医学论文统计学方法常见问题及对策
- 格式:pdf
- 大小:627.07 KB
- 文档页数:3
论文撰写中常见的统计学问题及其处理【摘要】统计学在论文撰写中扮演着至关重要的角色,它影响着论文的质量和可信度。
在撰写论文过程中常见的统计学问题包括样本量的确定、数据处理方法的选择、结果的解释和呈现,以及如何避免常见的统计学错误。
解决这些问题需要早期咨询统计学专家,并且重视统计学在论文中的作用和意义。
只有正确处理统计学问题,才能确保论文的科学性和准确性。
建议学者们在撰写论文前要深入了解统计学知识,提前咨询专家,以确保论文的统计学部分能够科学可靠地支撑研究结论。
【关键词】统计学、论文撰写、样本量、数据处理、分析方法、结果解释、统计学错误、解决方法、重视意义、咨询专家。
1. 引言1.1 统计学在论文撰写中的重要性统计学在论文撰写中扮演着至关重要的角色。
论文的质量很大程度上取决于统计学的严谨性和正确性。
统计学能够帮助研究者从大量的数据中提取有效信息,得出科学的结论,并验证假设和研究问题。
在论文中,统计学的应用不仅可以帮助读者更好地理解研究结果,还能提高研究的可信度和说服力。
统计学在论文撰写中的重要性体现在几个方面。
通过统计学分析,研究者可以对研究问题进行量化和定量的描述,使研究结论更加客观和可靠。
统计学可以帮助研究者有效地处理大量的数据,提取有用信息,并进行数据的比较和推导。
统计学还可以帮助研究者发现数据中的规律性和趋势,从而指导下一步的研究方向和决策。
1.2 统计学问题对论文质量的影响统计学问题对论文质量的影响非常重要,因为统计学是对数据进行收集、分析和解释的科学方法。
如果在论文撰写过程中出现统计学问题,可能会导致以下几个方面的影响:统计学问题可能导致数据分析结果不准确或者失真。
如果数据的收集、处理以及分析方法不正确,很可能会得出不准确的结论,从而影响论文的科学性和可信度。
选择错误的统计分析方法或者忽略样本量的影响都可能导致数据分析结果产生偏差。
统计学问题可能导致结论的不可靠性。
统计学问题可能使得对数据结果的解释产生误导或者错误的理解,从而影响读者对论文的信服度。
医学论文中常见的统计学处理问题1.未建立或未使用多元医学参考值范围:随着现代科技的发展,在临床实践中出现了许多新仪器,新设备,如一滴血可查出数十项指标结果。
故临床医师在实践中常用多项(即多于1项)指标判断某功能或状态正常与否。
此时应注意:(1) 不能用单指标方法确定的单指标参考值范围来逐个判断多项指标观测值;(2) 对多指标观测值,不能用单指标方法确定多指标医学参考值范围;(3) 注意诊断试验评价结果;(4) 建立参考值范围的观测例数应不少于100例。
2.未进行可信区间估计:对总体参数的区间估计,通常涉及均数、率、相对危险度。
如血管扫描的准确性为92%(81%~100%)。
注意:(1) 观测例数适宜;(2) 若诊断符合率的上限接近100%。
提示新方法是可以推荐使用的;而若下限接近50%,则提示此新方法无使用意义;(3) 数据分布近似正态分布,或变量变换后近似正态分布。
3.未进行一组构成比资料的统计分析:一组构成比中任何两个构成部分间可以比较,当对任一构成部分做结论时要考虑假设检验,同时注意构成比最大为100%。
4.未按有序分类资料分析:有序分类资料(或等级资料)一般应进行秩和检验,仅当配对设计的双向有序分类资料(R×C表)研究相关关系时做χ2检验,要注意识别有序分类资料。
5.未按设计整理统计表:常见的是将配对设计的双向有序分类资料(R×C表)误整理为单个样本的有序分类资料,把配对设计的四格表误整理为一般四格表等。
6.使用不适宜的统计图、表:表中不应列出各样本部分指标均为相同的观测值,如均为零。
对一些图,要注意观察相邻刻度线的数值是什么关系?若为倍数关系时要考虑用对数线图或半对数线图。
注意将统计学基本原则与期刊编辑要求相结合,如列表,制图应注意节约版面。
