医学论文中常见的统计方法误用
- 格式:pdf
- 大小:227.37 KB
- 文档页数:3
医学论文常见统计学错误与纠正一、设计与实施1.对象合格标准不明确●只报告来源和时间段,总体不清晰:大杂烩,得不到科学结论;●事前未规定合格标准和排除标准,事后排除;●不报告按照合格标准和排除标准筛选对象的过程。
2.结局指标多而杂--是事先规定的最重要的结局指标,通常以此为准来计算样本量。
常见错误:终点指标过多, 大海捞针临床试验时,不知道哪个指标在组与组间有差异;“确定某个指标后,万一组间没有差异,岂不被动?!”生理、生化、组织学、基因,都做;“内容丰富,显得水平高?!”许多仪器一下子可以做许多项目;“许多项目一一分析,哪个有意义,就报告哪个指标?!”哪些指标可能有组间差异,必须心中有数。
假说:预计将要得到的结论——假说是科研的灵魂心中无数,不要“先上马再说”●指标多,实验工作量大。
大海捞针——碰运气,不是科研!●指标多,翻来覆去分析,制造假阳性!Nature杂志统计学指南:➢常见错误之一。
仅分析1个指标时,P(假阳性)=0.05,P(1次分析不犯错误)=0.95 λ,同时分析2个指标时,P(2次分析均不犯错误) = [P(1 次分析不犯错误)] 2 P(假阳性)=1 - 0.952 ≈ 0.10, 同时分析3 个指标时,P(假阳性)=1 - 0.953 ≈ 0.14 λ同时分析10个指标时,P(假阳性)=1 - 0.9510 ≈ 0. 40➢常见错误之一(Nature) ----多重比较不校正多重比较: 对一组数据作多项比较时,必须说明如何校正α水平,以避免增大第一类错误的机会---- Bonfferoni校正(α/k来校正,k为两两比较次数)3 不重视对照为何必需对照?●消除非研究因素的混杂实验组和对照组受非研究因素的影响尽可能相同,使两组的差异主要反映研究因素的效应。
●鉴别研究因素的效应和自然发展结果。
例如,研究某药物对口腔溃疡模型兔的疗效,口腔溃疡有自愈的倾向,必须有对照扣除自愈效应。
常见错误➢没有对照!千方百计省去对照组,以减少一半工作量!? ω自身前后对照/历史对照/文献对照/ “标准”对照➢对照不当ω对照太弱:安慰剂对照/对照过强:西药+加中药~西药/对照剂量有争议:试验药,大剂量~对照药,中小剂量/对照基线不可比:试验组年轻、病轻~ 对照组年老、病重应当如何?ω事先明确研究假说,例如,新药比常规药好:以常规药为对照ω设计:研究组新药~ 对照组常规药可比性:基线可比、过程可比、终点可比ω保证可比性措施:干预性研究: 随机化观察性研究:匹配4样本量无根据ω干预性研究:“ 500 例患者随机分成两组……” 为什麽500 例?不多不少?500 例从天而降?现成送上门来?ω观察性研究:“ 10年期间A组3000例,B组258例……” ---- 有多少用多少!?应当如何?---- 报告最小样本量估算及其依据1. 比较两组测定值的均数依据:(1)预计欲比较的两总体参数的差值δ(2)预计总体标准差σ(3)允许出现假阳性结果的机会α(4)允许出现假阴性结果的机会β :例:格列美脲、格列苯脲对比研究以HbA1c 为主要终点报告依据✓欲检出HbA1c临床差异≥0.65%✓假定标准差为1.3%✓双侧检验水平0.05✓功效80% ω✓退出率20% 计算:157例2. 比较两组达标率依据:(1)预计一组发生某结局的百分比为π1(2)预计另一组发生某结局的百分比为α(3)允许犯假阳性错误的机会β(4)允许犯假阴性错误的机会π2例:格列美脲、格列苯脲对比研究以HbA1c达标为主要终点(1)预计一组发生某结局的百分比为45%(2)预计另一组发生某结局的百分比为25%(3)允许犯假阳性错误的机会α= 5%(4)允许犯假阴性错误的机会β= 20% 计算: 176 例5. 随机化,说而不做,做而不严处理分配的随机化为什么这么重要?(1) 消除分配处理有意或无意的偏倚。
医学论文中常用统计分析方法错误大全在医学研究领域,统计分析方法的正确应用对于得出科学、可靠的结论至关重要。
然而,在实际的医学论文中,我们常常能发现各种各样的统计分析方法错误,这些错误不仅影响了研究结果的准确性和可信度,还可能导致错误的临床决策。
下面,我们就来详细梳理一下医学论文中常见的统计分析方法错误。
一、样本量不足样本量的大小直接关系到研究结果的可靠性和普遍性。
如果样本量过小,可能无法准确反映总体的特征,导致统计效能不足,从而得出错误的结论。
例如,在比较两种治疗方法的疗效时,如果每组的样本量只有十几例,那么很可能因为偶然因素而得出错误的差异结论。
二、数据类型错误医学研究中数据类型多种多样,包括计量数据(如身高、体重、血压等)、计数数据(如治愈人数、死亡人数等)和等级数据(如病情的轻、中、重)。
