2012年安徽高考数学理科试卷及详细答案
- 格式:doc
- 大小:1.09 MB
- 文档页数:5
2012年普通高等学校招生全国统一考试(安徽卷)数学(理科)参考公式:如果事件A 与B 互斥;则()()()P A B P A P B +=+ 如果事件A 与B 相互独立;则()()()P AB P A P B =如果A 与B 是事件,且()0P B >;则()()()P AB P A B P B =第Ⅰ卷(答案:择题 共50分)一、答案:择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个答案:项中,只有一项是符合题目要求的.(1)复数z 满足:()(2)5z i i --=;则z =( ) A.22i -- B.22i -+ C.i 2-2 D.i 2+2答案:D解析:55(2)()(2)5222(2)(2)i z i i z i z i i ii i +--=⇔-=⇔=+=+--+(2)下列函数中,不满足(2)2()f x f x =的是( ) A.()f x x = B.()f x x x =- C.()f x x =+1 D.()f x x =-答案:C解析:()f x kx =与()f x k x =均满足:(2)2()f x f x =得:,,A B D 满足条件 (3)如图所示,程序框图(算法流程图)的输出结果是( )A.3B.4C.5D.8 答案:B 解析:4.{}n a 的各项都是正数,且31116a a =,则( ) A.4 B.5 C.6 D.7 答案:B解析:29311771672161616432log 5a a a a a a q a =⇔=⇔=⇒=⨯=⇔=5.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则A.甲的成绩的平均数小于乙的成绩的平均数B. 甲的成绩的中位数等于乙的成绩的中位数C. 甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差 答案:C 11(45678)6,(5369)655x x =++++==⨯++=乙甲解析:甲的成绩的方差为221(2212)25⨯+⨯=,乙的成绩的方差为221(1331) 2.45⨯+⨯=(6)设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥ 则“αβ⊥”是“a b ⊥”的( )A. 充分不必要条件B. 必要不充分条件C.充要条件D. 即不充分不必要条件答案:A解析:①,b m b b a αβα⊥⊥⇒⊥⇒⊥ ②如果//a m ;则a b ⊥与b m ⊥条件相同 (7)2521(2)(1)x x+-的展开式的常数项是( )A.3-B.2-C.2D.3 答案:D解析:第一个因式取2x ,第二个因式取21x得:1451(1)5C ⨯-=第一个因式取2,第二个因式取5(1)-得:52(1)2⨯-=- 展开式的常数项是5(2)3+-= (8)在平面直角坐标系中,(0,0),(6,8)O P ,将向量OP 按逆时针旋转34π后,得向量O Q则点Q 的坐标是( )A.(-B. (-C. (2)--D.(2)- 答案:A解析:【方法一】设34(10cos ,10sin )cos ,sin 55O P θθθθ=⇒==则33(10cos(),10sin())(44O Q ππθθ=++=- 【方法二】将向量(6,8)O P = 按逆时针旋转32π后得(8,6)O M =-则)(OQ OP OM =-+=-(9)过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF =;则A O B ∆的面积为( )A.22D.答案:C解析:设(0)AFx θθπ∠=<<及BF m =;则点A 到准线:1l x =-的距离为3 得:1323cos cos 3θθ=+⇔=又232cos()1cos 2m m m πθθ=+-⇔==+A OB ∆的面积为113sin 1(3)22232S O F AB θ=⨯⨯⨯=⨯⨯+⨯=(10)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品,已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为( )A.1或3B.1或4C.2或3D.2或4 答案:D解析:261315132C -=-=①设仅有甲与乙,丙没交换纪念品,则收到4份纪念品的同学人数为2人 ②设仅有甲与乙,丙与丁没交换纪念品,则收到4份纪念品的同学人数为4人第II 卷(非答案:择题 共100分)二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. (11)若,x y 满足约束条件:02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩;则x y -的取值范围为_________.