0)F c ,由12PF PF ⊥,可得221tt aa cc cc⋅=-+-,解得t =因为12·4PF PF ab =, 由三角形的面积公式有24ct ab =,2a =, 即223c a =,即==ce a, 故选:B. 【点睛】本题考查了直线的斜率公式及三角形的面积公式,重点考查了双曲线离心率的求法,属中档题.A.ab B .22b a + C .a D .b 【答案】B 【解析】略A .221520x y -=B .221205x y -=C .D .【解析】试题分析:由已知得2,2,bb a a=∴=在方程210y x =+中令0y =,得2222225,5,525,5,20,x c c a b a a b =-∴=-∴=+====∴所求双曲线的方程为221520x y -=,故选A . 考点:1.双曲线的几何性质;2.双曲线方程的求法. A .(0,)B .(1,)C .(,1)D .(,+∞)【答案】B 【解析】试题分析:求出渐近线方程及准线方程;求得它们的交点A ,B 的坐标;利用圆内的点到圆心距离小于半径,列出参数a ,b ,c 满足的不等式,求出离心率的范围. 解:渐近线y=±x . 准线x=±,求得A ().B (),左焦点为在以AB 为直径的圆内, 得出,,b <a ,c 2<2a 2 ∴,故选B .点评:本题考查双曲线的准线、渐近线方程形式、考查园内的点满足的不等条件、注意双曲线离心率本身要大于1. A .2B .2C .4D .4【答案】B试题分析:根据题意,点(﹣2,﹣1)在抛物线的准线上,结合抛物线的性质,可得p=4,进而可得抛物线的焦点坐标,依据题意,可得双曲线的左顶点的坐标,即可得a的值,由点(﹣2,﹣1)在双曲线的渐近线上,可得渐近线方程,进而可得b的值,由双曲线的性质,可得c的值,进而可得答案.解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),即点(﹣2,﹣1)在抛物线的准线上,又由抛物线y2=2px的准线方程为x=﹣,则p=4,则抛物线的焦点为(2,0);则双曲线的左顶点为(﹣2,0),即a=2;点(﹣2,﹣1)在双曲线的渐近线上,则其渐近线方程为y=±x,由双曲线的性质,可得b=1;则c=,则焦距为2c=2;故选B.点评:本题考查双曲线与抛物线的性质,注意题目“双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1)”这一条件的运用,另外注意题目中要求的焦距即2c,容易只计算到c,就得到结论.A.B.C.D.【答案】A【解析】由双曲线的基本性质对称轴是坐标轴,这时只须考虑双曲线的焦点在x轴的情形.因为有且只有一对相较于点O、所成的角为60°的直线A1B1和A2B2,所以直线A1B1和A2B2,关于x轴对称,并且直线A1B1和A2B2,与x轴的夹角为30°,双曲线的渐近线与x轴的夹角大于30°且小于等于60°,否则不满足题意.可得,即,,所以e>.同样地,当,即,所以e≤2.所以双曲线的离心率的范围是.故选A.A .a 2=B .a 2=3C .b 2=D .b 2=2【答案】C 【解析】由题意,C 2的焦点为(±,0),一条渐近线方程为y=2x ,根据对称性易知AB 为圆的直径且AB=2a∴C 1的半焦距c=,于是得a 2﹣b 2=5 ①设C 1与y=2x 在第一象限的交点的坐标为(x ,2x ),代入C 1的方程得:②,由对称性知直线y=2x 被C 1截得的弦长=2x ,由题得:2x=,所以③由②③得a 2=11b 2④ 由①④得a 2=5.5,b 2=0.5 故选CA .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等【答案】D 【解析】 双曲线的实轴长为2cosθ,虚轴长2sinθ,焦距2,离心率,双曲线的实轴长为2sinθ,虚轴长2sinθtanθ,焦距2tanθ,离心率,故它们的离心率相同. 故选D .A .14y x =±B .13y x =±C .12y x =±D .y x =±【答案】C 【详解】c e a ===2214b a =,即12b a =,故渐近线方程为12b y x x a =±=±.本题考查双曲线的基本性质,考查学生的化归与转化能力.A .y=±2xB .y=C .12y x =±D .2y x =±【答案】B 【解析】双曲线的离心率为a=渐进性方程为b y x a =±,计算得b a =故渐进性方程为y =. 【考点定位】本小题考查了离心率和渐近线等双曲线的性质. A .B .C .D .【答案】C 【解析】由于对称性,我们不妨取顶点(2,0)A ,取渐近线为20x y -=,所以由点到直线的距离公式可得5d ==【考点定位】本题考查了双曲线的渐近线及点到直线的距离公式,属于简单题.A BC .2D .3【答案】B 【详解】通径|AB|=2222b a a =⋅得2222222222233b a c a a c aa c e =⇒-===⇒⇒⇒= BA .22154x y -=B .22145x y -=C .22136x y -=D .22163x y -=【答案】A试题分析:双曲线的渐近线为b y x a=,所以0bx ay -=,22650x y x +-+=变形为()2234x y -+=,所以圆心为()3,0,2r =()222222329435,4b c c a c c a b =∴=∴-==∴==,所以双曲线方程为22154x y -=考点:双曲线方程及性质 A .1 B .2C .3D .4【答案】D 【解析】 由已知,取顶点,渐近线,则顶点到渐近线的距离为,解得.A .B .2C D .1【答案】A 【解析】试题分析:双曲线焦点到渐近线的距离为b ,所以距离为b =考点:双曲线与渐近线. A .B .C .D .【答案】A试题分析:由题意,得c=√5,ba =12,又a2+b2=c2,所以a=2,b=1,所以双曲线的方程为x24−y21=1,选A.【考点】双曲线【名师点睛】求双曲线的标准方程的关注点:(1)确定双曲线的标准方程需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a,b的值,常用待定系数法.(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论.①若双曲线的焦点不能确定时,可设其方程为Ax2+By2=1(AB<0).②若已知渐近线方程为mx+ny=0,则双曲线方程可设为m2x2-n2y2=λ(λ≠0).A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【答案】C【解析】试题分析:利用已知条件,列出方程,求出双曲线的几何量,即可得到双曲线方程.解:双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),可得:,c=5,∴a=4,b==3,所求双曲线方程为:﹣=1.故选C.点评:本题考查双曲线方程的求法,双曲线的简单性质的应用,考查计算能力.A B.54C.43D.53【答案】D 【解析】因为双曲线22221x y a b-=的一条渐近线经过点(3,-4),2225349163c b a c a a e a ∴=∴-=∴==,(),. 故选D.考点:双曲线的简单性质【名师点睛】渐近线是双曲线独特的性质,在解决有关双曲线问题时,需结合渐近线从数形结合上找突破口.与渐近线有关的结论或方法还有:(1)与双曲线22221x y a b -=共渐近线的可设为2222(0)x y a bλλ-=≠;(2)若渐近线方程为b y x a =±,则可设为2222(0)x y a bλλ-=≠;(3) 双曲线的焦点到渐近线的距离等于虚半轴长b ;(4) 22221(0.0)x y a b a b -=>>的一条渐近线的斜率为b a ==可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.另外解决不等式恒成立问题关键是等价转化,其实质是确定极端或极限位置.A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e > 【答案】D 【解析】 依题意,,,因为,由于,,,所以当时,,,,,所以12e e <;当时,,,而,所以,所以12e e >.所以当a b >时,12e e <;当a b <时,12e e >. 