7.未合理描述变量间关系:例如要分析IL-6含量与特异性IgM滴度呈正相关,绘图时只能以IL-6、IgM分别为X、Y变量绘制散点图,观察两变量间关系。
医学论文中常用统计分析方法错误大全在医学研究领域,统计分析方法的正确应用对于得出科学、可靠的结论至关重要。
然而,在实际的医学论文中,我们常常能发现各种各样的统计分析方法错误,这些错误不仅影响了研究结果的准确性和可信度,还可能导致错误的临床决策。
下面,我们就来详细梳理一下医学论文中常见的统计分析方法错误。
一、样本量不足样本量的大小直接关系到研究结果的可靠性和普遍性。
如果样本量过小,可能无法准确反映总体的特征,导致统计效能不足,从而得出错误的结论。
例如,在比较两种治疗方法的疗效时,如果每组的样本量只有十几例,那么很可能因为偶然因素而得出错误的差异结论。
二、数据类型错误医学研究中数据类型多种多样,包括计量数据(如身高、体重、血压等)、计数数据(如治愈人数、死亡人数等)和等级数据(如病情的轻、中、重)。
如果对数据类型的判断错误,就会选择错误的统计分析方法。
例如,将本来应该是计数数据的治愈率当作计量数据进行 t 检验,这是不正确的。
三、忽视数据分布许多统计方法都有其适用的数据分布条件。
例如,t 检验和方差分析要求数据服从正态分布。
如果数据不服从正态分布而强行使用这些方法,就会得出错误的结果。
在这种情况下,应该先对数据进行正态性检验,如果不满足正态分布,可以考虑使用非参数检验方法,如秩和检验。
四、多重比较问题在医学研究中,常常需要进行多个组之间的比较。
如果不注意控制多重比较带来的误差,就会增加得出错误阳性结果的概率。
例如,在比较多个药物剂量组的疗效时,如果不进行适当的校正(如 Bonferroni 校正),就可能因为多次比较而错误地认为存在显著差异。
五、相关与回归分析的错误相关分析用于研究两个变量之间的线性关系,但不能得出因果关系。
在医学论文中,有时会错误地将相关关系解释为因果关系。
回归分析中,自变量的选择、模型的拟合度评估等方面也容易出现错误。
例如,没有考虑自变量之间的共线性问题,导致回归结果不准确。
六、生存分析的错误生存分析常用于研究疾病的发生、发展和预后。
医学科技论文常见统计学问题分析摘要:针对医学科技论文中常见统计学问题以及稿件退修和编辑加工过程中遇到的共性的统计学问题进行分析,并提出可能避免统计学方面错误的方法及建议,便于科研人员撰写论文时学习借鉴,也为医学期刊编辑处理类似稿件提供参考。
关键词:统计学;医学;科研;论文;问题1描述性分析时存在的统计学问题2统计分析方法不满足假设条件2.1不满足参数检验的数据采用了参数检验方法2.2不满足卡方检验条件的数据采用了卡方检验2.3不满足线性回归条件的数据采用了线性回归分析线性回归模型的前提条件包括线性、独立性、正态性和方差齐性。
其中,线性是指因变量的总体平均值与自变量呈线性关系。
可以通过绘制散点图判断回归关系是否成立[11]。
独立性是指任意2条记录互相独立。
正态性是指模型的误差项需服从正态分布(等价于当自变量某为定值时因变量Y也呈正态分布),而在样本量较大时可以忽略正态性要求。
方差齐性是指在自变量某的取值范围内,不论某取什么值,Y都具有相同的方差,等价于残差的方差齐性。
需要注意的是,线性、正态性和方差齐性通常通过绘制散点图或正态概率图等即可快速判断,但独立性往往容易被研究人员忽视,即纳入分析的研究对象不应有多条记录,如果有部分研究对象有多条记录,则应只保留一条记录,否则不能采用线性回归模型进行分析,只能改用混合效应模型进行分析。
同时,还需注意,如果是多因素回归分析,则上述线性、正态性和方差齐性的条件应在各变量和因变量之间均得以满足。
3结果阐释时存在的问题3.1受制于P值,未按常用界值对数据进行划分在进行多元回归分析之前,比较可取的是先进行单因素回归分析。