答案:[3,0]-解析:约束条件对应A B C ∆边际及内的区域:3(0,3),(0,),(1,1)2A B C则[3,0]t x y =-∈-(12)某几何体的三视图如图所示,该几何体的表面积是_________. 答案:92解析:该几何体是底面是直角梯形,高为4的直四棱柱几何体的表面积是12(25)4(2544922S =⨯⨯+⨯++++⨯=(13)在极坐标系中,圆4sin ρθ=的圆心到直线()6R πθρ=∈的距离是_________.解析:圆224sin (2)4x y ρθ=↔+-=的圆心(0,2)C直线:()06l R x πθρ=∈↔-=;点C 到直线l2=(14)若平面向量,a b满足:23a b -≤ ;则a b 的最小值是_________.答案:98-解析:22222349494449448a b a b a ba b a b a b a b a b a b -≤⇔+≤++≥≥-⇒+≥-⇔≥-(15)设A B C ∆的内角,,A B C 所对的边为,,a b c ;则下列命题正确的是_________. ①若2ab c >;则3C π<; ②若2a b c +>;则3C π<;③若333a b c +=;则2C π<; ④若()2a b c ab +<;则2C π>;⑤若22222()2a b c a b +<,则3C π>.答案:①②③解析:①222221cos 2223a b cab ab ab c C C ababπ+-->⇒=>=⇒<②2222224()()12cos 2823a b ca b a b a b c C C ababπ+-+-++>⇒=>≥⇒<③当2C π≥时,22232233c a b c a c b c a b ≥+⇒≥+>+与333a b c +=矛盾④取2,1a b c ===满足()2a b c ab +<得:2C π<⑤取2,1a b c ===满足22222()2a b c a b +<得:3C π<.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的制定区域内. (16)(本小题满分12分)设函数2()cos(2)sin 24f x x x π=++(I )求函数()f x 的最小正周期; (II )设函数()g x 对任意x R ∈,有()()2g x g x π+=,且当[0,]2x π∈时, 1()()2g x f x =-;求函数()g x 在[,0]π-上的解析式.解析:2111())sin cos 2sin 2(1cos 2)24222f x x x x x x π=++=-+-11sin 222x =-(I )函数()f x 的最小正周期22T ππ==(II )当[0,]2x π∈时,11()()sin 222g x f x x =-=当[,0]2x π∈-时,()[0,]22x ππ+∈ 11()()sin 2()sin 22222g x g x x x ππ=+=+=-当[,)2x ππ∈--时,()[0,)2x ππ+∈ 11()()sin 2()sin 222g x g x x x ππ=+=+=得:函数()g x 在[,0]π-上的解析式为1sin 2(0)22()1sin 2()22x x g x x x πππ⎧--≤≤⎪⎪=⎨⎪-≤<⎪⎩(17)(本小题满分12分)某单位招聘面试,每次从试题库随机调用一道试题,若调用的是A 类型试题,则使用后该试题回库,并增补一道A 类试题和一道B 类型试题入库,此次调题工作结束;若调用 的是B 类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有n m +道 试题,其中有n 道A 类型试题和m 道B 类型试题,以X 表示两次调题工作完成后,试 题库中A 类试题的数量. (Ⅰ)求2X n =+的概率;(Ⅱ)设m n =,求X 的分布列和均值(数学期望). 