考点:双曲线的性质,离心率.A .22=14y x -B .22=14x y -C .22=14y x -D .22=14x y -【答案】C 【解析】试题分析:焦点在y 轴上的是C 和D ,渐近线方程为ay x b=±,故选C . 考点:1.双曲线的标准方程;2.双曲线的简单几何性质.A B .2C D【答案】D 【解析】设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,AB BM =,,过点M 作MN x⊥轴,垂足为N ,在Rt BMN ∆中,BN a =,3MN a =,故点M 的坐标为(2,3)M a a ,代入双曲线方程得2222a b a c ==-,即222c a =,所以2e =,故选D .考点:双曲线的标准方程和简单几何性质.A .2 B.C .4D.【答案】C 【解析】试题分析:设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .考点:双曲线的方程与几何性质 A .14B .13C.4D.3【答案】A 【解析】试题分析:由已知设21,2,F A m F A m ==则由定义得12122,2,4,2.F A F A a m a F A a F A a -=∴===122,24.ce F F c a a====在12AF F ∆中,由余弦定理得()()2222222121212124441cos 22244a a a AF F F AF AF F AF F F a a+-+-∠===⋅⨯⨯,故选A . 考点:1.双曲线的几何性质(焦点三角形问题);2.余弦定理.A .22144x y -=B .22188x y -=C .22148x y -=D .22184x y -=【答案】B 【解析】由题意得224,14,188x y a b c a b c ==-⇒===-=- ,选B. 【考点】 双曲线的标准方程【名师点睛】利用待定系数法求圆锥曲线方程是高考常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于,,a b c 的方程,解方程组求出,a b ,另外求双曲线方程要注意巧设双曲线(1)双曲线过两点可设为221(0)mx ny mn -=>,(2)与22221x y a b-=共渐近线的双曲线可设为2222(0)x y a bλλ-=≠,(3)等轴双曲线可设为22(0)x y λλ-=≠等,均为待定系数法求标准方程.A .13B .1 2C .2 3D .32【答案】D 【解析】由2224c a b =+=得2c =,所以(2,0)F ,将2x =代入2213y x -=,得3=±y ,所以||3PF =,又点A 的坐标是(1,3),故△APF 的面积为133(21)22⨯⨯-=,选D . 点睛:本题考查圆锥曲线中双曲线的简单运算,属容易题.由双曲线方程得(2,0)F ,结合PF 与x 轴垂直,可得||3PF =,最后由点A 的坐标是(1,3),计算△APF 的面积.得的弦长为2,则C 的离心率为 ( ) A .2 BCD【答案】A 【解析】由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线距离为d ==,则点()2,0到直线0bx ay +=的距离为2bd c===即2224()3c a c -=,整理可得224c a =,双曲线的离心率2e ===.故选A . 点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).A .223=144x y -B .224=143x y -C .22=144x y -D .22=1412x y -【答案】D 【解析】试题分析:根据对称性,不妨设(,)A x y 在第一象限,则,∴221612422b b xy b b =⋅=⇒=+,故双曲线的方程为221412x y -=,故选D. 【考点】双曲线的渐近线【名师点睛】求双曲线的标准方程时注意:(1)确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a ,b 的值,常用待定系数法.(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论. ①若双曲线的焦点不能确定时,可设其方程为Ax 2+By 2=1(AB <0).②若已知渐近线方程为mx +ny =0,则双曲线方程可设为m 2x 2-n 2y 2=λ(λ≠0).A .y =B .y =C .y x =D .y x = 【答案】A 【解析】分析:根据离心率得a,c 关系,进而得a,b 关系,再根据双曲线方程求渐近线方程,得结果.详解:2222221312,c b c a b e e a a a a-==∴==-=-=∴=因为渐近线方程为by x a=±,所以渐近线方程为y =,选A. 点睛:已知双曲线方程22221(,0)x y a b a b-=>求渐近线方程:22220x y by x a b a -=⇒=±.A .32B .3C .D .4【答案】B 【详解】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到30FON ︒∠=,根据直角三角形的条件,可以确定直线MN 的倾斜角为60︒或120︒,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为60︒,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得3(,2M N ,利用两点间距离公式求得MN 的值.详解:根据题意,可知其渐近线的斜率为(2,0)F , 从而得到30FON ︒∠=,所以直线MN 的倾斜角为60︒或120︒, 根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线y =和y x =联立,求得3(,2M N,所以3MN==,故选B.点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线MN的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.A.22139x y-=B.22193x y-=C.221412x y-=D.221124x y-=【答案】A【详解】分析:由题意首先求得A,B的坐标,然后利用点到直线距离公式求得b的值,之后利用离心率求解a的值即可确定双曲线方程.详解:设双曲线的右焦点坐标为(),0F c(c>0),则A Bx x c==,由22221c ya b-=可得:2bya=±,不妨设:22,,,b bA cB ca a⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为0bx ay-=,据此可得:21bc bdc-==,22bc bdc+==,则12226bcd d bc+===,则23,9b b==,双曲线的离心率:2cea====,据此可得:23a=,则双曲线的方程为22139x y-=.本题选择A选项.点睛:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为()22220x y a bλλ-=≠,再由条件求出λ的值即可.A .(√2,+∞)B .(√2,2)C .(1,√2)D .(1,2)【答案】C 【解析】 c 2=a 2+1,e 2=c 2a2=a 2+1a 2=1+1a 2,∵a >1,∴0<1a 2<1 ,1<e 2<2 ,则0<e <√2,选C.A .221412x y -=B .221124x y -=C .2213x y -=D .2213y x -=【答案】D 【解析】由题意结合双曲线的渐近线方程可得:2222tan 603c c a bba⎧⎪=⎪=+⎨⎪⎪==⎩,解得:221,3a b ==, 双曲线方程为:2213y x -=. 本题选择D 选项.【考点】 双曲线的标准方程【名师点睛】利用待定系数法求圆锥曲线方程是高考常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于,,a b c 的方程,解方程组求出,a b ,另外求双曲线方程要注意巧设双曲线(1)双曲线过两点可设为221(0)mx ny mn -=>,(2)与22221x y a b -=共渐近线的双曲线可设为2222(0)x y a bλλ-=≠,(3)等轴双曲线可设为22(0)x y λλ-=≠等,均为待定系数法求标准方程.A .221412x y -=B .22179x y -=C .22188x y -=D .221124x y -=【答案】A 【详解】 可得渐近线方程为,将x=a 代入求得.