如果对数据类型的判断错误,就会选择错误的统计分析方法。
例如,将本来应该是计数数据的治愈率当作计量数据进行 t 检验,这是不正确的。
三、忽视数据分布许多统计方法都有其适用的数据分布条件。
例如,t 检验和方差分析要求数据服从正态分布。
如果数据不服从正态分布而强行使用这些方法,就会得出错误的结果。
在这种情况下,应该先对数据进行正态性检验,如果不满足正态分布,可以考虑使用非参数检验方法,如秩和检验。
四、多重比较问题在医学研究中,常常需要进行多个组之间的比较。
如果不注意控制多重比较带来的误差,就会增加得出错误阳性结果的概率。
例如,在比较多个药物剂量组的疗效时,如果不进行适当的校正(如 Bonferroni 校正),就可能因为多次比较而错误地认为存在显著差异。
五、相关与回归分析的错误相关分析用于研究两个变量之间的线性关系,但不能得出因果关系。
在医学论文中,有时会错误地将相关关系解释为因果关系。
回归分析中,自变量的选择、模型的拟合度评估等方面也容易出现错误。
例如,没有考虑自变量之间的共线性问题,导致回归结果不准确。
六、生存分析的错误生存分析常用于研究疾病的发生、发展和预后。
(精品收藏)医学论文中常见统计学概念误用分析医学统计学作为一种认识医学现象数量特征的重要工具,在医学研究的过程中起着非常重大的作用。
但国内外研究者通过调查发现,在现代医学期刊中,统计方法的运用及表述却存在着较多的问题[1,2]。
笔者在医学论文的编辑过程中,也发现有些作者对统计学中最常见、最基本的概念常混淆不清,因此其论文很难符合刊用的要求。
我们知道,概念是逻辑思维的基本要素,只有概念明确,才能准确地表达思想,才能对事物的本质进行客观的描述,才能作出正确的判断和推理,从而得出科学的结论。
为与作者共同提高论文质量,现对编辑工作中经常碰到的一些概念方面的误用问题,试图进行一些粗略的分析。
1概念混淆1.1以比代率比与率是临床医学研究中最常用的相对数指标。
比是表示某一事物或现象各组成部分之间或各个部分在全体中所占的比重或分布。
较常用的有构成比、相对比等。
而率是指某种现象或事件在一定条件下,其实际发生数与可能发生此现象或事件总数的比例。
临床医学论文中很多作者常把构成比当作率进行比较,造成对疾病的发生作出错误估计。
如在研究性别与其疾病发病率的关系文章中,作者把男女的构成比当作发病率,从而得出某种性别的发病率高的错误结论。
还有作者由于对构成比与率的概念不明确,造成计算错误。
如某农村卫生单位对7250名少儿进行粪检,检出蛔虫卵者4300人,需要进行治疗。
因各种原因,有900人未行治疗。
结果:已治率为79.07%,未治率为20.93%。
很明显,这是典型的以构成比代率的例子。
我们根据定义,可计算如下:出现这种错误的原因,是因为不能正确理解比与率的区别所致。
一般来说,率的分子源于分母,但分子、分母具有不同的事件属性,构成比虽然分子也源于分母,但分子、分母具有相同的事件属性。
1.2不同率混用在临床医学研究中,一些具有特殊性质的率很容易用错。
最常见的有发病率与患病率,死亡率与病死率。
发病率与患病率相混淆的原因主要是没有把握住观察、统计的时间。
医学科研中常见统计学误用及其防范对策陈佰锋;陈玉娟;朱玉;李杰;姚应水【摘要】The entire process of medical research requires statistical knowledge. The reasonable selection and application of statistic directly influent the quality of medical research. This paper concludes and analyzes common statistical misuse in medical research as follow 4 aspects: study design, statistic analysis, statistics expression and result interpretation. it is widely recognized that the proper use of statistics is a key element of research integrity. It puts forward relevant prevention measures, providing the reference frame for proper using statistic to medical researchers.%医学科研的整个过程都需要统计学知识,统计学的合理选择及应用直接影响到医学科研的质量。