如某单因素为连续型变量,且已知其为结局变量的危险因素可能性较大,若将其直接纳入模型进行单因素回归分析,则可能发现其回归系数β无统计学意义(P>0.05),这时某些研究者可能会采用将连续型变量分类的方式以获得较好结果,可能为得到较小的P值而未采用常用的有意义界值进行划分,如在研究血压对某种慢性病的影响时,未按照临床定义的高血压界定值对血压值进行分类,而是以在数据分析时获得最小P值为目标取最佳截断值进行分析,这种方法会使结果产生较大偏倚。
医学论文常见统计学错误与纠正一、设计与实施1.对象合格标准不明确●只报告来源和时间段,总体不清晰:大杂烩,得不到科学结论;●事前未规定合格标准和排除标准,事后排除;●不报告按照合格标准和排除标准筛选对象的过程。
2.结局指标多而杂--是事先规定的最重要的结局指标,通常以此为准来计算样本量。
常见错误:终点指标过多, 大海捞针临床试验时,不知道哪个指标在组与组间有差异;“确定某个指标后,万一组间没有差异,岂不被动?!”生理、生化、组织学、基因,都做;“内容丰富,显得水平高?!”许多仪器一下子可以做许多项目;“许多项目一一分析,哪个有意义,就报告哪个指标?!”哪些指标可能有组间差异,必须心中有数。
假说:预计将要得到的结论——假说是科研的灵魂心中无数,不要“先上马再说”●指标多,实验工作量大。
大海捞针——碰运气,不是科研!●指标多,翻来覆去分析,制造假阳性!Nature杂志统计学指南:➢常见错误之一。
仅分析1个指标时,P(假阳性)=0.05,P(1次分析不犯错误)=0.95 λ,同时分析2个指标时,P(2次分析均不犯错误) = [P(1 次分析不犯错误)] 2 P(假阳性)=1 - 0.952 ≈ 0.10, 同时分析3 个指标时,P(假阳性)=1 - 0.953 ≈ 0.14 λ同时分析10个指标时,P(假阳性)=1 - 0.9510 ≈ 0. 40➢常见错误之一(Nature) ----多重比较不校正多重比较: 对一组数据作多项比较时,必须说明如何校正α水平,以避免增大第一类错误的机会---- Bonfferoni校正(α/k来校正,k为两两比较次数)3 不重视对照为何必需对照?●消除非研究因素的混杂实验组和对照组受非研究因素的影响尽可能相同,使两组的差异主要反映研究因素的效应。
●鉴别研究因素的效应和自然发展结果。
例如,研究某药物对口腔溃疡模型兔的疗效,口腔溃疡有自愈的倾向,必须有对照扣除自愈效应。
常见错误➢没有对照!千方百计省去对照组,以减少一半工作量!? ω自身前后对照/历史对照/文献对照/ “标准”对照➢对照不当ω对照太弱:安慰剂对照/对照过强:西药+加中药~西药/对照剂量有争议:试验药,大剂量~对照药,中小剂量/对照基线不可比:试验组年轻、病轻~ 对照组年老、病重应当如何?ω事先明确研究假说,例如,新药比常规药好:以常规药为对照ω设计:研究组新药~ 对照组常规药可比性:基线可比、过程可比、终点可比ω保证可比性措施:干预性研究: 随机化观察性研究:匹配4样本量无根据ω干预性研究:“ 500 例患者随机分成两组……” 为什麽500 例?不多不少?500 例从天而降?现成送上门来?ω观察性研究:“ 10年期间A组3000例,B组258例……” ---- 有多少用多少!?应当如何?---- 报告最小样本量估算及其依据1. 比较两组测定值的均数依据:(1)预计欲比较的两总体参数的差值δ(2)预计总体标准差σ(3)允许出现假阳性结果的机会α(4)允许出现假阴性结果的机会β :例:格列美脲、格列苯脲对比研究以HbA1c 为主要终点报告依据✓欲检出HbA1c临床差异≥0.65%✓假定标准差为1.3%✓双侧检验水平0.05✓功效80% ω✓退出率20% 计算:157例2. 比较两组达标率依据:(1)预计一组发生某结局的百分比为π1(2)预计另一组发生某结局的百分比为α(3)允许犯假阳性错误的机会β(4)允许犯假阴性错误的机会π2例:格列美脲、格列苯脲对比研究以HbA1c达标为主要终点(1)预计一组发生某结局的百分比为45%(2)预计另一组发生某结局的百分比为25%(3)允许犯假阳性错误的机会α= 5%(4)允许犯假阴性错误的机会β= 20% 计算: 176 例5. 随机化,说而不做,做而不严处理分配的随机化为什么这么重要?(1) 消除分配处理有意或无意的偏倚。