由条件知,半焦距,所以由得,.又因,所以解得,.双曲线C 的方程为221412x y -=故选A .A .220x -25y =1B .25x -220y =1C .280x -220y =1D .220x -280y =1【答案】A 【详解】由题意得,双曲线的焦距为10,即22225a b c +==, 又双曲线的渐近线方程为by x a=0bx ay ⇒-=,点1(2)P ,在C 的渐近线上, 所以2a b =,联立方程组可得,所以双曲线的方程为22=1205x y -.考点:双曲线的标准方程及简单的几何性质.A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(⋃D .(,(2,)-∞+∞【答案】A 【详解】 由题意,根据双曲线的对称性知D 在x 轴上,设,0)Dx (,则由 BD AB ⊥得:,因为D 到直线BC 的距离小于a,即01b a<<,所以双曲线渐近线斜率1,0)(0,1)bk a =±∈-⋃(,故选A .A .2B .C .4D .【答案】C 【解析】试题分析:双曲线方程变形为22148x y -=,所以28b b =∴=2b =考点:双曲线方程及性质A.3 B.2 CD【答案】B【详解】M N,是双曲线的两顶点,M O N,,将椭圆长轴四等分∴椭圆的长轴长是双曲线实轴长的2倍双曲线与椭圆有公共焦点,∴双曲线与椭圆的离心率的比值是2故答案选BA.14B.35C.34D.45【答案】C【解析】由x2-y2=2知,a2=2,b2=2,c2=a2+b2=4,∴,c=2.又∵|PF1|-|PF2|=2a,|PF1|=2|PF2|,∴|PF1,|PF2.又∵|F1F2|=2c=4,∴由余弦定理得cos∠F1PF22224+-34. 故选C.二、填空题 【答案】,.【解析】 由题意得:,,,∴焦距为,渐近线方程为.考点:双曲线的标准方程及其性质 【答案】【解析】 因为的方程为,所以的一条渐近线的斜率,所以的一条渐近线的斜率,因为双曲线、的顶点重合,即焦点都在轴上,设的方程为,所以,所以的方程为.考点:双曲线的性质,直线的斜率.【答案】y x = 【解析】由题意得:1C :223,(0)x y λλ-=≠,设(,)Q x y ,则(,2)P x y ,所以2234x y λ-=,即2C 的渐近线方程为y x = 考点:双曲线渐近线【答案】22x y 1412-=【解析】 解:由已知得,22,4221412b c c e a a a x y==∴===∴=∴-=双曲线的方程为【答案】16 【分析】根据双曲线的焦点坐标,判断出双曲线焦点所在的坐标轴,再根据222c a b =+列方程,求得m 的值. 【详解】双曲线的焦点坐标为()0,5F ,故焦点在y 轴上,由222c a b =+得259,16m m =+=. 【点睛】本小题主要考查根据双曲线的焦点坐标求双曲线的方程,属于基础题.【答案】44 【详解】由题意因为PQ 过双曲线的右焦点(5,0), 所以P ,Q 都在双曲线的右支上, 则有6,6FP PA PQ QA -=-=,两式相加,利用双曲线的定义得28FP FQ +=,所以△PQF 的周长为284FP FQ PQ b ++=+=28+16=44. 故答案为44.【答案】1) 【详解】因为在12PF F ∆中,由正弦定理得211221sin sin PF PF PF F PF F =∠∠,则由已知,得21a c PF PF =,即12aPF cPF =,12c PF PF a=, 由双曲线的定义知212222222c a PF PF a PF PF a PF a c a-=-=⇒=-,, 由双曲线的几何性质知22222,20,a PF c a c a c ac a c a>->-⇒--<-所以2210,e e --<解得11e <<,又1()e ∈+∞,,故双曲线的离心率1)e ∈【答案】2【解析】设(,),(1)P x y x ≥,因为直线10x y -+=平行于渐近线0x y -=,所以点到直线的距离恒大于直线10x y -+=与渐近线0x y -=之间距离,因此c 的最大值为直线10x y -+=与渐近线0x y -=之间距离,为2.2=考点:双曲线渐近线,恒成立转化【答案】【分析】根据题意,根据1,,P A F 三点共线,求出直线1AF 的方程,联立双曲线方程,即可求得P 点坐标,则由11APF AFF PFF S S S ∆∆∆=-即可容易求得.【详解】设双曲线的左焦点为1F ,由双曲线定义知,12PF a PF =+,∴△APF 的周长为|P A|+|PF|+|AF|=|P A|+12a PF ++|AF|=|P A|+1PF +|AF|+2a ,由于2||a AF +是定值,要使△APF 的周长最小,则|P A|+1PF 最小,即P 、A 、1F 共线,∵(A ,()13,0F -∴直线1AF的方程为13x +=-,即3x =-代入2218y x -=整理得2960y +-=,解得y =y =-舍),所以P 点的纵坐标为∴11116622APF AFF PFF S S S ∆∆∆=-⨯⨯⨯⨯=故答案为:【点睛】本题考查双曲线中三角形面积的求解,涉及双曲线的定义,属综合中档题.【答案】2+【详解】双曲线22221x y a b-=的右焦点为(,0)c .不妨设所作直线与双曲线的渐近线b y x a =平行,其方程为()b y x c a =-,代入22221x y a b -=求得点P 的横坐标为222a c x c+=,由2222a c ac +=,得2()410c c a a -+=,解之得2c a =+2c a =1ca>),故双曲线的离心率为2+考点:1.双曲线的几何性质;2.直线方程.【答案】2214x y -=【详解】依题意,设所求的双曲线的方程为224x y λ-=.点M 为该双曲线上的点,16124λ∴=-=.∴该双曲线的方程为:2244x y -=,即2214x y -=.故本题正确答案是2214x y -=.【答案】2y x =± 【解析】||||=4222A B A B p p pAF BF y y y y p ++++=⨯⇒+= , 因为22222222221202x y a y pb y a b a bx py⎧-=⎪⇒-+=⇒⎨⎪=⎩,所以222A B pb y y p a a +==⇒=⇒渐近线方程为2y x =±. 【名师点睛】1.在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为221Ax By +=的形式,当0A >,0B >,A B ≠时为椭圆,当0AB <时为双曲线.2.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.【答案】2 【解析】222222221,,13c a b a b m e m a a +=====+=,2m =.渐近线方程是y ==.P ,Q ,其焦点是F 1 ,F 2 ,则四边形F 1 P F 2 Q 的面积是________.【答案】【解析】右准线方程为10x ==,渐近线方程为3y x =±,设(,1010P ,则Q ,1(F ,2F ,则S == 点睛:(1)已知双曲线方程22221x y a b -=求渐近线:22220x y b y x a b a-=⇒=±;(2)已知渐近线y mx =可设双曲线方程为222m x y λ-=;(3)双曲线的焦点到渐近线的距离为b ,垂足为对应准线与渐近线的交点.【答案】48 【解析】根据双曲线方程2222y x a b -=1知a 2=16,b 2=m ,并在双曲线中有a 2+b 2=c 2,∴离心率e =c a =2,22c a=4=1616m+,m =48.【答案】 【解析】试题分析:222227,3,7310,2a b c a b c c ==∴=+=+=∴==【考点】双曲线性质【名师点睛】本题重点考查双曲线几何性质,而双曲线的几何性质与双曲线的标准方程息息相关,明确双曲线标准方程中各个量的对应关系是解题的关键,22221(0,0)x y a b a b-=>>揭示焦点在x 轴,实轴长为2a ,虚轴长为2b ,焦距为2c =b y x a =±,离心率为c a =【解析】试题分析:根据对称性,不妨设,短轴端点为,从而可知点在双曲线上,∴.