华南理工 高等数学B(下) 微分学作业
- 格式:doc
- 大小:388.00 KB
- 文档页数:5
答案整理6.1:√√ D √ D6.2:√ D B B DA B A D C6.3: D6.4:√√√6.5: B C C7.1: A C7.2: D D7.3:√×√ C8.1: D D B D8.2: B A B C BA A ×√√√8.3: A B √√×× D8.4: C D B D8.5: C A8.6:×√ D B A9.1:×√√√××× × C9.2: C A D A CB C C B DB ACD B√√ B9.3: C A9.4: A B9.5: A D9.6: B C9.7: D D C10.1:√× A B10.2:B ×√10.3:B D10.4:×√×√√B第6章常微分方程6.1常微分方程的基本概念1.(判断题)参考答案:√2.(判断题)参考答案:√3.(单选题)参考答案:D4.(判断题)参考答案:√5.(单选题)参考答案:D6.2一阶微分方程1.(判断题)参考答案:√2.(单选题)参考答案:D3.(单选题)参考答案:B4.(单选题) 参考答案:B5.(单选题) 参考答案:D6.(单选题) 参考答案:A7.(单选题) 参考答案:B8.(单选题) 参考答案:A9.(单选题) 参考答案:D10.(单选题)参考答案:C6.3 可降阶的二阶微分方程1.(单选题)参考答案:D6.4 二阶线性微分方程解的结构1.(判断题)参考答案:√2.(判断题)参考答案:√3.(判断题)参考答案:√6.5 二阶常系数线性微分方程的求解1.(单选题)参考答案:B2.(单选题)参考答案:C3.(单选题)参考答案:C第7章向量代数与空间解析几何7.1向量及其线性运算1.(单选题)参考答案:A2.(单选题)参考答案:C7.2空间的平面与直线1.(单选题)参考答案:D2.(单选题)参考答案:D7.3 常见的空间曲面1.(判断题)参考答案:√2.(判断题)参考答案:×3.(判断题)参考答案:√4.(单选题)参考答案:C第8章多元函数微分学8.1多元函数的基本概念。
前半部分作业题,后半部分为作业答案各科随堂练习、平时作业(yaoyao9894) 《高等数学B(下) 》练习题2020年3月一、判断题1、就是二阶微分方程、2、 (1)若就是二阶线性齐次方程得两个特解,则就是该方程得通解、(2)若就是二阶线性齐次方程得两个线性无关得特解,即则就是该方程得通解、3、 (1)若两个向量垂直,则(2)若两个向量垂直,则(3)若两个向量平行,则(4)若两个向量平行,则4、 (1)若函数在点全微分存在,则在点偏导数也存在、(2)若函数在点偏导数存在,则在点全微分也存在、5、 (1)设连续函数,则二重积分表示以曲面为顶、以区域为底得曲顶柱体得体积、 (2)二重积分表示以曲面为顶、以区域为底得曲顶柱体得体积、6、 (1)若在处取得极大值,且在点偏导数存在,则就是函数得驻点、(2)若在处取得极大值,则就是函数得驻点、7、 (1)若,则数项级数收敛、(2)若数项级数收敛,则、8、 (1)若级数收敛,则级数也收敛、(2)若级数收敛,则级数也收敛、9、 (1)调与级数发散、(2)级数收敛、10、 (1)若区域关于轴对称,函数关于就是偶函数,则(2)若区域关于轴对称,函数关于就是奇函数,则二、填空题(考试为选择题)1、一阶微分方程得类型就是______________________________、2、已知平面与__________、3、函数定义域为__________、4、在处得两个偏导数为__________、5、 z z a Ω==若是由圆锥面所围成的闭区域,则三重积分化为柱面坐标系下得三次积分为 __________、 6、 等比级数得敛散性为__________、 三、解答题1、 求微分方程得通解、2、 123(2,1,4),(1,3,2),(0,2,3).M M M ---求经过三点的平面方程3、 若,其中求z 得两个偏导数、4、 求椭球面在点处得切平面方程与法线方程、5、 21x y z Ω++=若是由平面与三个坐标面所围成的闭区域,计算三重积分以下为答案部分《 高等数学B(下) 》练习题2020年3月一、判断题1、 就是二阶微分方程、 (×)2、 (1)若就是二阶线性齐次方程得两个特解,则就是该方程得通解、(×)(2)若就是二阶线性齐次方程得两个线性无关得特解,即则就是该方程得通解、(√)3、 (1)若两个向量垂直,则(×)(2)若两个向量垂直,则(√) (3)若两个向量平行,则(√) (4)若两个向量平行,则(×)4. (1)若函数在点全微分存在,则在点偏导数也存在、(√)(2)若函数在点偏导数存在,则在点全微分也存在、(×) 5、 (1)设连续函数,则二重积分表示以曲面为顶、以区域为底得曲顶柱体得体积、(√)(2)二重积分表示以曲面为顶、以区域为底得曲顶柱体得体积、(×)6、 (1)若在处取得极大值,且在点偏导数存在,则就是函数得驻点、(√)(2)若在处取得极大值,则就是函数得驻点、(×)7、 (1)若,则数项级数收敛、(×)(2)若数项级数收敛,则、(√)8、 (1)若级数收敛,则级数也收敛、(√)(2)若级数收敛,则级数也收敛、(×)9、 (1)调与级数发散、(√)(2)级数收敛、(√)10、 (1)若区域关于轴对称,函数关于就是偶函数,则(×)(2)若区域关于轴对称,函数关于就是奇函数,则(√)二、填空题(考试为选择题)1、一阶微分方程得类型就是可分离变量2、已知平面与__________、3、函数定义域为__________、4、在处得两个偏导数为__________、5、22若是由圆锥面与平面所围成的闭区域,则三重积分Ω=+=z x y z a化为柱面坐标系下得三次积分为__________、6、 等比级数得敛散性为__________、 三、解答题1、 求微分方程得通解、2. 123(2,1,4),(1,3,2),(0,2,3).M M M ---求经过三点的平面方程3. 若,其中求z 得两个偏导数、4. 求椭球面在点处得切平面方程与法线方程、5、21x y z Ω++=若是由平面与三个坐标面所围成的闭区域,计算三重积分( 密封线内不答题( 密封线内不答题)。
第七章 多元函数微分学作业1 多元函数1.填空题(1)已知函数22,y f x y x y x ⎛⎫+=- ⎪⎝⎭,则(),f x y =()()22211x y y -+; (2)49arcsin2222-+++=y x y x z 的定义域是(){}22,49x y x y ≤+≤; (3))]ln(ln[x y x z -=的定义域是(){}(){},,0,1,0,1x y x y x x y x x y x >>+⋃<<≤+;(4)函数⎪⎩⎪⎨⎧=≠=0,0,sin ),(x y x x xyy x f 的连续范围是 全平面 ;(5)函数2222y x z y x+=-在22y x =处间断.2.求下列极限(1)00x y →→;解:000016x t t y →→→→===-(2)22()lim (ex y x y x y -+→+∞→+∞+).解:3y x =22()2()lim (e lim (e 2x y x y x y x x y y x y x y xe ye -+-+--→+∞→+∞→+∞→+∞⎡⎤+=+-⎣⎦)) 由于1lim e lim lim 0tt t t t t t t e e-→+∞→+∞→+∞===,2222lim e lim lim lim 0tt t t t t t t t t t e e e -→+∞→+∞→+∞→+∞====,故22()2()lim (elim (e 20x y x y x yx x y y x y x y xe ye -+-+--→+∞→+∞→+∞→+∞⎡⎤+=+-=⎣⎦)) 3.讨论极限26300lim y x yx y x +→→是否存在.解:沿着曲线()()3,,0,0y kx x y =→,有336626262000lim lim 1x x y kx x y kx kx y x k x k →→=→==+++因k 而异,从而极限26300lim y x yx y x +→→不存在4.证明⎪⎩⎪⎨⎧=+≠++=0,00,2),(222222y x y x y x xyy x f 在点)0,0(分别对于每个自变量x 或y都连续,但作为二元函数在点)0,0(却不连续.解:由于(,0)0,(0,)0,f x f y ≡≡从而可知在点)0,0(分别对于每个自变量x 或y 都连续,但沿着曲线()(),,0,0y kx x y =→,有2222222000222lim lim 1x x y kx xy kx kx y x k x k →→=→==+++因k 而异, 从而极限()0lim ,x y f x y →→不存在,故作为二元函数在点)0,0(却不连续.作业2 偏导数1.填空题(1)设22),(y x y x y x f +-+=,则=)4,3(x f 25; (2)(3)设(),ln 2y f x y x x ⎛⎫=+⎪⎝⎭,则1x y f y==∂=∂12; (3)设2sin x u xz y =+,则42ux y z∂=∂∂∂ 0 ;(4)曲线22:44x y z y ⎧+=⎪Γ⎨⎪=⎩在点()2,4,5处的切线与Ox 轴正向的倾角是4π. 2.设2e xyu =, 证明 02=∂∂+∂∂yu y x u x. 证:因为222312,xxy yu ux e e x y y y∂∂-==∂∂ 所以222223221222220x x x xy y y y u u x x x x y xe ye e e x y y y y y ∂∂--+=+=+=∂∂3. 设xyz ln =,求22x z ∂∂,yx z∂∂∂2.解:ln ln x yz e⋅=,从而222ln ln ln ln ln ln ln 222ln ln ln ln ln ,,x y x y x y x z y z y y y y e e e y x x x x x x ⋅⋅⋅∂∂--⎛⎫=⋅=⋅+⋅= ⎪∂∂⎝⎭2ln ln ln ln ln ln ln 11ln ln 1x y x y x z y x y x e e y x y x y x y xy⋅⋅∂⋅+=⋅⋅+⋅⋅=∂∂4.设y x z u arctan =, 证明 0222222=∂∂+∂∂+∂∂zuy u x u . 解:因为()()2222222222211022,1uyz u yz x xyzz xy x y x x x y x y y ∂∂-⋅-=⋅⋅===∂+∂⎛⎫+++ ⎪⎝⎭()()2222222222221022,1u x xz u xz y xyzz yy x y y x x y x y y ∂--∂-⋅=⋅⋅==-=∂+∂⎛⎫+++ ⎪⎝⎭22arctan ,0,u x uz y x∂∂==∂∂ 所以()()2222222222222200u u u xyz xyzx y z x y x y ∂∂∂-++=++=∂∂∂++ 5.设函数()()2221sin ,0,0,x x y x f x y xx ⎧+≠⎪=⎨⎪=⎩.(1)试求(),f x y 的偏导函数; 解:当()()()3222221110,,42sin cos x x f x y x xyx x y xx x-≠=+++⋅()21,2sin y f x y x y x =,()()()322211,42sin cos x f x y x xy x y x x=+-+当()()()()222001sin 0,0,0,0,lim lim 00x x x x x y f x y f y x x f y x x→→+--≠===-()()()000,0,000,lim lim 0y y y f y y f y f y y y ∆→→+∆--===∆-∆,()()()322211,42sin cos x f x y x xy x y x x=+-+(2)考察偏导函数在()0,3点处是否连续.