长方体、正方体、圆柱体表面积和体积练习题 (1)
- 格式:doc
- 大小:768.00 KB
- 文档页数:10
正方体和长方体的体积练习题目正方体和长方体的体积练习题目篇一:长方体和正方体的体积练习题填空:(1)表面积和体积的意义不同,表面积是物体的()大小,体积是物体所占的()大小。
(2)、表面积和体积所用的计量单位不同,计量表面积常用的单位有()()()相邻的两个面积单位间的进率是()。
计量物体体积常用的单位有()()();相邻的体积单位间的进率是()。
(3)、表面积和体积的计算方法不同。
计算正方体的体积公式是()或()。
计算长方体的表面公式是();计算长方体的体积公式是()或()。
(4)、一个正方体,棱长是8分米,这个正方体的棱长之和是;表面积是();体积()。
(5)、一个长方体,长2米,宽5分米,高0.4分米。
这个长方体的表面积是();体积是()。
(6)、一根长方体材料,宽3分米,厚2厘米,体积是0.12立方米。
这根木材的长是,放在地上占地面积最大是()。
1.填空。
(2)用字母表示长方体的体积公式是( )。
(3)棱长2分米的正方体,一个面的面积是( ),表面积是( ),体积是( )。
(4)一个长方体长是0.4米、宽0.2米、高0.2米,它的表面积是( ),体积是( )。
(5)5立方米=( )立方分米2.8立方分米=( )立方厘米720立方分米=( )立方米32立方厘米=( )立方分米2.7立方米=( )升 1200毫升=( )立方厘米4.25立方米=( )立方分米=( )升 1.2立方米=( )升=( )毫升1、长方体有()个面,()条棱,()个顶点。
2、物体所占()的大小,叫做物体的体积。
3、一个正方体的表面积是54平方米,它的每个面的面积是()平方米,它的棱长是()米。
5、把棱长3cm的正方体切成棱长1cm的小正方体,可以切成( )块。
6、填上合适的单位名称。
一个文具盒的体积大小约有140();货车的油箱的容积是50()数学书的封面的面积大约是300();一个热水瓶的容积约是2()7、3.08 m2=()dm2 870cm3=( )dm36.47L=( )ml=( ) dm3 489ml=( )cm3=( ) dm38、一个正方体的棱长扩大到它的4倍,面积扩大到它的()倍,体积扩大到它的()倍。
圆柱表面积与体积实际应用练习题精选1[1]圆柱表面积与体积实际应用练习题精选1学号姓名一选择:(在正确答案上划对勾)(1)一只铁皮水桶能装水多少升是求水桶的(侧面积、表面积、容积、体积)(2)做一只圆柱体的油桶,至少要用多少铁皮是求油桶的(侧面积、表面积、容积、体积)(3)做一节圆柱形铁皮通风管,要用多少铁皮是求通风管的(侧面积、表面积、容积、体积)(4)求一段圆柱形钢条有多少立方米,是求它的(侧面积、表面积、容积、体积)二、深化练习1、一个圆柱的体积是94.2平方厘米,底面直径是4厘米,它的高是多少?2、一个圆柱形水池底面直径8米,池深2米,如果在水池的底面和四周涂上水泥,涂水泥的面积有多少平方米?水池最多能盛水多少立方米?3、用铁皮制10节同样大小的通风管,每节长是5分米,底面直径是1.2分米,至少需要多少平方分米铁皮?4、一种压路机的滚筒是圆柱形的,筒宽1.5米,直径是0.8米。
这种压路机每分钟向前滚动5周。
这种压路机1分钟压路多少平方米?5、一个圆柱形蓄水池,从里面量底面直径是20米,深为5米,(1) 要在这个蓄水池的四周和底面抹上水泥,抹水泥部分的面积是多少平方米?(2) 这个蓄水池最多可以蓄水多少吨?(每立方米水重1吨)6、一根长4米,底面直径是4厘米的圆柱形钢材,把它锯成同样长的3段,表面积比原来增加了多少平方厘米?7、做一个底面直径是4分米,高是5分米的圆柱形铁皮油桶,(1) 做这个铁皮油桶,至少要用铁皮多少平方分米?( 得数用进一法保留整平方分米)(2) 这个油桶里装了4/5的油,这些油重多少千克?(每升油重0.85千克,得数保留整千克数)8、只列式不计算:用一块边长是9.42分米的正方形铁皮配上一个地面,做成一个圆柱形铁皮水桶。