考点:双曲线的标准方程及其性质.【名师点睛】本题主要考查了双曲线的标准方程及其性质,属于容易题,根据对称性将条件中的信息进行 等价的转化是解题的关键,在求解双曲线的方程时,主要利用,焦点坐标,渐近线方程等性质,也会与三角形的中位线,相似三角形,勾股定理等平面几何知识联系起来. 【答案】11 【详解】由双曲线的方程2221(0)9x y b b-=>,可得3a =,根据双曲线的定义可知1226PF PF a -=±=±, 又因为15PF =,所以2||11PF =.【答案】5【解析】由双曲线的标准方程可得渐近线方程为3y x a=±,结合题意可得5a =. 【名师点睛】1.已知双曲线方程22221(0,0)x y a b a b -=>>求渐近线:22220x y b y x a b a-=⇒=±.2.已知渐近线y mx =设双曲线的标准方程为222m x y λ-=.3.双曲线的焦点到渐近线的距离为b ,垂足为对应准线与渐近线的交点.【答案】3【解析】 如图所示,由题意可得|OA|=a ,|AN|=|AM|=b , ∵∠MAN=60°, ∴, ∴=设双曲线C 的一条渐近线y=bax 的倾斜角为θ,则tanθ=||||AP OP =. 又tan θ=b a,b a =,解得a 2=3b 2,∴3==.答案:3点睛:求双曲线的离心率的值(或范围)时,可将条件中提供的双曲线的几何关系转化为关于双曲线基本量,,a b c的方程或不等式,再根据222b c a=-和cea=转化为关于离心率e的方程或不等式,通过解方程或不等式求得离心率的值(或取值范围).【答案】12 y x =±【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【详解】∵双曲线2214xy-=的a=2,b=1,焦点在x轴上而双曲线22221x ya b-=的渐近线方程为y=±bxa∴双曲线2214xy-=的渐近线方程为y=±12x故答案为y=±1 2 x【点睛】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想【答案】4【详解】分析:根据离心率公式cea=,及双曲线中,,a b c的关系可联立方程组,进而求解参数a的值.。
高考数学《双曲线》专题检测试卷一、单项选择题(共8小题,每小题5分,共40分)1.过点()1,2P -的直线与双曲线2214x y -=的公共点只有1个,则满足条件的直线有()A .2条B .3条C .4条D .5条2.双曲线E :2213y x -=的左,右顶点分别为,A B ,曲线E 上的一点C 关于x 轴的对称点为D ,若直线AC 的斜率为m ,直线BD 的斜率为n ,则mn =()A .3B .3-C .13D .13-3.双曲线222:1(0)y C x a a-=>的上焦点2F 到双曲线一条渐近线的距离为2a ,则双曲线两条渐近线的斜率之积为()A .4-B .4C .2-D .24.若双曲线2222:1(0,0)x y C a b a b-=>>,右焦点为F ,点E 的坐标为(,b c a b ,则直线OE (O 为坐标原点)与双曲线的交点个数为()A .0个B .1个C .2个D .不确定5.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,过焦点2F 且垂直于x 轴的弦为AB ,若190AF B ∠= ,则双曲线的离心率为()A .522B 1-C 1D .2226.已知双曲线C :221169x y -=的左,右焦点分别为1F ,2F ,过2F 的直线与双曲线C 的右支交于A ,B 两点,且6AB =,则1F AB 的周长为()A .20B .22C .28D .367.已知点P 是双曲线2211620x y -=右支上的一点,点A B 、分别是圆22(6)4x y ++=和圆22(6)1x y -+=上的点.则PA PB -的最小值为()A .3B .5C .7D .98.双曲线2222:1(0,0)y x a b a bΓ-=>>的两焦点分别为12,F F ,过2F 的直线与其一支交于A ,B两点,点B 在第四象限.以1F 为圆心,Γ的实轴长为半径的圆与线段11,AF BF 分别交于M ,N 两点,且12||3||,AM BN F B F B =⊥,则Γ的渐近线方程是()A.y =B.y x =C.y x =D.y x=二、多项选择题(共3小题,每小题6分,共18分)9.已知双曲线C :()2220mx y m -=>,左右焦点分别为12,F F ,若圆()2248x y -+=与双曲线C 的渐近线相切,则下列说法正确的是()A .双曲线C的离心率e =B .若1PF x ⊥轴,则1PF =C .若双曲线C 上一点P 满足122PF PF =,则12PF F的周长为4+D .存在双曲线C 上一点P ,使得点P 到C10.已知双曲线2222 :1(0)x y M a b a b-=>>的焦距为4,两条渐近线的夹角为60︒,则下列说法正确的是()A .MB .M 的标准方程为2212x y -=C .M的渐近线方程为y =D .直线20x y +-=经过M 的一个焦点11.已知椭圆22122:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为1e ,椭圆1C 的上顶点为M ,且12π6MF F =∠,双曲线2C 和椭圆1C 有相同的焦点,且双曲线2C 的离心率为2e ,P 为曲线1C 与2C 的一个公共点.若12π2F PF ∠=,则()A.21e e =B.12e e =C .221294e e +=D .22211e e -=三、填空题(共3小题,每小题5分,共15分)12.双曲线C :()222210,0x y a b a b-=>>的两个焦点为1F 、2F,点)A在双曲线C 上,且满足120AF AF ⋅=,则双曲线C 的标准方程为__________.13.已知双曲线1C :()22210y x b b-=>与椭圆2C:(2221x y a a +=>有公共的焦点1F ,2F ,且1C 与2C 在第一象限的交点为M ,若12MF F △的面积为1,则a 的值为__________.14.设1F 、2F 为双曲线Γ:()222109x ya a -=>左、右焦点,且Γ,若点M 在Γ的右支上,直线1F M 与Γ的左支相交于点N ,且2MF MN =,则1F N =__________.四、解答题(共5小题,共77分)15.设双曲线2222:1(0,0)x y a b a bΓ-=>>,斜率为1的直线l 与Γ交于,A B 两点,当l 过Γ的右焦点F 时,l 与Γ的一条渐近线交于点(P -.(1)求Γ的方程;(2)若l 过点(1,0)-,求||AB .16.已知双曲线()2222:10,0x y C a b a b-=>>的焦点到渐近线的距离为2(1)求双曲线C 的方程;(2)直线():1,0l y k x k =+>与双曲线C 有唯一的公共点,求k 的值.17.已知双曲线C :22221x y a b-=(0a >,0b >)的右顶点()1,0E ,斜率为1的直线交C 于M 、N 两点,且MN 中点()1,3Q .(1)求双曲线C 的方程;(2)证明:MEN 为直角三角形;(3)若过曲线C 上一点P 作直线与两条渐近线相交,交点为A ,B ,且分别在第一象限和第四象限,若AP PB λ= ,1,23λ⎡⎤∈⎢⎥⎣⎦,求AOB V 面积的取值范围.18.某高校的志愿者服务小组受“进博会”上人工智能展示项目的启发,会后决定开发一款“猫捉老鼠”的游戏.如下图:A 、B 两个信号源相距10米,O 是AB 的中点,过O 点的直线l 与直线AB 的夹角为45︒.机器猫在直线l 上运动,机器鼠的运动轨迹始终满足;接收到A 点的信号比接收到B 点的信号晚08v 秒(注:信号每秒传播0v 米).在时刻0t 时,测得机器鼠距离O 点为4米.(1)以O 为原点,直线AB 为x 轴建立平面直角坐标系(如图),求时刻0t 时机器鼠所在位置的坐标;(2)游戏设定:机器鼠在距离直线l 不超过1.5米的区域运动时,有“被抓”的风险.如果机器鼠保持目前的运动轨迹不变,是否有“被抓”风险?19.已知离心率为72的双曲线1C :()222210,0x y a b a b -=>>过椭圆2C :22143x y +=的左,右顶点A ,B .(1)求双曲线1C 的方程;(2)()()0000,0,0P x y x y >>是双曲线1C 上一点,直线AP ,BP 与椭圆2C 分别交于D ,E ,设直线DE 与x 轴交于(),0Q Q x ,且20102Q x x λλ⎛⎫=<< ⎪⎝⎭,记BDP △与ABD △的外接圆的面积分别为1S ,2S参考答案15.(1)2214y x -=(2)82316.(1)22124x y -=(2)k =2.17.(1)2213y x -=(2)证明略(3)⎦18.(1)(4,0)(2)没有“被抓”风险19.(1)22143x y -=(2)⎫+∞⎪⎪⎝⎭。