()()200331lim ,lim 2sin00,3y y x x y y f x y x y f x→→→→===,故(),y f x y 在()0,3点处连续, ()()()3222003311lim ,lim 42sin cos x x x y y f x y x xy x y x x →→→→⎡⎤=+-+⎢⎥⎣⎦不存在,从而(),x f x y 在()0,3点处不连续作业3 全微分及其应用1.填空题(1)),(y x f z =在点),(00y x 处偏导数存在是),(y x f z =在该点可微的必要 条件;(2)函数23z x y =在点()2,1-处,当0.02,0.01x y ∆=∆=-时有全增量z ∆=0.2040402004-,全微分d z =0.20-;(3)设),(y x f z =在点),(00y x 处的全增量为z ∆,全微分为dz ,则),(y x f 在点),(00y x 处的全增量与全微分的关系式是()z dz o dz ∆=+;(4)22yx x u +=在点)1,0(处的d u =dx ;(5)xy u cos )(ln =,则d u =cos cos (ln )ln ln sin ln x x y y xdx dy y y ⎡⎤-⋅+⎢⎥⎣⎦; (6)zyx u )(=,则d u =()ln zx z z x dx dy dz y x y y ⎛⎫-+⎪⎝⎭;(7)2221zy x u ++=,则d u = ()()3222212x y z -++ .2.证明:(),f x y =在点()0,0处连续,()0,0x f 与()0,0y f 存在,但在()0,0处不可微.证:由于(0,)0,(,0)0,f y f x ==从而(0,0)0,(0,0)0.y x f f ==但是limlimx x y y ∆→∆→∆→∆→=不存在,从而在()0,0处不可微.3.设函数()()222222221sin ,0,0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩试证:(1)函数(),f x y 在点()0,0处是可微的;证:因为 ()()()()22001sin0,00,00,0limlim 0,0,000x y x x x f x f x f f x x →→--====-- 又()()()()()22221sinlimlim0x x y y x y x y ∆→∆→∆→∆→∆+∆∆+∆==所以函数(),f x y 在点()0,0处是可微的(2)函数(),x f x y 在点()0,0处不连续.证:当()222222221210,,2sincos x x x y f x y x x y x y x y+≠=-+++ ()2222220000121lim ,lim 2sin cos x x x y y x f x y x x y x y x y ∆→∆→∆→∆→⎛⎫=- ⎪+++⎝⎭不存在, 故(),x f x y 在点()0,0处不连续作业4 多元复合函数的求导法则1.填空题(1)设2ln ,,32yz u v u v y x x===-,则 z x ∂=∂()()223222ln 3232y y y x x x y x ----; (2)设22,cos ,sin z x y xy x u v y u v =-==,则zv∂=∂()333sin cos sin 2sin sin 2cos u v v v v v v +--; (3)设()22,zu x y z x y =-=+,则u x ∂=∂()()222ln z x y x y x x y x y ⎡⎤+--+⎢⎥-⎣⎦;(4)设2sin z x y x ==,则dd zx =2x . 2.求下列函数的偏导数(1)设,,x y u f y z ⎛⎫=⎪⎝⎭其中f 具有一阶连续偏导数,求,u x ∂∂u y ∂∂和uz ∂∂; 解:111,f u f x y y ∂=⋅=∂121222222211,u x x u y yf f f f f f y y z y z z z z∂--∂--=⋅+⋅=+=⋅=∂∂ (2)设(),,,u f x y z =()(),,,z y t t y x ϕψ==,其中,,f ϕψ均可微,求u x ∂∂和uy∂∂. 解:因为1231212,,du f dx f dy f dz dz dy dt dt dy dx ϕϕψψ=++=+=+ 从而()1231212du f dx f dy f dy dy dx ϕϕψψ=++++⎡⎤⎣⎦()()1322231321f f dx f f f ϕψϕϕψ=+++++所以1322231321,u u f f f f f x yϕψϕϕψ∂∂=+=++∂∂ 3.验证下列各式(1)设()22yz f x y =-,其中()f u 可微,则211z z z x x y y y ∂∂+=∂∂; 证:因为222212,z xyf z y f x f y f f ''∂-∂==+∂∂ 所以222211121121z z z xyf y f zx x y y x x f y f f yf y ''⎛⎫∂∂∂-+=++== ⎪∂∂∂⎝⎭ (2)设()23y z xy x ϕ=+,其中ϕ可微,则220z zx xy y x y ∂∂-+=∂∂. 证:因为()()222,33z y z y y xy x xy x x y xϕϕ∂∂''=-+=+∂∂ 所以22z z x xy y x y ∂∂-+=∂∂()()2222233y y x y xy xy x xy y x x ϕϕ⎛⎫⎛⎫''-+-++ ⎪ ⎪⎝⎭⎝⎭()()22222033y y x y xy y x y xy y ϕϕ''=-+--+=4.设22,,y z xf x x ⎛⎫= ⎪⎝⎭其中函数f 具有二阶连续偏导数,求2z x y ∂∂∂. 解:因为221212222,z y y f x f f f xf f x x x ⎛⎫∂-=++⋅=+- ⎪∂⎝⎭所以22212212222222222z y y y y y y f xf f f xf f f x y y x x x x x x⎡⎤∂∂=+-=+⋅--⋅⎢⎥∂∂∂⎣⎦ 31222224y yf f x=-4.设)()(xy x x y u ψϕ+=其中函数ψϕ,具有二阶连续偏导数,试证:022222222=∂∂+∂∂∂+∂∂y u y y x u xy x u x . 证:因为222223432,u y y u y y y x x x x x x x ϕψψϕϕψ∂-∂'''''''=+-=++∂∂222322211,,u y y u u x y x x x y x y x xϕψϕϕψϕψ''''∂∂∂'''''''=---=+=+∂∂∂∂ 从而左边222234323222120y y y y y x xy y x x x x x x x x ϕψϕϕψϕϕψ''''⎛⎫⎛⎫⎛⎫''''''''''=+++---++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭作业5 隐函数求导法1.填空题(1)已知3330x y xy +-=,则d d y x =22x yx y--; (2)已知20x y z ++-=,则x y ∂=∂(3)已知xzz y =,则d z =2ln ln z dy yz zdxxy yz y--;(4)已知222cos cos cos 1x y z ++=,则d z =sin 2sin 2sin 2xdx ydyz+-;(5)已知(),z f xz z y =-,其中f 具有一阶连续偏导数,则d z =12121zf dx f dyxf f ---.2.设(),0,F y z xy yz ++=其中F 具有二阶连续偏导数,求22zx∂∂.解:212120,yF z z z F F y y x x x F yF -∂∂∂⎛⎫+⋅+=⇒= ⎪∂∂∂+⎝⎭ ()()[]()22122122122221212x x x F z F y yz F yF F F yF F z y y x x F yF F yF '⋅+++-+⎡⎤⎛⎫∂∂⎣⎦=-=- ⎪∂∂++⎝⎭()()()()()2222112111222212221231212y F F F yF F F yF y F F F F F yF F yF -+++⎡⎤-⎣⎦=+++3.求由方程组222222320z x yx y z ⎧=+⎪⎨++=⎪⎩所确定的()y x 及()z x 的导数d d y x 及d d z x .解:由已知()2222222602460dz xdx ydydz xdx ydy xdx dz xdx zdz xdx ydy zdz -=⎧=+⎧⎪⇒⎨⎨+-+=++=⎪⎩⎩()()22606,132623220xdx z dz dz x dy x xy dx z dx y yz xdx ydy z xdx ydy -++=⎧+⎪⇒⇒==-⎨+++++=⎪⎩4.设函数()z f u =,又方程()()d xy u u P t t ϕ=+⎰确定u 是,x y 的函数,其中()f u 与()u ϕ均可微;()(),P t u ϕ'连续,且()1u ϕ'≠. 试证:()()0z zP y P x x y∂∂+=∂∂. 证:因为()(),z u z uf u f u x x y y∂∂∂∂''=⋅=⋅∂∂∂∂, ()()()(),1P x u u uu P x x x x u ϕϕ∂∂∂'=⋅+='∂∂∂- ()()()(),1P y u u uu P y y y y u ϕϕ-∂∂∂'=⋅-='∂∂∂- ()()()()()()()()()()011P x P y z zP y P x P y f u P x f u x y u u ϕϕ-∂∂''+=+=''∂∂-- 5.设函数()f u 具有二阶连续偏导数,而()e sin xz f y =满足方程22222e xz z z x y∂∂+=∂∂,求()f u . 解:因为()()()()222sin ,sin sin x xx z z f u e y f u e y f u e y x x∂∂''''==+∂∂ ()()()()222cos ,cos (sin )x x x z z f u e y f u e y f u e y y y∂∂''''==+-∂∂()()222222()e ,()0x x z zf u e f u f u f u x y∂∂''''+==⇒-=∂∂ 特征方程为()2121210,1,1,u u r r r f u c e c e --===-=+作业6 方向导数与梯度1.填空题(1)在梯度向量的方向上,函数的变化率 最大 ; (2)函数在给定点的方向导数的最大值就是梯度的 模 ; (3)函数2249z x y =+在点()2,1的梯度为grad z ={16,18};(4)函数xyz u =在点)1,1,1(处沿方向}cos ,cos ,{cos γβα=l的方向导数是cos cos cos αβγ++,且函数u 在该点的梯度是{1,1,1};(5)函数e cos()xu yz =在点)0,0,0(处沿方向}2,1,2{-=l的方向导数是23; (6)函数)ln(22z y x u ++=在点)1,0,1(A 处沿A 指向点)2,2,3(-B 方向的方向导数是12. 