(1)这个水桶的底面半径是多少?(2)这个水桶的侧面积是多少?(3)这个水桶最多能容纳多少升水?9、一个水杯从里面量底面直径10厘米,高15厘米,杯里的水面离杯口5厘米,这个杯子有水多少升?10、有两个等底的圆柱,第一个圆柱的高是第二个圆柱高的4/5,第一个圆柱的体积是3.2立方厘米,第二个圆柱比第一个圆柱多多少立方厘米?11、一个零件,底面直径5厘米,高10厘米,沿着它的一条底面直径往下切,切成相同大小的两份,(1)总面积比原来增加了多少平方厘米?(2)每半个零件的表面积是多少?体积是多少?圆柱表面积与体积实际应用练习题精选2学号姓名一填空1、4070立方分米=()立方米3立方分米40立方厘米=()立方厘米325 立方米=()立方分米538 升=()升()毫升2、一个圆柱的底面周长是12.56厘米,高是6厘米,那么底面半径是()厘米,底面积是()平方厘米,侧面积是()平方厘米,体积是()立方厘米。
长方体正方体的表面积和体积练习卷答案1. 长方体表面积的求法:长方体的表面积= (长×宽+长×高+宽×高)×2 。
如果用字母a、b、h分别表示长方体的长、宽、高。
S表示它的表面积,则S= (ab+ac+bc)×2。
长方体的体积= 长×宽×高。
字母表示: V=abc2. 正方体表面积的求法:正方体的表面积=棱长×棱长×6 。
如果用字母a表示正方体的棱长,S表示正方体的表面积,则正方体的表面积计算公式是:S= 6a 。
正方体的体积= 棱长×棱长×棱长。
字母表示:s=a*a*a 。
1、一个长方体有(6 )个面,他们一般都是(长方)形,也有可能( 2 )个面是正方形.2、把长方体放在桌面上,最多可以看到(3 )个面。
3、一个长方体,长12厘米,宽和高都是8厘米,这个长方体的表面积是(512平方厘米)。
4、一个长方体,长8厘米,宽是5厘米,高是4厘米,这个长方体的表面积是(184平方厘米),棱长之和是( 68厘米)。
5、一个正方体的棱长之和是84厘米,它的棱长是( 7厘米),一个面的面积是(49平方厘米),表面积是(294平方厘米)。
6、把三个棱长是1厘米的正方体拼成一个长方体,这个长方体的表面积是(14平方厘米),比原来3个正方体表面积之和减少了(4平方厘米)。
7、把三个棱长是2分米的正方体拼成一个长方体,表面积是(56平方分米),体积是(24立方分米)。
8、用棱长为1厘米的小正方体木块拼成一个较大的正方体,至少要( 8 )个这样的小木块才能拼成一个正方体。
9、一个正方体的棱长如果扩大2倍,那么表面积扩大( 4)倍,体积扩大(8 )倍。
10、一个无盖正方体铁桶内外进行涂漆,涂漆的是(10 )个面.11、有一根长52厘米的铁丝,恰好可以焊接成一个长6厘米,宽4厘米,高( 3 )厘米的长方体。
12、一个长方体的长宽高分别是a ,b, h,如果高增高3米,那么表面积比原来增加()平方米,体积增加()立方米。
正方体长方体重点题型精讲(一)知识1:长方体和正方体的认识注意:长方体至少可以有两个面是正方形,最多可以有6个面是正方形,但不会存在3个、4个、5个面是正方形 练习:(1)判断和填空:长方体的六个面一定是长方形; ( ) 正方体的六个面面积一定相等; ( )一个长方体(非正方体) 最多有四个面面积相等; ( )相交于一个顶点的三条棱相等的长方体一定是正方体。
( ) 一个长方体中,可能有4个面是正方形。
( ) 正方体是特殊的长方体。
( )有两个面是正方形的长方体一定是正方体。
( )一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。