高三数学双曲线试题答案及解析1.双曲线=1(a>0,b>0)的右焦点是抛物线y2=8x的焦点F,两曲线的一个公共点为P,且|PF| =5,则此双曲线的离心率为()A.B.C.2D.【答案】C【解析】,根据抛物线的焦半径公式知:,,代入得,代入双曲线方程,,解得:,,,故选C.【考点】双曲线与抛物线的性质2.已知双曲线的实轴长为2,则该双曲线的离心率为()A.B.C.D.【答案】D【解析】双曲线的实轴长为2,所以,此双曲线的为等轴双曲线,所以离心率为.【考点】1.双曲线的方程;2.双曲线的性质.3.是双曲线的右支上一点,、分别是圆和上的点,则的最大值等于 .【答案】9【解析】两个圆心正好是双曲线的焦点,,,再根据双曲线的定义得的最大值为.【考点】双曲线的定义,距离的最值问题.4.设直线L过双曲线C的一个焦点,且与C的一条对称轴垂直,L与C交于A ,B两点,为C的实轴长的2倍,则C的离心率为A.B.C.2D.3【答案】B【解析】通径|AB|=得,选B5.在平面直角坐标系中,曲线的离心率为,且过点,则曲线的标准方程为.【答案】【解析】因为曲线的离心率为,所以曲线为等轴双曲线,其方程可以设为.因为过点,所以标准方程为.【考点】双曲线的性质6.双曲线的渐近线方程为【答案】【解析】双曲线的渐近线方程为,本题中,故渐近线方程为.【考点】双曲线的渐近线方程.7.已知双曲线的右焦点为,则该双曲线的渐近线方程为________.【答案】【解析】此题主要考查双曲线的内容,难度不大.由条件得,,从而双曲线方程为,故渐近线方程为.【考点】双曲线.8.已知双曲线的左,右焦点分别为,点P在双曲线的右支上,且,则此双曲线的离心率e的取值范围是________.【答案】 (1,]【解析】根据双曲线定义,设,则|,故3r=2a,即,即.根据双曲线的几何性质,,即,即,即e≤.又e>1,故双曲线的离心率e的取值范围是(1,] .故填(1,]9.如图,动点与两定点、构成,且,设动点的轨迹为.(1)求轨迹的方程;(2)设直线与轴相交于点,与轨迹相交于点,且,求的取值范围.【答案】(1)(2)【解析】(1)设M的坐标为(x,y),显然有x>0,.当∠MBA=90°时,点M的坐标为(2,±3)当∠MBA≠90°时,x≠2.由∠MBA=2∠MAB,有tan∠MBA=,即化简得:,而点(2,±3)在曲线上,综上可知,轨迹C的方程为.(2)由消去y,可得.(*)由题意,方程(*)有两根且均在(1,+)内,设,所以解得m>1,且m2.设Q、R的坐标分别为,由有,所以,由m>1,且m2,有所以的取值范围是.10.设、是双曲线:(,)的两个焦点,是上一点,若,且△最小内角的大小为,则双曲线的渐近线方程是()A.B.C.D.【答案】B【解析】不妨设,则由已知,得,又,因此中最小角为,由余弦定理得,解得,所以,渐近线方程为,选B.【考点】双曲线的定义,余弦定理,渐近线方程.11.已知双曲线,以右顶点为圆心,实半轴长为半径的圆被双曲线的一条渐近线分为弧长为1:2的两部分,则双曲线的离心率为()A.B.C.D.【答案】B【解析】由题意得,弦所对圆心角为所以圆心到弦即渐近线的距离为因此有【考点】点到直线距离,双曲线的渐近线12.双曲线的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为( )A.B.C.D.【答案】A【解析】在直角三角形中,设则,因此离心率为【考点】双曲线定义13.双曲线的一个焦点到其渐近线的距离是,则;此双曲线的离心率为.【答案】2;.【解析】由方程可得右焦点为,一条渐近线为,由,可得,,故,双曲线的离心率为.【考点】双曲线的简单性质.14.双曲线左支上一点到直线的距离为,则()A.2B.-2C.4D.-4【答案】B【解析】利用点到直线的距离公式,得,即,因为双曲线左支上一点,故应在直线的上方区域,∴,∴.∵在双曲线上,∴,∴,∴.【考点】1.直线与双曲线的位置关系;2.点到直线的距离公式.15.在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.(1)求圆心P的轨迹方程;(2)若P点到直线y=x的距离为,求圆P的方程.【答案】(1)y2-x2=1 (2)x2+(y-1)2=3或x2+(y+1)2=3【解析】解:(1)设P(x,y),圆P的半径为r.由题设y2+2=r2,x2+3=r2,从而y2+2=x2+3.故P点的轨迹方程为y2-x2=1.(2)设P(x0,y).由已知得=.又P点在双曲线y2-x2=1上,从而得由得此时,圆P的半径r=.由得此时,圆P的半径r=.故圆P的方程为x2+(y-1)2=3或x2+(y+1)2=3.16. 点A 是抛物线C 1:y 2=2px(p>0)与双曲线C 2:-=1(a>0,b>0)的一条渐近线的交点,若点A 到抛物线C 1的准线的距离为p,则双曲线C 2的离心率等于( ) A . B . C .D .【答案】C【解析】设A(x 0,y 0), ∵A 在抛物线上, ∴x 0+=p, ∴x 0=, 由=2px 0得y 0=p 或y 0=-p.∴双曲线渐近线的斜率==2.∴e===.故选C.17. 点A(x 0,y 0)在双曲线-=1的右支上,若点A 到右焦点的距离等于2x 0,则x 0= .【答案】2 【解析】由-=1可知,a 2=4,b 2=32,∴c 2=36,c=6,右焦点F(6,0), 由题意可得解方程组可得x 0=或x 0=2. ∵点A 在双曲线右支上, ∴x 0≥2,∴x 0=2.18. 已知双曲线C:-=1的焦距为10,点P(2,1)在C 的渐近线上,则C 的方程为( )A .-=1B .-=1C .-=1D .-=1【答案】A 【解析】-=1的焦距为10, ∴c=5=.①又双曲线渐近线方程为y=±x,且P(2,1)在渐近线上, ∴=1,即a=2b.②由①②解得a=2,b=,故选A.19. 已知双曲线-=1的离心率为2,焦点与椭圆+=1的焦点相同,那么双曲线的焦点坐标为;渐近线方程为.【答案】(±4,0)x±y=0【解析】∵双曲线的焦点与椭圆的焦点相同,∴c=4.∵e==2,∴a=2,∴b2=12,∴b=2.∵焦点在x轴上,∴焦点坐标为(±4,0),渐近线方程为y=±x,即y=±x,化为一般式为x±y=0.20.已知△ABC外接圆半径R=,且∠ABC=120°,BC=10,边BC在x轴上且y轴垂直平分BC边,则过点A且以B,C为焦点的双曲线方程为()A.-=1B.-=1C.-=1D.-=1【答案】D【解析】由正弦定理知sin∠BAC==,∴cos∠BAC=,|AC|=2Rsin∠ABC=2××=14,sin∠ACB=sin(60°-∠BAC)=sin60°cos∠BAC-cos60°sin∠BAC=×-×=,∴|AB|=2Rsin∠ACB=2××=6,∴2a=||AC|-|AB||=14-6=8,∴a=4,又c=5,∴b2=c2-a2=25-16=9,∴所求双曲线方程为-=1.故选D.21.已知m,n为两个不相等的非零实数,则方程mx-y+n=0与nx2+my2=mn所表示的曲线可能是()【答案】C【解析】通过直线斜率等于m,在y轴上的截距为n,从直线中可判断m,n的正负,从而确定nx2+my2=mn为椭圆还是双曲线,选项C中,从直线可以看出m>0,n<0,而nx2+my2=mn可化为+ =1,即焦点在x轴上的双曲线.22.已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点P(4,-).(1)求双曲线的方程.(2)若点M(3,m)在双曲线上,求证:·=0.(3)求△F1MF2的面积.【答案】(1) x2-y2=6 (2)见解析 (3)6【解析】(1)∵e=,∴可设双曲线方程为x2-y2=λ(λ≠0).∵过点P(4,-),∴16-10=λ,即λ=6.∴双曲线方程为x2-y2=6.