2.求222z y x u -+=在点)0,0,(a A 及点)0,,0(a B 处的梯度间的夹角.解:{}2,2,2{2,0,0}AAgradux y z a =-={}2,2,2{0,2,0}B Bgradu x y z a =-=夹角余弦为cos 02A B A Bgradu gradu gradu gradu πϕϕ⋅==⇒=⋅3.求二元函数22z x xy y =-+在点()1,1-沿方向{}2,1l =的方向导数及梯度,并指出z 在该点沿那个方向减少得最快沿那个方向z 的值不变 解:(){}(){}1,11,12,23,3gradz x y y x --=--=-25l ⎧=⎨⎩,{3,3}5zl ∂=-⋅=-∂z 在该点沿梯度相反方向,即方向减少得最快;沿与梯度垂直的那个方向,即±方向z 的值不变 4.设x轴正向到l 得转角为α,求函数()22220,0,x y f x y x y +>=+=⎩在点()0,0处沿着方向l 的方向导数.解:{}cos ,sin ,cos l αααα===由于该函数在点()0,0处不可微,从而不能用公式,只能由定义得出沿着方向l 的方向导数:()()00,0,0lim x y f x y f fl ρρρ→→→→-∂===∂1cos sin sin 22ααα==作业7 偏导数的几何应用1.填空题(1)已知曲面224z x y =--上点P 的切平面平行于平面221x y z ++=,则点P的坐标是(1,1,2);(2)曲面e 23zz xy -+=在点()1,2,0处的切平面方程是24x y +=;(3)由曲线223212x y z ⎧+=⎨=⎩绕y轴旋转一周所得到的旋转曲面在点(M处的指向内侧的单位法向量为0,⎧⎪⎨⎪⎩; (4)曲面2222321x y z ++=在点()1,2,2-处的法线方程是122146x y y -+-==-; (5)已知曲线23,,x t y t z t ===上点P 的切线平行于平面24x y z ++=,则点P的坐标是()1,1,1--或111,,3927⎛⎫--⎪⎝⎭. 2.求曲线22sin ,sin cos ,cos x t y t t z t ===在对应于的点π4t =处的切线和法平面方程.解:切点为{}224111,,,2sin cos ,cos sin ,2cos sin {1,0,1}222T t t t t t tπ⎛⎫=--=- ⎪⎝⎭,从而切线为11110222,11012x z x y z y +-=⎧---⎪==⎨-=⎪⎩, 法平面为110,022x z x z ⎛⎫---=-= ⎪⎝⎭3.求两个圆柱面的交线22221:1x y x z ⎧+=⎪Γ⎨+=⎪⎩在点M 处的切线和法平面的方程.解:1{2,2,0}|//{1,1,0}M n x y =,2{2,0,2}|//{1,0,1}M n x z ={}{}1,1,01,0,1{1,1,1}T =⨯=--==,法平面为0x y z --+= 4.求曲面()22210ax by cz abc ++=≠在点()000,,x y z 处的切平面及法线的方程. 解:000000{2,2,2}//{,,}n ax by cz ax by cz =切平面为0001ax x by y cz z ++=,法线为000000x x y y z z ax by cz ---== 5.求函数22221x y z a b ⎛⎫=-+ ⎪⎝⎭在点M 处沿曲线22221x y a b +=在此点的外法线方向的方向导数.解:2222,,MM x y gradza b a b ⎧⎪⎧⎫=--=--⎨⎬⎨⎩⎭⎪⎪⎩⎭2222,M x y n a b a b ⎧⎫==⎨⎬⎩⎭⎪⎪⎩⎭指向外侧为此点的外法线方向,方向导数为(2a z n gradz n n∂=⋅=-∂6.证明:曲面y z xf x ⎛⎫=⎪⎝⎭在任意点处的切平面都通过原点,其中f 具有连续导数. 证:设切点为()000,,x y z ,则000000000000,,1,y y y y y n f f f z x f x x x x x ⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪''=--=⎨⎬⎪ ⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩⎭ 切平面为()()()000000000000y y y y f f x x f y y z z x x x x ⎡⎤⎛⎫⎛⎫⎛⎫''--+---=⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦令0x y z ===,得左边等于右边,从而原点在任意点处的切平面上,也即任意点处的切平面都通过原点。
1、试将三重积分(),,f x y z dv Ω⎰⎰⎰化为三次积分,其中积分区域Ω分别为:1) 由双曲抛物面xy z =及平面10,0x y z +-==所围成的区域。
(),,f x y z dv Ω=⎰⎰⎰()110,,xxydx dy f x y z dz-⎰⎰⎰。
2) 由曲面2222,2z x y z x =+=-所围成的区域(),,f x y z dv Ω=⎰⎰⎰()2221212,,x x y dx f x y z dz --+⎰⎰。
2、计算下列三重积分 1)23xy z dv Ω⎰⎰⎰,其中Ω是由曲面xy z =与平面,1,0x y x z ===所围成的闭区域。
解:原式111235612000000111428364x xy xdx dy xy z dz dx x y dy x dx ====⎰⎰⎰⎰⎰⎰ 2)xzdxdydz Ω⎰⎰⎰,其中Ω是由平面,1,0z y y z ===及抛物柱面2y x =所围成的闭区域。
解:原式()221111127101111026yx x dx dy xzdz dx xy dy x x dx ---===-=⎰⎰⎰⎰⎰⎰ 3、利用柱面坐标计算()22x y dv Ω+⎰⎰⎰,其中Ω是由曲面222x y z +=及平面2z =所围成的区域。
解:原式22546222233000201622222123r r r r d dr r dz r dr πθπππ⎛⎫⎡⎤==-=-= ⎪⎢⎥⎝⎭⎣⎦⎰⎰⎰⎰4、利用球面坐标计算()222xy z dv Ω++⎰⎰⎰,其中Ω是由球面2221x y z ++=所围成的闭区域。
解:原式214024sin sin 55d d d d πππππθϕρϕρϕϕ===⎰⎰⎰⎰5、选用适当坐标计算Ω,其中Ω是由球面222x y z z ++=所围成区域。
解:原式522cos 3422001cos sin 2cos sin 42510d d d d ππππϕπϕπθϕρϕρπϕϕϕ⎡⎤===-=⎢⎥⎣⎦⎰⎰⎰⎰。
华南理工大学-高等数学B下随堂练习参考答案————————————————————————————————作者:————————————————————————————————日期:华南理工大学网络教育平台-*高等数学B(下)-随堂练习参考答案2013-4-101.函数定义域为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:2.函数定义域为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:3.函数定义域为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:4.函数定义域为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:5.,则的定义域为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:6.下列函数为同一函数的是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:7.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:8.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:9.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:10.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:11.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:12.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:13.(A)(B)0 (C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:14.(A)(B)0 (C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:15.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:16.(A)(B)(C) 0 (D)答题: A. B. C. D. (已提交)参考答案:B问题解析:17.(A)(B)(C) 0 (D)答题: A. B. C. D. (已提交)参考答案:A问题解析:18.(A)(B)(C) 0 (D)答题: A. B. C. D. (已提交)参考答案:B问题解析:19.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:20.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析21., 则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:22., 则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:23.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:24.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:25.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:26.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:27.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:28.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:29.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:30.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:31.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:32.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:33.