( )(2)一个长方体(非正方体)最多有( )个面是正方形,最多有( )条棱长度相等。
(3)一个长方体(非正方体)的底面是一个正方形,则它的4个侧面是( )形。
(4)正方体不仅相对的面相等,而且所有相邻的面( ),它的六个面都是相等的( )形。
(5)把长方体放在桌面上,最多可以看到( )个面。
最少可以看到( )个面。
知识2:棱长和公式变形长方体棱长和=(长+宽+高)×长+宽+高=棱长和÷4 长方体棱长和=右面周长×2+长×4长方体棱长和=下面周长×2+高×4 长方体棱长和=前面周长×2+宽×4 正方体棱长和=棱长×12 棱长=棱长和÷12 例题:1、一只鱼缸,棱长和为280cm ,其中,底面周长为50cm ,右面周长为40cm ,前面周长为50cm ,鱼缸的长、宽、高各是多少?2、有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?练习1、一个长方体的棱长总和是 80厘米,其中长是 10厘米,宽是 7厘米,高是()厘米。
2、有一个长方体的鱼缸,长50厘米,宽30厘米,高30厘米,需要在用铝合金包裹玻璃连接处,需要()米的铝合金3、把两个棱长 1厘米的正方体拼成一个长方体,这个长方体的棱长总和是()厘米。
长方体、正方体练习题班级姓名一、填空:1、长方体或者正方体()叫做它的表面积。
2、一个正方体的棱长是10厘米,它的表面积是()平方厘米。
3、一个长方体长4分米,宽3分米,高2分米,它的表面积是()平方分米。
4、正方体的棱长之和是60分米,它的表面积是()平方分米。
5、用两个长5厘米,宽3厘米,高2厘米的长方体拼成一个表面积尽可能小的正方体,这个拼成的长方体的表面积是()平方厘米。
6、一个正方体的底面积是25平方分米,它的表面积是()平方分米,它的体积是()立方分米。
7、一个长方体,长是5厘米,宽3厘米,高1厘米,这个长方体的棱长总和是,表面积是,体积是。
8、一个正方体的棱长总和是24分米,它的表面积是,体积是。
9、3个棱长是1厘米的正方体小方块排成一行,形成的长方体的表面积是,体积是。
10、用同样的小正方体拼成一个大正方体,至少用个这样的小正方体。
11、一个正方体的表面积是36平方厘米,把它放在桌子上占的面积是()平方厘米。
12、一个长方体长5厘米,宽5厘米,高4厘米,这个长方体有2个面是()形,有()个面的面积相等,长方体的表面积是()。
13、把一根长80厘米、宽5厘米、高5厘米的长方体木材,锯成长度都是40厘米的两段,表面积比原来增加了。
14、把两个同样大小的长方体拼成一个正方体,这个正方体的棱长是10厘米,原来长方体的表面积平方厘米,体积是立方厘米。
15、用3个棱长4分米的正方体粘合成一个长方体,长方体的表面积比3个正方体的表面积少( )平方分米。
16、焊接一个长7cm、宽2cm、高1cm的长方体框架,至少要用()cm的铁丝。
二、判断:1、物体所占空间的大小叫做物体的体积。
()2、正方体的棱长扩大2倍,它的体积就扩大8倍。
()3、容积和体积的计算方法相同,但意义不同。
()4、正方体的棱长是6厘米,它的表面积和体积相等。
()5、相邻的面积单位之间的进率是100。
()6、表面积相等的物体,它们的体积也一定相等。
几何体的体积与表面积试题一、选择题1. 下面关于体积和表面积的说法,正确的是:A. 体积是指几何体的外部空间,表面积是指几何体的内部空间。
B. 箱子的体积和表面积一定是相等的。
C. 体积和表面积都是用立方单位来计量的。
D. 几何体的体积是几何体的表面积的两倍。