(2)方法一:由(1)可知,双曲线中a=b=,∴c=2,∴F1(-2,0),F2(2,0).∴=,=,·==-.∵点M(3,m)在双曲线上,∴9-m2=6,m2=3. 故·=-1,∴MF1⊥MF2.∴·=0.方法二:∵=(-3-2,-m),=(2-3,-m),∴·=(3+2)×(3-2)+m2=-3+m2. ∵M(3,m)在双曲线上,∴9-m2=6,即m2-3=0.∴·=0.(3)△F1MF2的底|F1F2|=4,△F1MF2的边F1F2上的高h=|m|=,∴=6.23.双曲线的离心率为()A.B.C.D.【答案】B.【解析】把双曲线的方程化为标准形式:.故选B.【考点】双曲线的简单的几何性质.24.双曲线x2-=1的离心率大于的充分必要条件是()A.m>B.m≥1C.m>1D.m>2【答案】C【解析】依题意,e=,e2=>2,得1+m>2,所以m>1.25.设F1,F2是双曲线C:-=1(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a且△PF1F2的最小内角为30°,则双曲线C的离心率为________.【答案】【解析】不妨设F1,F2分别为双曲线的左、右焦点,点P在双曲线的右支上,由双曲线的定义得|PF1|-|PF2|=2a,又|PF1|+|PF2|=6a,求得|PF1|=4a,|PF2|=2a.又在△PF1F2中,∠PF1F2=30°,所以∠PF2F1=90°,求得|F1F2|=2a,故双曲线C的离心率e==.26.已知点F是双曲线=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A,B两点,若△ABE是锐角三角形,则该双曲线的离心率e的取值范围是________.【答案】(1,2)【解析】由题意知,△ABE为等腰三角形.若△ABE是锐角三角形,则只需要∠AEB为锐角.根据对称性,只要∠AEF<即可.直线AB的方程为x=-c,代入双曲线方程得y2=,取点A,则|AF|=,|EF|=a+c,只要|AF|<|EF|就能使∠AEF<,即<a+c,即b2<a2+ac,即c2-ac-2a2<0,即e2-e-2<0,即-1<e<2.又e>1,故1<e<2.27.已知点F是双曲线=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A,B两点,若△ABE是锐角三角形,则该双曲线的离心率e的取值范围是________.【答案】(1,2)【解析】由题意知,△ABE为等腰三角形.若△ABE是锐角三角形,则只需要∠AEB为锐角.根据对称性,只要∠AEF< 即可.直线AB的方程为x=-c,代入双曲线方程得y2=,取点A,则|AF|=,|EF|=a+c,只要|AF|<|EF|就能使∠AEF< ,即<a+c,即b2<a2+ac,即c2-ac-2a2<0,即e2-e-2<0,即-1<e<2.又e>1,故1<e<2.28.已知0<θ<,则双曲线C1:=1与C2:=1的().A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等【答案】D【解析】对于C1:a=cos θ,b=sin θ,c=1,e=;对于C2:a=sin θ,b=sin θtan θ,c=tan θ,e=.∴C1与C2离心率相等.29.如图,、是双曲线,的左、右焦点,过的直线与双曲线的左、右两个分支分别交于点、,若为等边三角形,则该双曲线的离心率为()A.B.C.D.【答案】D【解析】点是双曲线上的点,所以,是等边三角形,所以,,,,,所以根据余弦定理得:,将数据代入得:,整理得:即,,所以渐近线的斜率,故选D.【考点】1.双曲线的定义;2.渐近线方程;3.余弦定理.30.以双曲线=1的右焦点为圆心,且被其中一条渐近线截得的弦长为6的圆的标准方程为________.【答案】(x-2)2+y2=25【解析】双曲线=1的右焦点为(2,0),渐近线方程为:y=2x,则2+32=r2,解得r2=25,故所求圆的标准方程为(x-2)2+y2=25.31.已知分别为双曲线的左、右焦点,P为双曲线右支上一点,满足,直线与圆相切,则该双曲线的离心率为()A.B.C.D.2【答案】C【解析】因为过0作直线的垂线,垂足为A,则,过点作直线的垂线,垂足为B.由于点O为的中点. ,所以点B是线段的中点,.又因为,.所以.所以在直角三角形中可得.所以可得.故选C.【考点】1.圆锥曲线的定义.2.等腰三角形的性质.3.直线与圆相切的性质.4.方程的思想.32.已知双曲线C1:的离心率为2,若抛物线C2:的焦点到双曲线C1的渐近线的距离是2,则抛物线C2的方程是()A.B.C.D.【答案】D【解析】双曲线C1:的离心率为2.所以,即,所以;双曲线的渐近线方程为:,抛物线C2:的焦点到双曲线C1的渐近线的距离为2,所以,所以.抛物线C的方程为.2故选D.【考点】双曲线、抛物线及其几何性质.33.双曲线的虚轴长是实轴长的2倍,则m= .【答案】【解析】首先我们应该知道方程表示双曲线的条件是,因此本题中有,从而双曲线中,,条件虚轴长是实轴长的2倍即为,因此可得.【考点】双曲线的标准方程及双曲线的性质.34.已知双曲线的右焦点为F,若过点F且倾斜角为30°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是()A.B.C.D.【答案】D【解析】由已知得,双曲线的渐近线的倾斜角应大于或等于,,选D.【考点】双曲线的渐近线与离心率.35.已知双曲线的右焦点到其渐进线的距离为,则此双曲线的离心率为_____.【答案】【解析】依题意知,.设,且均为正数.则右焦点为,其渐进线的方程为:.即.右焦点到其渐进线的距离为,即,.又由.所以.所以,即.【考点】点到直线的距离公式、双曲线的几何性质36.与圆及圆都相外切的圆的圆心在( )A.一个椭圆上B.一支双曲线上C.一条抛物线上D.一个圆上【答案】B【解析】圆的圆心是,半径;圆的圆心是,半径是.根据题意可知,所求的圆的圆心到定点与的距离之差是,由双曲线的定义可知,所求圆的圆心的轨迹是双曲线的一支,即圆心在一支双曲线上.【考点】双曲线的定义及性质37.已知是双曲线的左焦点,是双曲线的右顶点,过点且垂直于轴的直线与双曲线交于两点,若是锐角三角形,则该双曲线的离心率的取值范围为()A.B.C.D.【答案】C【解析】由于为等腰三角形,可知只需即可,即,化简得.【考点】双曲线的离心率.38.若、为双曲线: 的左、右焦点,点在双曲线上,∠=,则到轴的距离为()A.B.C.D.【答案】B【解析】双曲线:,=4,=1,所以a=2,b=1。
专题9.4 双曲线1.(2021·江苏高考真题)已知双曲线()222210,0x ya ba b-=>>的一条渐近线与直线230x y-+=平行,则该双曲线的离心率是()A B C.2D【答案】D【分析】写出渐近线,再利用斜率相等,进而得到离心率【详解】双曲线的渐近线为by xa=±,易知by xa=与直线230x y-+=平行,所以=2bea⇒=故选:D.2.(2021·北京高考真题)若双曲线2222:1x yCa b-=离心率为2,过点,则该双曲线的程为()A.2221x y-=B.2213yx-=C.22531x y-=D.22126x y-=【答案】B【分析】分析可得b,再将点代入双曲线的方程,求出a的值,即可得出双曲线的标准方程.【详解】2cea==,则2c a=,b=,则双曲线的方程为222213x ya a-=,将点的坐标代入双曲线的方程可得22223113a a a-==,解得1a=,故b=因此,双曲线的方程为2213yx-=.故选:B3.(2021·山东高考真题)已知1F是双曲线22221x ya b-=(0a>,0b>)的左焦点,点P在双曲线上,直线1PF与x轴垂直,且1PF a=,那么双曲线的离心率是()练基础AB C .2 D .3【答案】A 【分析】易得1F 的坐标为(),0c -,设P 点坐标为()0,c y -,求得20b y a =,由1PF a =可得a b =,然后由a ,b ,c 的关系求得222c a =,最后求得离心率即可. 【详解】1F 的坐标为(),0c -,设P 点坐标为()0,c y -,易得()22221c y a b--=,解得20b y a =, 因为直线1PF 与x 轴垂直,且1PF a =, 所以可得2b a a=,则22a b =,即a b =,所以22222c a b a =+=,离心率为e = 故选:A .4.