医学论文中常用统计分析方法错误大全在医学研究领域,准确合理地运用统计分析方法对于得出可靠的研究结论至关重要。
然而,在实际的医学论文中,却存在着各种各样的统计分析方法错误,这些错误可能会导致研究结果的偏差,甚至得出错误的结论。
下面,我们就来详细探讨一下医学论文中常见的统计分析方法错误。
一、数据类型判断错误数据类型的正确判断是选择合适统计分析方法的基础。
医学研究中常见的数据类型包括计量资料、计数资料和等级资料。
然而,很多研究者在数据类型判断上出现失误。
例如,将原本应该是计数资料的数据(如疾病的治愈、好转、无效等)当成计量资料进行分析,错误地使用了均值和标准差等统计指标,而应该使用频率和百分比等指标,并采用卡方检验等方法。
二、样本量计算不合理样本量的大小直接影响到研究结果的可靠性和准确性。
一些医学论文在研究设计阶段没有充分考虑样本量的计算,导致样本量过小或过大。
样本量过小,可能会使研究结果缺乏统计学意义,无法检测出真实存在的差异;样本量过大,则会造成资源的浪费,同时增加研究的难度和成本。
正确的样本量计算应该综合考虑研究的设计类型、预期效应大小、检验水准和检验效能等因素。
三、选择错误的统计方法这是医学论文中常见的错误之一。
例如,对于两组独立样本的均数比较,应该使用 t 检验,但如果两组数据的方差不齐,就需要使用校正的 t 检验或者非参数检验方法(如 Wilcoxon 秩和检验)。
然而,很多研究者在这种情况下仍然使用了普通的 t 检验,导致结果不准确。
再比如,对于多组均数的比较,如果方差分析结果有统计学意义,还需要进一步进行多重比较。
但有些研究在这一步没有进行恰当的多重比较方法选择,导致结论不够准确。
四、忽视数据的正态性检验在进行某些统计分析(如 t 检验、方差分析等)时,要求数据服从正态分布。
然而,很多研究者在使用这些方法之前,没有对数据进行正态性检验。
如果数据不服从正态分布,却仍然使用基于正态分布假设的统计方法,就会得出错误的结论。
医学论文中统计学处理常见问题及应对措施1存在问题1)统计软件名称和版本不全。
最常见的问题是作者只写统计软件名称而漏掉了统计软件版本。
2)统计数据描述含糊不清。
如笼统说“用-x±s 表示”,而不分定量资料或定性资料。
3)误用统计学方法并且统计方法描述不详细。
例如:对定量资料盲目套用t检验,多组均数比较没有采用方差分析和q检验;对定性资料,盲目套用χ2检验;非参数检验资料没有采用秩和检验或Ridit检验; 对回归分析没有结合专业知识和散点图选用合适的回归类型,而盲目套用简单直线回归分析;在逻辑上无明显相关的2个或2个以上指标检测结果勉强进行相关性分析等;对随访资料没有使用生存分析等。
另一个问题是统计学方法的描述不详细。
例如: 使用t检验,没有说明是完全随机设计资料的t检验, 还是配对设计资料的t检验;使用方差分析时,没有说明是完全随机设计资料的方差分析,还是随机区组设计资料的方差分析,或是巢式设计资料的方差分析;对于四格表资料,没有交代是一般四格表资料χ2检验, 还是四格表资料的校正的χ2检验。
4)假设检验结果的表达和解释中存在的问题。
假设检验的结果表达没有根据不同的统计分析方法, 给出相应的检验统计量的实际值及相应的值,如t检验的t值、方差分析的F值、卡方检验的χ2值、相关分析的相关系数及相应的r值等。
此外,统计结果的解释存在如下问题:假设检验是在“无效假设”正确(比如2种药物的疗效没有差异) 的前提下,用P值大小说明实际观察结果是否符合“无效假设”。
P值小(如P<0·05或P<0. 01)则怀疑“无效假设”的正确性,应得2种药物疗效的差异有统计学意义或差异有高度统计学意义的结论,而不应得差异显著或差异非常显著的结论;P值大(如P> 0·05),则不能拒绝“无效假设”,应得2种药物疗效的差异无统计学意义的结论,而不应得无差异的结论。
这是典型地把统计结论作为专业结论而犯的错误。