2. 一个长方体的长、宽、高分别为3cm、4cm、5cm,它的体积是:A. 60cm³B. 48cm³C. 40cm³D. 20cm³3. 一个正方体的表面积是96平方厘米,它的边长是:A. 8厘米B. 12厘米C. 16厘米D. 24厘米4. 一个圆柱体的底面半径为2cm,高为6cm,它的表面积是:A. 24π平方厘米B. 28π平方厘米C. 32π平方厘米D. 36π平方厘米5. 一个球体的表面积是100π平方厘米,它的半径是:A. 2厘米B. 4厘米C. 6厘米D. 8厘米二、解答题1. 计算一个直方体的体积和表面积,并给出结果的单位。
解答:设直方体的长、宽、高分别为a、b、c,则直方体的体积V为 V = a * b * c,表面积S为 S = 2(a * b + a * c + b * c)。
根据具体的数值,计算出V和S,并注明单位。
2. 已知一个圆柱体的表面积为48π平方厘米,底面半径为3厘米,求圆柱体的高。
解答:设圆柱体的底面半径为r,高为h。
根据题意,可列出方程:2πr^2 + 2πrh = 48π化简得 r^2 + rh = 24代入r=3,解方程得 h = 6厘米。
3. 一个球体的表面积是200π平方厘米,求它的体积。
解答:设球体的半径为r。
根据题意,可列出方程:4πr^2 = 200π化简得 r^2 = 50代入r=√50,计算得体积V = (4/3)πr^3。
三、应用题1. 小明家的水缸是一个圆柱体,底面半径为50厘米,高为120厘米。
他要知道这个水缸最多可以盛多少升水。
解答:水缸的体积为圆柱体的体积V = πr^2h。
第27讲表面积与体积(一)一、知识要点小学阶段所学的立体图形主要有四种长方体、正方体、圆柱体和圆锥体。
从平面图形到立体图形是认识上的一个飞跃,需要有更高水平的空间想象能力。
因此,要牢固掌握这些几何图形的特征和有关的计算方法,能将公式作适当的变形,养成“数、形”结合的好习惯,解题时要认真细致观察,合理大胆想象,正确灵活地计算。
在解答立体图形的表面积问题时,要注意以下几点:(1)充分利用正方体六个面的面积都相等,每个面都是正方形的特点。
(2)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍。
反之,把两个立体图形粘合到一起,减少的表面积等于粘合面积的两倍。
(3)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来。
若把几个长方体拼成一个表面积最小的长方体,应把它们最大的面拼合起来。
二、精讲精练【例题1】从一个棱长10厘米的正方体木块上挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?这是一道开放题,方法有多种:①按图27-1所示,沿着一条棱挖,剩下部分的表面积为592平方厘米。
图27--1②按图27-2所示,在某个面挖,剩下部分的表面积为632平方厘米。
图27--2③按图27-3所示,挖通某两个对面,剩下部分的表面积为672平方厘米。
图27--3练习1:1、从一个长10厘米、宽6厘米、高5厘米的长方体木块上挖去一个棱长2厘米的小正方体,剩下部分的表面积是多少?2、把一个长为12分米,宽为6分米,高为9分米的长方体木块锯成两个想同的小厂房体木块,这两个小长方体的表面积之和,比原来长方体的表面积增加了多少平方分米?3、在一个棱长是4厘米的立方体上挖一个棱长是1厘米的小正方体后,表面积会发生怎样的变化?图27—4【例题2】把19个棱长为3厘米的正方体重叠起来,如图27-4所示,拼成一个立体图形,求这个立体图形的表面积。
要求这个复杂形体的表面积,必须从整体入手,从上、左、前三个方向观察,每个方向上的小正方体各面就组合成了如下图形(如图27-5所示)。
1、用一根铁丝可以制成一个长为15厘米,宽为9厘米,高为6厘米的长方体框架。
如果改制成一个正方体框架,这个正方体框架的棱长是多少厘米?2、一个长方体木块,被截成两个完全相同的正方体。