解析:(I )2X n =+表示两次调题均为A 类型试题,概率为12n n m nm n +⨯+++(Ⅱ)m n =时,每次调用的是A 类型试题的概率为12p =随机变量X 可取,1,2n n n ++21()(1)P X n p ==-=,1(1)2(1)P X n p p =+=-=,21(2)4P X n p =+==111(1)(2)1424E X n n n n =⨯++⨯++⨯=+答:(Ⅰ)2X n =+的概率为12nn m n m n +⨯+++(Ⅱ)求X 的均值为1n +(18)(本小题满分12分)平面图形111ABB A C C 如图4所示,其中11BB C C 是矩形,12,4BC BB ==,AB AC ==,1111A B A C ==现将该平面图形分别沿B C 和11B C 折叠,使A B C ∆与111A B C ∆所在平面都与平面11BB C C 垂直,再分别连接111,,AA BA C A ,得到如图2所示的空间图形,对此空间图形解答下列问题.(Ⅰ)证明:1AA BC ⊥; (Ⅱ)求1AA 的长;(Ⅲ)求二面角1A BC A --的余弦值.解析:(I )取11,B C B C 的中点为点1,O O ,连接111,,,A O O O A O A O则AB AC AO BC =⇒⊥,面A B C ⊥面11BB C C A O ⇒⊥面11BB C C同理:11A O ⊥面11BB C C 得:1111//,,,AO A O A O A O ⇒共面 又11,OO BC OO AO O ⊥=⇒ B C ⊥面111AO O A AA BC ⇒⊥ (Ⅱ)延长11A O 到D ,使1O D O A = 得:11////O D O A AD O O ⇒1O O BC ⊥,面111A B C ⊥面11BB C C 1O O ⇒⊥面111A B C ⇒AD ⊥面111A B C15AA ===(Ⅲ)11,AO BC A O BC AOA ⊥⊥⇒∠是二面角1A BC A --的平面角在11Rt OO A ∆中,1A O ===在1Rt OAA ∆中,2221111cos 25AO A O AA AO A AO A O+-∠==-⨯得:二面角1A BC A --的余弦值为5-(19)(本小题满分13分) 设1()(0)x xf x ae b a ae=++>(I )求()f x 在[0,)+∞上的最小值;(II )设曲线()y f x =在点(2,(2))f 的切线方程为32y x =;求,a b 的值. 解析:(I )设(1)xt e t =≥;则2222111a t y at b y a atatat-'=++⇒=-=①当1a ≥时,0y '>⇒1y at b at=++在1t ≥上是增函数得:当1(0)t x ==时,()f x 的最小值为1a b a ++②当01a <<时,12y at b b at=++≥+当且仅当11(,ln )xat t e x a a====-时,()f x 的最小值为2b +(II )11()()xxxxf x ae b f x ae aeae'=++⇒=-由题意得:2222212(2)333131(2)222f ae b a ae ef ae b ae ⎧⎧=++==⎧⎪⎪⎪⎪⎪⇔⇔⎨⎨⎨'=⎪⎪⎪-==⎩⎪⎪⎩⎩(20)(本小题满分13分)如图,12(,0),(,0)F c F c -分别是椭圆2222:1(0)x y C a b ab+=>>的左,右焦点,过点1F 作x 轴的垂线交椭圆的上半部分于点P ,过点2F 作直线2P F 的垂线交直线2ax c=于点Q ;(I )若点Q 的坐标为(4,4);求椭圆C 的方程;(II )证明:直线PQ 与椭圆C 只有一个交点.解析:(I )点11(,)(0)P c y y ->代入22221x y ab+=得:21by a=21204014ba PF Q F c c c--⊥⇔⨯=---- ①又24ac= ② 222(,,0)c a b a b c =->③由①②③得:2,1,a c b ===既椭圆C 的方程为22143xy+=(II )设22(,)aQ y c;则221222012by a PF Q F y a a c c c c--⊥⇔⨯=-⇔=--- 得:222PQba c a k a a c c-==+2222221b xx y y y a b -'+=⇒=⇒=过点P 与椭圆C 相切的直线斜率x cP Q c k y k a=-'===得:直线PQ 与椭圆C 只有一个交点.(21)(本小题满分13分)数列{}n x 满足:2*110,()n n n x x x x c n N +==-++∈(I )证明:数列{}n x 是单调递减数列的充分必要条件是0c < (II )求c 的取值范围,使数列{}n x 是单调递增数列. 