若则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:34.若则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:35.若,则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:36.若,则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:37.若,则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:38.若,则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:39.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:40.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:41.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:42.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:43.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:44.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:45.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:46.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:47.设函数在点的偏导数存在,则在点()(A)连续(B)可微(C)偏导数连续(D)以上结论都不对答题: A. B. C. D. (已提交)参考答案:D问题解析:48.设函数在点处可导(指偏导数存在)与可微的关系是()(A)可导必可微(B)可微必可导(C)两者等价(D)以上结论都不对答题: A. B. C. D. (已提交)参考答案:B问题解析:49.设, 则既是的驻点,也是的极小值点.答题:对. 错. (已提交)参考答案:对问题解析:50.函数的驻点()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:51.函数是()(A)非驻点(B)驻点但不是极值点(C)驻点且是极大值点(D)驻点且是极小值点答题: A. B. C. D. (已提交)参考答案:D问题解析:52.设二元函数则必有()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:53.若()(A) 0 (B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:54.设且三个积分区域之间有关系,则有()答题: A. B. C. D. (已提交)参考答案:A问题解析:55.若()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:56.若,其中,则()答题: A. B. C. D. (已提交)参考答案:B问题解析:57.若()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:58.若()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:59.若()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:60.()(A)(B) 2 (C) 4 (D)答题: A. B. C. D. (已提交)参考答案:B问题解析:61.()(A) 1 (B) -1 (C) 2 (D)-2答题: A. B. C. D. (已提交)参考答案:C问题解析:62.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:63.等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:64.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:65.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:66.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C67.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:68.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:69.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:70.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:71.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:72.设()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:73.设()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:74.设()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:75.设()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:76.应等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:77.应等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:78.()(A)( B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:79.等于()(A)(B)(C)(D)参考答案:A问题解析:80.等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:81.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:82.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:83.交换二次积分等于()(A)(B)(C)(D)参考答案:C问题解析:84.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:85.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:86.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:87.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:88.()(A)5 (B)4 (C)3 (D)2答题: A. B. C. D. (已提交)参考答案:D问题解析:89.下列方程为二阶方程的是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:90.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:91.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)问题解析:92.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:93.下列属变量可分离的微分方程的是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:94.下列微分方程中不是线性微分方程是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:95.下列微分方程中属于一阶线性微分方程是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:96.下列方程为一阶线性方程的是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)问题解析:97.方程()(A)变量可分离方程(B)齐次方程(C)一阶线性方程(D)不属于以上三类方程答题: A. B. C. D. (已提交)参考答案:C问题解析:98.方程是()(A)一阶线性方程(B)齐次方程(C)变量可分离方程(D)不属于以上三类方程答题: A. B. C. D. (已提交)参考答案:A问题解析:99.下列微分方程中属于一阶齐次方程的是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:100.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:101.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)问题解析:102.微分方程的通解为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:103.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:104.( )(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:105.为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:106.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)问题解析:107.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:108.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:109.微分方程的通解是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:110.微分方程的特解是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:111.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:112.微分方程的通解为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:113.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:114.的特解是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:115.