如果两个正方体的棱长总和比原来长方体的棱长总和增加了24厘米,那么原来长方体的长是多少厘米?体积是多少立方厘米?3、一个长方体的硬纸盒,长为12厘米,宽为6厘米,高为3厘米,制作20个这样的硬纸盒至少需要多少平方厘米的硬纸板?4、给一个棱长为15厘米的正方体盒子的四周贴上商标纸,铁商标纸的面积是多少平方厘米?5、做一节长为120厘米,宽和高都是10厘米的铁皮通风管,至少需要铁皮多少平方厘米?做12节呢?6、一个房间长为6米,宽为3.5米,高为3米,门窗的面积的和是8平方米。
现在要给这个房间粉刷涂料,粉刷涂料的面积是多少?如果每平方米需要涂料0.4千克,一共需要多少千克的涂料?7、一个正方体木块的表面积四150平方厘米,把它分成两个完全相同的长方体,每个长方体的表面积是多少平方厘米?8、小亮家用混凝土做了10块地砖,每块地砖长为50厘米,宽为30厘米,厚为10厘米,一共需要多少方的混凝土?9、学校把12.5立方米的沙子铺在一个棱长为2.5米的正方体沙坑里,可以铺多厚?10、一块长方体钢板长为16分米,宽为8分米,厚为2厘米,它的体积是多少立方分米?已知每立方分米钢板重7.8千克,这块钢板重多少千克?11、一个长方体容器,长、宽、高分别是30厘米、15厘米、8厘米,把里面的水倒入一个棱长是20厘米的正方体容器里,水深多少?12、把棱长为0.8分米的正方体钢坯熔铸成横截面是4厘米的正方形的长方体钢条,这个钢条的长是多少分米?13、有一个长方体铁块,底面积是32平方厘米,高为4厘米。
把它锻造成一个宽为4厘米、高为4厘米的长方体,锻造后的长方体长为多少厘米?14、把一根长为3米的长方体木材平均截成3段,表面积增加了100平方分米,原木材的体积是多少立方分米?15、一个长方体的高截去4厘米,表面积就减少96平方厘米,剩下部分为一个正方体,原来长方体的体积是多少立方厘米?为1.6米。
一、基础概念题1. 请列举出三种常见的立体图形。
2. 立体图形的体积和表面积分别是什么?3. 立体图形的三视图分别是什么?4. 简述长方体、正方体、圆柱体、圆锥体的特征。
二、计算题1. 已知长方体的长、宽、高分别为10cm、6cm、4cm,求其体积和表面积。
2. 一个正方体的边长为8cm,求其体积和表面积。
3. 圆柱体的底面半径为5cm,高为10cm,求其体积和表面积。
4. 圆锥体的底面半径为3cm,高为4cm,求其体积和表面积。
三、应用题1. 一个长方体木块,长、宽、高分别为15cm、10cm、6cm,将其切割成最大的正方体,求正方体的边长。
2. 一个圆柱体水池,底面直径为10m,深为2m,求水池的容积。
3. 一个圆锥形帐篷,底面半径为6m,高为10m,求帐篷的占地面积。
4. 一块长方体铁块,长、宽、高分别为20cm、15cm、10cm,将其熔铸成一个球体,求球体的半径。
四、作图题1. 请画出长方体的三视图。
2. 请画出正方体的三视图。
3. 请画出圆柱体的三视图。
4. 请画出圆锥体的三视图。
五、判断题1. 立体图形的体积和表面积都是固定的。
()2. 长方体和正方体都是特殊的立方体。
()3. 圆柱体的底面一定是圆形。
()4. 圆锥体的侧面展开是一个扇形。
()六、选择题1. 下列哪个立体图形的体积公式是V = πr²h?A. 长方体B. 正方体C. 圆柱体D. 圆锥体2. 下列哪个立体图形的表面积公式是S = 2πrh + 2πr²?A. 长方体B. 正方体C. 圆柱体D. 圆锥体3. 一个正方体的边长为2cm,其体积为多少?A. 4cm³B. 8cm³C. 12cm³D. 16cm³4. 一个圆锥体的底面半径为3cm,高为4cm,其体积为多少?A. 12πcm³B. 36πcm³C. 48πcm³D. 144πcm³七、填空题1. 一个立方体的边长为5cm,其体积是______cm³,表面积是______cm²。