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为( )A B C .2 D .3【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解. 【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c ya b-=,解得2b y a =±,所以22b AB a =, 又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a c ,所以222212a cbc =-=,所以双曲线的离心率ce a== 故选:A.5.(2019·北京高考真题(文))已知双曲线2221x y a-=(a >0) 则a =( )A B .4C .2D .12【答案】D 【解析】∵双曲线的离心率ce a==,c =,=,解得12a = , 故选D.6.(全国高考真题(文))双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,焦点到渐近线的C 的焦距等于( ).A.2B.C.4D.【答案】C 【解析】设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .7.(2017·天津高考真题(文))已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为( ) A.221412x y -=B.221124x y -=C.2213x y -=D.2213y x -=【答案】D 【解析】由题意结合双曲线的渐近线方程可得:2222tan 603c c a bba⎧⎪=⎪=+⎨⎪⎪==⎩,解得:221,3a b ==, 双曲线方程为:2213y x -=.本题选择D 选项.8.(2021·全国高考真题(理))已知双曲线22:1(0)x C y m m -=>0my +=,则C 的焦距为_________. 【答案】4 【分析】将渐近线方程化成斜截式,得出,a b 的关系,再结合双曲线中22,a b 对应关系,联立求解m ,再由关系式求得c ,即可求解.【详解】0my +=化简得y =,即b a ,同时平方得2223b a m =,又双曲线中22,1a m b ==,故231m m=,解得3,0m m ==(舍去),2223142c a b c =+=+=⇒=,故焦距24c =. 故答案为:4.9.(2019·江苏高考真题)在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是_____. 【答案】y =.【解析】由已知得222431b-=,解得b =b =因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.10.(2020·全国高考真题(文))设双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线为y =x ,则C 的离心率为_________.【解析】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为y =,所以b a =c e a ===1.(2018·全国高考真题(理))设1F ,2F 是双曲线2222:1x y C a b-=()的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为( ) A B C .2D【答案】B 【解析】由题可知22,PF b OF c ==PO a ∴=在2Rt PO F 中,222cos P O PF bF OF c∠==在12PF F △中,22221212212cos P O 2PF F F PF b F PF F F c+-∠==)222224322b c bc a b cc+-∴=⇒=⋅ e ∴=故选B.2.(2020·云南文山·高三其他(理))已知双曲线2221(0)x y a a-=>上关于原点对称的两个点P ,Q ,右顶点为A ,线段AP 的中点为E ,直线QE 交x 轴于(1,0)M ,则双曲线的离心率为( )练提升A B .3CD .3【答案】D 【解析】由已知得M 为APQ 的重心,∴3||3a OM ==,又1b =,∴c ==,即c e a ==. 故选:D.3.(2020·广东天河·华南师大附中高三月考(文))已知平行于x 轴的直线l 与双曲线C :()222210,0x y a b a b-=>>的两条渐近线分别交于P 、Q 两点,O 为坐标原点,若OPQ △为等边三角形,则双曲线C 的离心率为( )A .2BCD 【答案】A 【解析】因为OPQ △为等边三角形, 所以渐近线的倾斜角为3π,所以22,3,bb b a a=∴=∴= 所以2222223,4,4,2c a a c a e e -=∴=∴=∴=. 故选:A4.(2021·广东广州市·高三月考)已知1F ,2F 分别是双曲线C :2213x y -=的左、右焦点,点P 是其一条渐近线上一点,且以线段12F F 为直径的圆经过点P ,则点P 的横坐标为( )A .±1B .C .D .2±【答案】C 【分析】由题意可设00(,)P x ,根据圆的性质有120F P F P ⋅=,利用向量垂直的坐标表示,列方程求0x 即可. 【详解】由题设,渐近线为y =,可令00(,)P x x ,而1(2,0)F -,2(2,0)F ,∴100(2,)F P x x =+,200(2,)F P x =-,又220120403x F P F P x ⋅=-+=,∴0x = 故选:C5.(2020·广西南宁三中其他(理))圆22:10160+-+=C x y y 上有且仅有两点到双曲线22221(0,0)x y a b a b -=>>的一条渐近线的距离为1,则该双曲线离心率的取值范围是( )A .B .55(,)32C .55(,)42D .1)【答案】C 【解析】双曲线22221x y a b-=的一条渐近线为0bx ay -=,圆22:10160C x y y +-+=,圆心()0,5,半径3因为圆C 上有且仅有两点到0bx ay -=的距离为1, 所以圆心()0,5到0bx ay -=的距离d 的范围为24d << 即24<<,而222+=a b c 所以524a c <<,即5542e << 故选C 项.6.【多选题】(2021·湖南高三)已知双曲线2222:1x y C a b-=(0a >,0b >)的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有( )A .若a b =,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12PF F △的内切圆圆心的横坐标x a =D .若M 为直线2a x c =(c 上纵坐标不为0的一点,则当M 的纵坐标为时,2MAF 外接圆的面积最小 【答案】ABD 【分析】由a b =,得到222a c =,利用离心率的定义,可判定A 正确;由双曲线的几何性质和点到直线的距离公式,可判定B 正确;由双曲线的定义和内心的性质,可判定C 不正确; 由正弦定理得到2MAF 外接圆的半径为222sin AF R AMF =∠,得出2sin AMF ∠最大时,R 最小,只需2tan AMF ∠最大,设2,a M t c ⎛⎫⎪⎝⎭,得到22tan tan()AMF NMF NMA ∠=∠-∠,结合基本不等式,可判定D 正确. 【详解】对于A 中,因为a b =,所以222a c =,故C 的离心率ce a==A 正确; 对于B 中,因为()1,0F c -到渐近线0bx ay -=的距离为d b ==,所以B 正确;对于C 中,设内切圆与12PF F △的边1221,,F F F P F P 分别切于点1,,A B C ,设切点1A (,0)x , 当点P 在双曲线的右支上时,可得121212PF PF PC CF PB BF CF BF -=+--=-1112A F A F =-()()22c x c x x a =+--==,解得x a =,当点P 在双曲线的左支上时,可得x a =-,所以12PF F △的内切圆圆心的横坐标x a =±,所以C 不正确; 对于D 中,由正弦定理,可知2MAF 外接圆的半径为222sin AF R AMF =∠,所以当2sin AMF ∠最大时,R 最小,因为2a a c<,所以2AMF ∠为锐角,故2sin AMF ∠最大,只需2tan AMF ∠最大.