的通解是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:116.的通解为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:117.的特解为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:118.则下列求偏导数的四个步骤中计算正确的有()答题: A. B. C. D. >> (已提交)参考答案:ABCD119.,则下列求全微分的四个步骤中计算正确的有()答题: A. B. C. D. >> (已提交)参考答案:AB问题解析:120.已知,则下列求全微分的四个步骤中计算正确的有()答题: A. B. C. D. >> (已提交)参考答案:ABC问题解析:121.所确定,其中具有连续的偏导数.试证明:则下面证明过程正确的步骤有()(A)第一步:设,则(B)第二步:(C)第三步:(D)第四步:答题: A. B. C. D. >> (已提交)参考答案:ABCD问题解析:122.,则下列计算正确的步骤有()答题: A. B. C. D. >> (已提交)参考答案:ABC问题解析:123.,则下列计算正确的步骤有()答题: A. B. C. D. >> (已提交)参考答案:ABCD问题解析:124.,则下列计算正确的步骤有()答题: A. B. C. D. >> (已提交)参考答案:ACD问题解析:125.设则计算正确的步骤有()答题: A. B. C. D. >> (已提交)参考答案:AB126.()答题: A. B. C. D. >> (已提交)参考答案:ACD问题解析:127.计算正确的步骤有()答题: A. B. C. D. >> (已提交)参考答案:ABCD问题解析:128.()答题: A. B. C. D. >> (已提交)参考答案:ABCD问题解析:129.答题: A. B. C. D. >> (已提交)参考答案:ABC问题解析:130.已知下列步骤正确的有()答题: A. B. C. D. >> (已提交)参考答案:ABC问题解析:131.()答题: A. B. C. D. >> (已提交)参考答案:ABCD问题解析:132.下面求的步骤正确的有()答题: A. B. C. D. >> (已提交)参考答案:ABC问题解析:133.求解微分方程通解的正确步骤有( )答题: A. B. C. D. >> (已提交)参考答案:ABC问题解析:134.已知()答题: A. B. C. D. >> (已提交)参考答案:ABCD问题解析:135.()答题: A. B. C. D. >> (已提交)参考答案:ABCD问题解析:136.求微分方程正确的步骤有()答题: A. B. C. D. >> (已提交)参考答案:AB问题解析:137.()答题: A. B. C. D. >> (已提交)参考答案:AB问题解析:138.求微分方程的特解,则正确的步骤有()答题: A. B. C. D. >> (已提交)参考答案:ABCD问题解析:139.求微分方程满足条件特解的正确步骤有( )答题: A. B. C. D. >> (已提交)参考答案:ABC140.求微分方程的通解的正确步骤有()答题: A. B. C. D. >> (已提交)参考答案:ABCD问题解析:141.求微分方程通解的正确步骤有()答题: A. B. C. D. >> (已提交)参考答案:ABCD问题解析:142.答题:对. 错. (已提交)参考答案:×问题解析:143.答题:对. 错. (已提交)参考答案:×问题解析:144.答题:对. 错. (已提交)参考答案:×问题解析:145.答题:对. 错. (已提交)参考答案:×问题解析:146.函数答题:对. 错. (已提交)参考答案:×问题解析:147.答题:对. 错. (已提交)参考答案:×问题解析:148.若的偏导数存在, 则可微.答题:对. 错. (已提交)参考答案:×问题解析:149.若的偏导数存在, 则连续.答题:对. 错. (已提交)参考答案:×问题解析:150.若可微,则存在.答题:对. 错. (已提交)参考答案:√问题解析:151.若可微,则连续.答题:对. 错. (已提交)参考答案:√问题解析:152.若连续,则可微.答题:对. 错. (已提交)参考答案:×问题解析:153.若连续,则偏导数存在.答题:对. 错. (已提交)参考答案:×问题解析:154.若是的极值点,则是的驻点.答题:对. 错. (已提交)参考答案:×155.若是的极值点,且函数在点的偏导数存在,则是的驻点.答题:对. 错. (已提交)参考答案:√问题解析:156.二重积分表示以曲面为顶,以区域为底的曲顶柱体的体积.答题:对. 错. (已提交)参考答案:×问题解析:157.当时,二重积分表示以曲面为顶,以区域为底的曲顶柱体的体积.答题:对. 错. (已提交)参考答案:√问题解析:158.在有界闭区域D上的两曲面围成的体积可表示为.答题:对. 错. (已提交)参考答案:×问题解析:159.在有界闭区域D上的两曲面围成的体积可表示为.答题:对. 错. (已提交)参考答案:√问题解析:160.若积分区域关于轴对称,则答题:对. 错. (已提交)参考答案:√问题解析:161.若积分区域关于轴对称,则答题:对. 错. (已提交)参考答案:×问题解析:162.若积分区域关于轴对称,则答题:对. 错. (已提交)参考答案:×问题解析:163.若积分区域关于轴对称,则答题:对. 错. (已提交)参考答案:√问题解析:164.若函数关于是奇函数,则答题:对. 错. (已提交)参考答案:×问题解析:165.若函数关于是偶函数,则答题:对. 错. (已提交)参考答案:×问题解析:166.答题:对. 错. (已提交)参考答案:√问题解析:167.答题:对. 错. (已提交)参考答案:×问题解析:168.答题:对. 错. (已提交)参考答案:√问题解析:169.答题:对. 错. (已提交)参考答案:×问题解析:170.答题:对. 错. (已提交)参考答案:√问题解析:171.答题:对. 错. (已提交)参考答案:×问题解析:172.是常微分方程.答题:对. 错. (已提交)参考答案:×问题解析:173.是常微分方程.答题:对. 错. (已提交)参考答案:√问题解析:174.微分方程阶数为3.答题:对. 错. (已提交)参考答案:×问题解析:175.微分方程阶数为2答题:对. 错. (已提交)参考答案:√问题解析:176.微分方程是一阶微分方程.答题:对. 错. (已提交)参考答案:√问题解析:177.函数答题:对. 错. (已提交)参考答案:√问题解析:178.函数答题:对. 错. (已提交)参考答案:√问题解析:179.函数答题:对. 错. (已提交)参考答案:×问题解析:180.答题:对. 错. (已提交)参考答案:√问题解析:181.答题:对. 错. (已提交)参考答案:×问题解析:182.微分方程是变量可分离微分方程.答题:对. 错. (已提交)参考答案:√问题解析:183.微分方程是变量可分离微分方程.答题:对. 错. (已提交)参考答案:√问题解析:184.微分方程是一阶线性微分方程.答题:对. 错. (已提交)参考答案:×问题解析:185.答题:对. 错. (已提交)参考答案:×问题解析:186.答题:对. 错. (已提交)参考答案:√问题解析:187.微分答题:对. 错. (已提交)参考答案:×问题解析:188.微分答题:对. 错. (已提交)参考答案:√问题解析:189.答题:对. 错. (已提交)参考答案:×问题解析:190.微分方程答题:对. 错. (已提交)参考答案:√问题解析:。
华南理工大学网络教育平台-*高等数学B(下)-随堂练习参考答案2013-4-10 1.函数定义域为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:2.函数定义域为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:3.函数定义域为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:4.函数定义域为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:5.,则的定义域为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:6.下列函数为同一函数的是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:7.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:8.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:9.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:10.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:11.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:12.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:13.(A)(B)0 (C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:14.(A)(B)0 (C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:15.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:16.(A)(B)(C) 0 (D)答题: A. B. C. D. (已提交)参考答案:B问题解析:17.(A)(B)(C) 0 (D)答题: A. B. C. D. (已提交)参考答案:A问题解析:18.(A)(B)(C) 0 (D)答题: A. B. C. D. (已提交)参考答案:B问题解析:19.(A)(B)(C)(D)参考答案:C问题解析:20.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析21., 则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:22., 则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:23.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:24.若,则(A)(B)(C)(D)参考答案:B问题解析:25.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:26.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:27.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:28.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:29.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:30.