文章分别从研究设计、统计分析、统计学表达、结果解释共4个方面对医学科研中常见的统计学误用进行了归纳分析,并提出了相应防范对策,为医学科研工作者正确使用统计学知识提供参考依据。
【期刊名称】《卫生软科学》【年(卷),期】2014(000)001【总页数】3页(P58-60)【关键词】医学科研;统计学方法;统计学表达;结果解释【作者】陈佰锋;陈玉娟;朱玉;李杰;姚应水【作者单位】皖南医学院,安徽芜湖 241002;皖南医学院,安徽芜湖 241002;皖南医学院,安徽芜湖 241002;皖南医学院,安徽芜湖 241002;皖南医学院,安徽芜湖 241002【正文语种】中文【中图分类】R195.1统计学作为一种强大的医学科研工具,广泛应用于国内外各种公开发行的医学期刊中,然而其应用水平往往不尽人意,大量的医学科研论文被指出存在统计学误用[1]。
医学论文中统计学处理常见问题及应对措施1存在问题1)统计软件名称和版本不全。
最常见的问题是作者只写统计软件名称而漏掉了统计软件版本。
2)统计数据描述含糊不清。
如笼统说“用-x±s 表示”,而不分定量资料或定性资料。
3)误用统计学方法并且统计方法描述不详细。
例如:对定量资料盲目套用t检验,多组均数比较没有采用方差分析和q检验;对定性资料,盲目套用χ2检验;非参数检验资料没有采用秩和检验或Ridit检验; 对回归分析没有结合专业知识和散点图选用合适的回归类型,而盲目套用简单直线回归分析;在逻辑上无明显相关的2个或2个以上指标检测结果勉强进行相关性分析等;对随访资料没有使用生存分析等。
另一个问题是统计学方法的描述不详细。
例如: 使用t检验,没有说明是完全随机设计资料的t检验, 还是配对设计资料的t检验;使用方差分析时,没有说明是完全随机设计资料的方差分析,还是随机区组设计资料的方差分析,或是巢式设计资料的方差分析;对于四格表资料,没有交代是一般四格表资料χ2检验, 还是四格表资料的校正的χ2检验。
4)假设检验结果的表达和解释中存在的问题。
假设检验的结果表达没有根据不同的统计分析方法, 给出相应的检验统计量的实际值及相应的值,如t检验的t值、方差分析的F值、卡方检验的χ2值、相关分析的相关系数及相应的r值等。
此外,统计结果的解释存在如下问题:假设检验是在“无效假设”正确(比如2种药物的疗效没有差异) 的前提下,用P值大小说明实际观察结果是否符合“无效假设”。
P值小(如P<0·05或P<0. 01)则怀疑“无效假设”的正确性,应得2种药物疗效的差异有统计学意义或差异有高度统计学意义的结论,而不应得差异显著或差异非常显著的结论;P值大(如P> 0·05),则不能拒绝“无效假设”,应得2种药物疗效的差异无统计学意义的结论,而不应得无差异的结论。
这是典型地把统计结论作为专业结论而犯的错误。
医学论文中常用统计分析方法错误大全在医学研究领域,准确合理地运用统计分析方法对于得出可靠的研究结论至关重要。
然而,在实际的医学论文中,却存在着各种各样的统计分析方法错误,这些错误可能会导致研究结果的偏差,甚至得出错误的结论。
下面,我们就来详细探讨一下医学论文中常见的统计分析方法错误。
一、数据类型判断错误数据类型的正确判断是选择合适统计分析方法的基础。
医学研究中常见的数据类型包括计量资料、计数资料和等级资料。
然而,很多研究者在数据类型判断上出现失误。
例如,将原本应该是计数资料的数据(如疾病的治愈、好转、无效等)当成计量资料进行分析,错误地使用了均值和标准差等统计指标,而应该使用频率和百分比等指标,并采用卡方检验等方法。
二、样本量计算不合理样本量的大小直接影响到研究结果的可靠性和准确性。
一些医学论文在研究设计阶段没有充分考虑样本量的计算,导致样本量过小或过大。
样本量过小,可能会使研究结果缺乏统计学意义,无法检测出真实存在的差异;样本量过大,则会造成资源的浪费,同时增加研究的难度和成本。
正确的样本量计算应该综合考虑研究的设计类型、预期效应大小、检验水准和检验效能等因素。
三、选择错误的统计方法这是医学论文中常见的错误之一。
例如,对于两组独立样本的均数比较,应该使用 t 检验,但如果两组数据的方差不齐,就需要使用校正的 t 检验或者非参数检验方法(如 Wilcoxon 秩和检验)。
然而,很多研究者在这种情况下仍然使用了普通的 t 检验,导致结果不准确。
再比如,对于多组均数的比较,如果方差分析结果有统计学意义,还需要进一步进行多重比较。
但有些研究在这一步没有进行恰当的多重比较方法选择,导致结论不够准确。
四、忽视数据的正态性检验在进行某些统计分析(如 t 检验、方差分析等)时,要求数据服从正态分布。
然而,很多研究者在使用这些方法之前,没有对数据进行正态性检验。
如果数据不服从正态分布,却仍然使用基于正态分布假设的统计方法,就会得出错误的结论。