由对称性,不妨设2,a M t c ⎛⎫ ⎪⎝⎭(0t >),设直线2a x c =与x 轴的交点为N ,在直角2NMF △中,可得222=tan a c NF c NM t NMF -∠=, 在直角NMA △中,可得2=tan a a NA c NM tMA N -∠=, 又由22222222tan tan tan tan()1tan tan 1NMF NMA AMF NMF NMA NMF NMAa a c a c ct t a a c a c c t t--∠-∠∠=∠-∠==+∠∠--⨯+-⋅22()c a ab c a t c t-=≤-+当且仅当()22ab c a t c t -=,即t =2tan AMF ∠取最大值,由双曲线的对称性可知,当t =2tan AMF ∠也取得最大值,所以D 正确.故选:ABD .7.【多选题】(2021·重庆巴蜀中学高三月考)已知点Q 是圆M :()2224x y ++=上一动点,点()2,0N ,若线段NQ 的垂直平分线交直线MQ 于点P ,则下列结论正确的是( ) A .点P 的轨迹是椭圆 B .点P 的轨迹是双曲线C .当点P 满足PM PN ⊥时,PMN 的面积3PMN S =△D .当点P 满足PM MN ⊥时,PMN 的面积6PMNS =【答案】BCD 【分析】根据PM PN -的结果先判断出点P 的轨迹是双曲线,由此判断AB 选项;然后根据双曲线的定义以及垂直对应的勾股定理分别求解出PM PN ⋅的值,即可求解出PMN S △,据此可判断CD 选项. 【详解】依题意,2MQ =,4MN =,因线段NQ 的垂直平分线交直线MQ 于点P ,于是得PQ PN =, 当点P 在线段MQ 的延长线上时,2PM PN PM PQ MQ -=-==,当点P 在线段QM 的延长线上时,2PN PM PQ PM MQ -=-==,从而得24PM PN MN -=<=,由双曲线的定义知,点M 的轨迹是双曲线,故A 错,B 对;选项C ,点P 的轨迹方程为2213y x -=,当PM PN ⊥时,2222616PM PN PM PN PM PN MN ⎧-=⎪⇒⋅=⎨+==⎪⎩, 所以132PMN S PM PN ==△,故C 对; 选项D ,当PM MN ⊥时,2222316PM PN PM PN PM MN ⎧-=-⎪⇒=⎨-==⎪⎩, 所以162PMN S PM MN ==△,故D 对, 故选:BCD.8.(2021·全国高二课时练习)双曲线()22122:10,0x y C a b a b -=>>的焦距为4,且其渐近线与圆()222:21C x y -+=相切,则双曲线1C 的标准方程为______.【答案】2213x y -=【分析】根据焦距,可求得c 值,根据渐近线与圆2C 相切,可得圆心到直线的距离等于半径1,根据a ,b ,c 的关系,即可求得a ,b 值,即可得答案. 【详解】因为双曲线()22122:10,0x y C a b a b -=>>的焦距为4,所以2c =.由双曲线1C 的两条渐近线b y x a=±与圆()222:21C x y -+=相切,可得1=又224a b +=,所以1b =,a =所以双曲线1C 的标准方程为2213x y -=.故答案为:2213x y -=9.(2021·全国高二单元测试)已知双曲线2213y x -=的左、右焦点分别为1F ,2F ,离心率为e ,若双曲线上一点P 使2160PF F ∠=︒,则221F P F F ⋅的值为______.【答案】3 【分析】在12PF F △中,设2PF x =,则12PF x =+或12PF x =-.分别运用余弦定理可求得答案. 【详解】解:由已知得2124F F c ==.在12PF F △中,设2PF x =,则12PF x =+或12PF x =-. 当12PF x =+时,由余弦定理,得()222124242x x x +=+-⨯⨯,解得32x =,所以221314322F P F F ⋅=⨯⨯=. 当12PF x =-时,由余弦定理,得()222124242x x x -=+-⨯⨯,无解.故2213F P F F ⋅=. 故答案为:3.10.(2021·全国高二课时练习)如图,以AB 为直径的圆有一内接梯形ABCD ,且//AB CD .若双曲线1C 以A ,B 为焦点,且过C ,D 两点,则当梯形的周长最大时,双曲线1C 的离心率为______.1 【分析】连接AC ,设BAC θ∠=,将梯形的周长表示成关于θ的函数,求出当30θ=︒时,l 有最大值,即可得到答案; 【详解】连接AC ,设BAC θ∠=,2AB R c R ==,,作CE AB ⊥于点E ,则||2sin BC R θ=,()2||||cos 902sin EB BC R θθ=︒-=,所以2||24sin CD R R θ=-,梯形的周长221||2||||24sin 24sin 4sin 52l AB BC CD R R R R R R θθθ⎛⎫=++=++-=--+ ⎪⎝⎭.当1sin 2θ=,即30θ=︒时,l 有最大值5R ,这时,||BC R =,||AC =,1(||||)2a AC BC =-=1==c e a .11. (2021·全国高考真题(理))已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为( )A B C D 【答案】A 【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理可得答案. 【详解】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==, 所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即e =故选:A2.(2020·浙江省高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =|OP |=( ) A B C D【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103y x x -=>,而点P 还在函数y =练真题由()22103y x x y ⎧⎪⎨->==⎪⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP == 故选:D.3.(2019·全国高考真题(理))设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为( ) ABC .2 D【答案】A 【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴, 又||PQ OF c ==,||,2c PA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2c OA =. ,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .4.(2019·全国高考真题(理))双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为( )A B C .D .【答案】A 【解析】由2,,,a b c ====.,2P PO PF x =∴=,又P 在C 的一条渐近线上,不妨设为在y x =上,11224PFO P S OF y ∴=⋅==△,故选A . 5. (2021·全国高考真题(文))双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.【分析】先求出右焦点坐标,再利用点到直线的距离公式求解. 【详解】由已知,3c ,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-===6.(2019·全国高考真题(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________. 【答案】2. 【解析】 如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB 的斜率为0tan 60ba==所以该双曲线的离心率为2c e a ====.。