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:31.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:32.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:33.若则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:34.若则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:35.若,则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:36.若,则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:37.若,则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:38.若,则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:39.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:40.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:41.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:42.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:43.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:44.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:45.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:46.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:47.设函数在点的偏导数存在,则在点()(A)连续(B)可微(C)偏导数连续(D)以上结论都不对答题: A. B. C. D. (已提交)参考答案:D问题解析:48.设函数在点处可导(指偏导数存在)与可微的关系是()(A)可导必可微(B)可微必可导(C)两者等价(D)以上结论都不对答题: A. B. C. D. (已提交)参考答案:B问题解析:49.设, 则既是的驻点,也是的极小值点.答题:对. 错. (已提交)参考答案:对问题解析:50.函数的驻点()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:51.函数是()(A)非驻点(B)驻点但不是极值点(C)驻点且是极大值点(D)驻点且是极小值点答题: A. B. C. D. (已提交)参考答案:D问题解析:52.设二元函数则必有()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:53.若()(A) 0 (B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:54.设且三个积分区域之间有关系,则有()答题: A. B. C. D. (已提交)参考答案:A问题解析:55.若()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:56.若,其中,则()答题: A. B. C. D. (已提交)参考答案:B问题解析:57.若()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:58.若()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:59.若()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:60.()(A)(B) 2 (C) 4 (D)答题: A. B. C. D. (已提交)参考答案:B问题解析:61.()(A) 1 (B) -1 (C) 2 (D)-2答题: A. B. C. D. (已提交)参考答案:C问题解析:62.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:63.等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:64.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:65.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:66.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C67.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:68.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:69.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:70.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:71.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:72.设()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:73.设()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:74.设()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:75.设()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:76.应等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:77.应等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:78.()(A)( B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:79.等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:80.等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:81.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:82.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:83.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:84.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:85.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:86.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:87.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:88.()(A)5 (B)4 (C)3 (D)2答题: A. B. C. D. (已提交)参考答案:D问题解析:89.下列方程为二阶方程的是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:90.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:91.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:92.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:93.下列属变量可分离的微分方程的是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:94.下列微分方程中不是线性微分方程是()(A)(B)(C)(D)参考答案:D问题解析:95.下列微分方程中属于一阶线性微分方程是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:96.下列方程为一阶线性方程的是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:97.方程()(A)变量可分离方程(B)齐次方程(C)一阶线性方程(D)不属于以上三类方程答题: A. B. C. D. (已提交)参考答案:C问题解析:98.方程是()(A)一阶线性方程(B)齐次方程(C)变量可分离方程(D)不属于以上三类方程答题: A. B. C. D. (已提交)参考答案:A问题解析:99.下列微分方程中属于一阶齐次方程的是()(A)(B)(C)(D)参考答案:B问题解析:100.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:101.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:102.微分方程的通解为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:103.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:104.( )(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:105.为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:106.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:107.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:108.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:109.微分方程的通解是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:110.微分方程的特解是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:111.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:112.微分方程的通解为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:113.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:114.的特解是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:115.的通解是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:116.的通解为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:117.的特解为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:118.则下列求偏导数的四个步骤中计算正确的有()答题: A. B. C. D. (已提交)参考答案:ABCD119.,则下列求全微分的四个步骤中计算正确的有()答题: A. B. C. D. (已提交)参考答案:AB问题解析:120.已知,则下列求全微分的四个步骤中计算正确的有()答题: A. B. C. D. (已提交)参考答案:ABC问题解析:121.所确定,其中具有连续的偏导数.试证明:则下面证明过程正确的步骤有()(A)第一步:设,则(B)第二步:(C)第三步:(D)第四步:答题: A. B. C. D. (已提交)参考答案:ABCD问题解析:122.,则下列计算正确的步骤有()答题: A. B. C. D. (已提交)参考答案:ABC问题解析:123.,则下列计算正确的步骤有()答题: A. B. C. D. (已提交)参考答案:ABCD问题解析:124.,则下列计算正确的步骤有()答题: A. B. C. D. (已提交)参考答案:ACD问题解析:125.设则计算正确的步骤有()答题: A. B. C. D. (已提交)参考答案:AB126.()答题: A. B. C. D. (已提交)参考答案:ACD问题解析:127.计算正确的步骤有()答题: A. B. C. D. (已提交)参考答案:ABCD问题解析:128.()答题: A. B. C. D. (已提交)参考答案:ABCD问题解析:129.答题: A. B. C. D. (已提交)参考答案:ABC问题解析:130.已知下列步骤正确的有()答题: A. B. C. D. (已提交)参考答案:ABC问题解析:131.()答题: A. B. C. D. (已提交)参考答案:ABCD问题解析:132.下面求的步骤正确的有()答题: A. B. C. D. (已提交)参考答案:ABC问题解析:133.求解微分方程通解的正确步骤有( )答题: A. B. C. D. (已提交)参考答案:ABC问题解析:134.已知()答题: A. B. C. D. (已提交)参考答案:ABCD问题解析:135.()答题: A. B. C. D. (已提交)参考答案:ABCD问题解析:136.求微分方程正确的步骤有()答题: A. B. C. D. (已提交)参考答案:AB问题解析:137.()答题: A. B. C. D. (已提交)参考答案:AB问题解析:138.求微分方程的特解,则正确的步骤有()答题: A. B. C. D. (已提交)参考答案:ABCD问题解析:139.求微分方程满足条件特解的正确步骤有( )答题: A. B. C. D. (已提交)参考答案:ABC140.求微分方程的通解的正确步骤有()答题: A. B. C. D. (已提交)参考答案:ABCD问题解析:141.求微分方程通解的正确步骤有()答题: A. B. C. D. (已提交)参考答案:ABCD问题解析:142.答题:对. 错. (已提交)参考答案:×问题解析:143.答题:对. 错. (已提交)参考答案:×问题解析:144.答题:对. 错. (已提交)参考答案:×问题解析:145.答题:对. 错. (已提交)参考答案:×问题解析:146.函数答题:对. 错. (已提交)参考答案:×问题解析:147.答题:对. 错. (已提交)参考答案:×问题解析:148.若的偏导数存在, 则可微.答题:对. 错. (已提交)参考答案:×问题解析:149.若的偏导数存在, 则连续.答题:对. 错. (已提交)参考答案:×问题解析:150.若可微,则存在.答题:对. 错. (已提交)参考答案:√问题解析:151.若可微,则连续.答题:对. 错. (已提交)参考答案:√问题解析:152.若连续,则可微.答题:对. 错. (已提交)参考答案:×问题解析:153.若连续,则偏导数存在.答题:对. 错. (已提交)参考答案:×问题解析:154.若是的极值点,则是的驻点.答题:对. 错. (已提交)参考答案:×155.若是的极值点,且函数在点的偏导数存在,则是的驻点.答题:对. 错. (已提交)参考答案:√问题解析:156.二重积分表示以曲面为顶,以区域为底的曲顶柱体的体积.答题:对. 错. (已提交)参考答案:×问题解析:157.当时,二重积分表示以曲面为顶,以区域为底的曲顶柱体的体积.答题:对. 错. (已提交)参考答案:√问题解析:158.在有界闭区域D上的两曲面围成的体积可表示为.答题:对. 错. (已提交)参考答案:×问题解析:159.在有界闭区域D上的两曲面围成的体积可表示为.答题:对. 错. (已提交)参考答案:√问题解析:160.若积分区域关于轴对称,则答题:对. 错. (已提交)参考答案:√问题解析:161.若积分区域关于轴对称,则答题:对. 错. (已提交)参考答案:×问题解析:162.若积分区域关于轴对称,则答题:对. 错. (已提交)参考答案:×问题解析:163.若积分区域关于轴对称,则答题:对. 错. (已提交)参考答案:√问题解析:164.若函数关于是奇函数,则答题:对. 错. (已提交)参考答案:×问题解析:165.若函数关于是偶函数,则答题:对. 错. (已提交)参考答案:×问题解析:166.答题:对. 错. (已提交)参考答案:√问题解析:167.答题:对. 错. (已提交)参考答案:×问题解析:168.答题:对. 错. (已提交)参考答案:√问题解析:169.答题:对. 错. (已提交)参考答案:×问题解析:170.答题:对. 错. (已提交)参考答案:√问题解析:171.答题:对. 错. (已提交)参考答案:×问题解析:172.是常微分方程.答题:对. 错. (已提交)参考答案:×问题解析:173.是常微分方程.答题:对. 错. (已提交)参考答案:√问题解析:174.微分方程阶数为3.答题:对. 错. (已提交)参考答案:×问题解析:175.微分方程阶数为2答题:对. 错. (已提交)参考答案:√问题解析:176.微分方程是一阶微分方程.答题:对. 错. (已提交)参考答案:√问题解析:177.函数答题:对. 错. (已提交)参考答案:√问题解析:178.函数答题:对. 错. (已提交)参考答案:√问题解析:179.函数答题:对. 错. (已提交)参考答案:×问题解析:180.答题:对. 错. (已提交)参考答案:√问题解析:181.答题:对. 错. (已提交)参考答案:×问题解析:182.微分方程是变量可分离微分方程.答题:对. 错. (已提交)参考答案:√问题解析:183.微分方程是变量可分离微分方程.答题:对. 错. (已提交)参考答案:√问题解析:184.微分方程是一阶线性微分方程.答题:对. 错. (已提交)参考答案:×问题解析:185.答题:对. 错. (已提交)参考答案:×问题解析:186.答题:对. 错. (已提交)参考答案:√问题解析:187.微分答题:对. 错. (已提交)参考答案:×问题解析:188.微分答题:对. 错. (已提交)参考答案:√问题解析:189.答题:对. 错. (已提交)参考答案:×问题解析:190.微分方程答题:对. 错. (已提交)参考答案:√问题解析:。
1、解微分方程:lny xy y x '= 解:ln y y y x x '=,令y u y xu x=⇒=,原方程可化为 ()ln ln 1du du u x u u x u u dx dx+=⇒=- 变量分离两边积分得()()11ln ln 1ln ln 1du dx u x C u u x =⇒-=+-⎰⎰1ln 1ln 1Cx y u Cx Cx y xe x+-=⇒=+⇒= 2、求解初值问题(()()00,10y dx xdy x y -=>=。
解:dy y dx x ==,令y u y xu x =⇒=,原方程可化为du du u xu x dx dx +==变量分离两边积分得(1ln ln dx u x C x =⇒=+⎰⎰ln ln y x C x ⎛ +=+ ⎝ 由()10y =可得0C =,所求函数为y x x =。
3、做适当的变量代换,求下列方程的通解。
1)()2dy x y dx=+ 解:令u x y =+,则有1u y ''=+,原方程可化为21u u '-=关于u 这是一个变量可分离微分方程,变量分离两边积分得()21arctan arctan 1du dx u x C x y x C u =⇒=+⇒+=++⎰⎰()tan y x C x =+-2)求微分方程15dy y x dx x y -+=++ 解:解方程组: 1050y x x y -+=⎧⎨++=⎩得23x y =-⎧⎨=-⎩作变换: 23X x Y y =+⎧⎨=+⎩,则有 1,,5y x Y X dx dX dy dY x y X Y-+-===+++ 原方程化为:dY Y X dX X Y-=+ 令XY u =,则有 11du u X u dX u -+=+ 变量分离: 2111u du dX u X+=-- 两边积分: 2111u du dX u X +=--⎰⎰ 解得: ()21arctan ln 1ln 2u u X C --+=+ 原方程的通解为: ()()()()2222331arctan ln ln 2222x y y x C x x ++++--=++++ 3)()221x y y '+=解:令2u x y =+,则有12u y ''=+,原方程可化为: 222111222u u u u u+''-=⇒= 这是一个变量可分离微分方程,变量分离两边积分得2222122u du dx du x C u u ⎛⎫=⇒-=+ ⎪++⎝⎭⎰⎰⎰u x C =+2x y x C +=+4、求曲线()y y x =,使它正交于圆心在x 轴上且过原点的任何圆(注:两曲线正交是指交点处两曲线切线相互垂直)。
())))A. B. C. D.参考答案:B())))A. B. C. D.参考答案:D())))A. B. C. D.参考答案:D))))A. B. C. D.参考答案:C))))A. B. C. D.参考答案:D))))A. B. C. D.参考答案:D))))A. B. C. D.参考答案:B方程(A. B. C. D.参考答案:C方程是(A. B. C. D.参考答案:A))))A. B. C. D.参考答案:B(()))A. B. C. D.参考答案:C())))A. B. C. D.参考答案:A微分方程的通解为())))A. B. C. D.参考答案:B()))A. B. C. D.参考答案:C( ))()()()A. B. C. D.参考答案:B为())))A. B. C. D.参考答案:C())))A. B. C. D.参考答案:C())))A. B. C. D.参考答案:B())))A. B. C. D.参考答案:B微分方程的通解是(())A. B. C. D.参考答案:C微分方程的特解是((()A. B. C. D.参考答案:D((()A. B. C. D.参考答案:A微分方程的通解为((()A. B. C. D.参考答案:B((()A. B. C. D.参考答案:C的特解是((()A. B. C. D.参考答案:B的通解是((()A. B. C. D.参考答案:C的通解为(()()A. B. C. D.参考答案:D的特解为(((()A. B. C. D.参考答案:B则下列求偏导数的四个步骤中计算正确的有A. B. C.,则下列求全微分的四个步骤中计算A. B. C.已知,则下列求全微分的四个步骤中计算正A. B. C.所确定,其中具有连续的偏导试证明:)第一步:设,则)第三步:A. B. C.,则下列计算正确的步骤有(A. B. C.,则下列计算正确的步骤有(A. B. C.,则下列计算正确的步骤A. B. C.设则计算正确的步骤有A. B. C.(A. B. C.计算正确的步骤有(A. B. C.(A. B. C.A. B. C.已知下列步骤正确的有(A. B. C.(A. B. C.下面求的步骤正确的有(A. B. C.通解的正确步骤有A. B. C.已知(A. B. C.(A. B. C.求微分方程正确的步骤有(A. B. C.(A. B. C.求微分方程的特解,则正确的步骤有(A. B. C.求微分方程满足条件特解的正确步骤有A. B. C.求微分方程的通解的正确步骤有(A. B. C.求微分方程通解的正确步骤有(A. B. C.对. 错参考答案:×对. 错参考答案:×对. 错参考答案:×对. 错参考答案:×函数对. 错参考答案:×对. 错参考答案:×若的偏导数存在则可微对. 错参考答案:×若的偏导数存在则连续对. 错参考答案:×若可微,则存在对. 错参考答案:√若可微,则连续对. 错参考答案:√若连续,则可微对. 错参考答案:×若连续,则偏导数存在对. 错参考答案:×若是的极值点,则是的驻点对. 错参考答案:×若是的极值点,且函数在点的偏导数存在,则是的驻点对. 错参考答案:√二重积分表示以曲面为顶,以区域为底的曲顶柱体的体对. 错参考答案:×当时,二重积分表示以曲面为顶以区域为底的对. 错参考答案:√上的两曲面围成的体积可表示为.对. 错参考答案:×上的两曲面围成的体积可表示为.对. 错参考答案:√若积分区域关于轴对称,则对. 错参考答案:√若积分区域关于轴对称,则对. 错参考答案:×若积分区域关于轴对称,则对. 错参考答案:×若积分区域关于轴对称,则对. 错参考答案:√若函数关于是奇函数,则对. 错参考答案:×若函数关于是偶函数,则对. 错参考答案:×对. 错参考答案:√对. 错参考答案:×对. 错参考答案:√对. 错参考答案:×对. 错参考答案:√对. 错参考答案:×是常微分方程对. 错参考答案:×是常微分方程对. 错参考答案:√微分方程阶数为对. 错参考答案:×微分方程阶数为对. 错参考答案:√微分方程是一阶微分方程对. 错参考答案:√函数对. 错参考答案:√函数对. 错参考答案:√函数对. 错参考答案:×对. 错参考答案:√对. 错参考答案:×微分方程是变量可分离微分方程对. 错参考答案:√微分方程是变量可分离微分方程对. 错参考答案:√微分方程是一阶线性微分方程对. 错参考答案:×对. 错参考答案:×对. 错微分对. 错参考答案:×微分对. 错参考答案:√对. 错参考答案:×微分方程对. 错参考答案:√。
前半部分作业题,后半部分为作业答案各科随堂练习、平时作业(yaoyao9894)《 高等数学B (下) 》练习题2020年3月一、判断题 1. ()3420yy yy xy ''''+-=是二阶微分方程.2. (1)若12(),()y x y x 是二阶线性齐次方程()()0y p x y q x y '''++=的两个特解,则1122()()()y x C y x C y x =+是该方程的通解.(2)若12(),()y x y x 是二阶线性齐次方程()()0y p x y q x y '''++=的两个线性无关的特解, 即12()()y x y x ≠常数,则1122()()()y x C y x C y x =+是该方程的通解. 3. (1)若两个向量,a b 垂直,则a b ⨯0.=(2)若两个向量,a b 垂直,则a b ⋅0.= (3)若两个向量,a b 平行,则a b ⨯0.= (4)若两个向量,a b 平行,则a b ⋅0.=4. (1)若函数(,)f x y 在00(,)x y 点全微分存在,则(,)f x y 在00(,)x y 点偏导数也存在.(2)若函数(,)f x y 在00(,)x y 点偏导数存在,则(,)f x y 在00(,)x y 点全微分也存在. 5. (1)设连续函数(,) 0f x y ≥,,则二重积分(,)d σ⎰⎰Df x y 表示以曲面(,)f x y 为顶、以区域D 为底的曲顶柱体的体积. (2)二重积分(,)d σ⎰⎰Df x y 表示以曲面(,)f x y 为顶、以区域D 为底的曲顶柱体的体积.6. (1)若(,)f x y 在00(,)x y 处取得极大值,且(,)f x y 在00(,)x y 点偏导数存在,则00(,)x y 是函数(,)f x y 的驻点.(2)若(,)f x y 在00(,)x y 处取得极大值,则00(,)x y 是函数(,)f x y 的驻点. 7. (1)若lim 0→∞=n n u ,则数项级数1nn u∞=∑收敛.(2)若数项级数1nn u∞=∑收敛,则lim 0→∞=n n u .8. (1)若级数1||nn u∞=∑收敛,则级数1n n u ∞=∑也收敛.(2)若级数1nn u∞=∑收敛,则级数1||nn u∞=∑也收敛.9. (1)调和级数11∞=∑n n 发散. (2)p 级数11(1)pn p n∞=>∑收敛. 10. (1)若区域D 关于x 轴对称,函数(,)f x y 关于y 是偶函数,则(,)d =0.σ⎰⎰Df x y(2)若区域D 关于x 轴对称,函数(,)f x y 关于y 是奇函数,则(,)d =0.σ⎰⎰Df x y二、填空题(考试为选择题)1. 一阶微分方程22x x e y xye x '+=的类型是______________________________. 2. 已知平面与,,(3,0,0),(0,4,0),(0,0,5)x y z -轴分别交于,则该平面方程为__________. 3.函数(,)=f x y 定义域为__________.4. 222(,)(0,0)3(,)0(,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩,,在(0,0)处的两个偏导数为__________.5. z z a Ω==若是由圆锥面所围成的闭区域,则三重积分(,,)d d d f x y z x y z Ω⎰⎰⎰化为柱面坐标系下的三次积分为 __________.6. 等比级数1∞=∑nn q的敛散性为__________.三、解答题1. 求微分方程+60y y y '''-=的通解.2. 123(2,1,4),(1,3,2),(0,2,3).M M M ---求经过三点的平面方程3. 若22(+2,3)z f x y xy =,其中f 具有连续偏导数,求z 的两个偏导数.4. 求椭球面2223214++=x y z 在点()1,1,3处的切平面方程和法线方程.5. 21x y z Ω++=若是由平面与三个坐标面所围成的闭区域,计算三重积分d d d .Ω=⎰⎰⎰I x x y z以下为答案部分《 高等数学B (下) 》练习题2020年3月一、判断题1. ()3420yy y y xy ''''+-=是二阶微分方程. (×)2. (1)若12(),()y x y x 是二阶线性齐次方程()()0y p x y q x y '''++=的两个特解,则1122()()()y x C y x C y x =+是该方程的通解.(×)(2)若12(),()y x y x 是二阶线性齐次方程()()0y p x y q x y '''++=的两个线性无关的特解,即12()()y x y x ≠常数,则1122()()()y x C y x C y x =+是该方程的通解.(√)3. (1)若两个向量,a b 垂直,则a b ⨯0.=(×)(2)若两个向量,a b 垂直,则a b ⋅0.=(√)(3)若两个向量,a b 平行,则a b ⨯0.=(√)(4)若两个向量,a b 平行,则a b ⋅0.=(×)4. (1)若函数(,)f x y 在00(,)x y 点全微分存在,则(,)f x y 在00(,)x y 点偏导数也存在.(√)(2)若函数(,)f x y 在00(,)x y 点偏导数存在,则(,)f x y 在00(,)x y 点全微分也存在.(×)5. (1)设连续函数(,) 0f x y ≥,,则二重积分(,)d σ⎰⎰Df x y 表示以曲面(,)f x y 为顶、以区域D 为底的曲顶柱体的体积.(√)(2)二重积分(,)d σ⎰⎰Df x y 表示以曲面(,)f x y 为顶、以区域D 为底的曲顶柱体的体积.(×)6. (1)若(,)f x y 在00(,)x y 处取得极大值,且(,)f x y 在00(,)x y 点偏导数存在,则00(,)x y 是函数(,)f x y 的驻点.(√)(2)若(,)f x y 在00(,)x y 处取得极大值,则00(,)x y 是函数(,)f x y 的驻点.(×)7. (1)若lim 0→∞=n n u ,则数项级数1n n u ∞=∑收敛.(×) (2)若数项级数1n n u ∞=∑收敛,则lim 0→∞=n n u .(√) 8. (1)若级数1||n n u ∞=∑收敛,则级数1n n u ∞=∑也收敛.(√)(2)若级数1n n u ∞=∑收敛,则级数1||n n u ∞=∑也收敛.(×)9. (1)调和级数11∞=∑n n发散.(√)(2)p 级数11(1)pn p n∞=>∑收敛.(√)10. (1)若区域D 关于x 轴对称,函数(,)f x y 关于y 是偶函数,则(,)d =0.σ⎰⎰Df x y (×)(2)若区域D 关于x 轴对称,函数(,)f x y 关于y 是奇函数,则(,)d =0.σ⎰⎰Df x y (√)二、填空题(考试为选择题) 1. 一阶微分方程22x x e y xye x '+=的类型是可分离变量2. 已知平面与,,(3,0,0),(0,4,0),(0,0,5)x y z -轴分别交于,则该平面方程为__________.3. 函数22(,)ln(9)=+-f x y x y 定义域为__________.4. 222(,)(0,0)3(,)0(,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩,,在(0,0)处的两个偏导数为__________.5.22z x y z a Ω=+=若是由圆锥面与平面所围成的闭区域,则三重积分(,,)d d d f x y z x y z Ω⎰⎰⎰化为柱面坐标系下的三次积分为 __________.6. 等比级数1∞=∑n n q 的敛散性为__________.三、解答题 1. 求微分方程+60y y y '''-=的通解.2. 123(2,1,4),(1,3,2),(0,2,3).M M M ---求经过三点的平面方程3. 若22(+2,3)z f x y xy =,其中f 具有连续偏导数,求z 的两个偏导数.4. 求椭球面2223214++=x y z 在点()1,1,3处的切平面方程和法线方程.5.21x y z Ω++=若是由平面与三个坐标面所围成的闭区域,计算三重积分d d d .Ω=⎰⎰⎰I x x y z(密 封。