解析:(I )必要条件当0c <时,21n n n n x x x c x +=-++<⇒数列{}n x 是单调递减数列充分条件数列{}n x 是单调递减数列22121110x x x x c c x ⇒>=-++⇔<=得:数列{}n x 是单调递减数列的充分必要条件是0c <(II )由(I )得:0C ≥①当0c =时,10n a a ==,不合题意②当0c >时,22132,201x c x x c c x c c =>=-+>=⇔<<2211010n n n n n x x c x x c x x +-=->⇔<<⇔=≤<22211111()()()(1)n n n n n n n n n n x x x x x x x x x x ++++++-=--+-=--+-当14c ≤时,1211102n n n n n x x x x x +++<≤⇒+-<⇔-与1n n x x +-同号,由212100n n n n x x c x x x x ++-=>⇒->⇔>21lim lim ()lim n n n n n n n x x x c x +→∞→∞→∞=-++⇔=当14c >时,存在N ,使121112N N N N N x x x x x +++>⇒+>⇒-与1N N x x +-异号与数列{}n x 是单调递减数列矛盾 得:当104c <≤时,数列{}n x 是单调递增数列.。
2012年普通高等学校招生全国统一考试(安徽卷)数学理科一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.复数满足,则为 ( )A. B. C. D.【测量目标】复数代数形式的四则运算.【考查方式】给出代数式,求复数.【难易程度】容易【参考答案】D【试题解析】设,则,所以可得,故.2.下列函数中,不满足等于的是()A. B. C. D.【测量目标】函数相等.【考查方式】给出一系列函数解析式,计算两函数值,得到答案.【难易程度】容易【参考答案】C【试题解析】令,则,其中C不满足,故答案为C.3.如图所示,程序框图(算法流程图)的输出结果是 ( )A.3B.4C.5D.8第3题图【测量目标】循环结构的程序框图.【考查方式】理解程序框图中的计算关系,求值.【难易程度】容易【参考答案】B【试题解析】第一次循环后:;第二次循环后:;第三次循环后:,跳出循环,输出 .4. 公比为2的等比数列{} 的各项都是正数,且=16,则 ( )A.4B.5C.6D.7【测量目标】等比数列的性质,对数的求值.【考查方式】给出等比数列两项乘积,求出等比中项,根据公比求出再求对数的值.【难易程度】中等【参考答案】B【试题解析】设等比数列的公比为,,则,所以,故.5.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )第5题图A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差【测量目标】频率直方图.【考查方式】给出频率直方图,通过图比较两者的中位数,平均数,以及方差和极差.【难易程度】容易【参考答案】C【试题解析】由条形图易知甲的平均数为,中位数为,(步骤1)方差为,极差为;(步骤2)乙的平均数为,中位数为5,(步骤3)方差为,极差为,(步骤4)故,甲乙中位数不相等且.(步骤5)6.设平面与平面相交于直线m,直线a在平面内,直线b在平面内,且,则“”是“”的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【测量目标】充分,必要条件.【参考方式】判断充分必要条件.【难易程度】容易【参考答案】A【试题解析】判断本题条件命题为“”条件命题,命题“”为结论命题,当时,由线面垂直的性质定理可得,所以条件具有充分性;但当时,如果,就得不出,所以条件不具有必要性,故条件是结论的充分不必要条件.7.()的展开式的常数项是 ( )A. B. C. D.【测量目标】二项式定理.【考查方式】整理所给的方程,直接利用二项式定理求展开式常数项.【难易程度】容易【参考答案】D【试题解析】因为,所以要找原二项式展开式中的常数项,(步骤1)只要找展开式中的常数项和含项即可.通项公式(步骤2)8.在平面直角坐标系中,点(0,0),点,将向量绕点按逆时针方向旋转后得向量,则点的坐标是()A. B. C. D.【测量目标】三角函数的定义和求值,两角和的正切.【考查方式】根据题意得到正切值,将向量转动后再利用两角和的正切公式求解.【难易程度】中等【参考答案】A【试题解析】设,因为,所以,(步骤1)可得,(步骤2)验证可知只有当点坐标为时满足条件,(步骤3)故答案为A;法二:估算.设,因为,所以,可得,,所以点在第三象限,排除B,D选项,又,故答案为A.9.过抛物线的焦点的直线交该抛物线于A,B两点,为坐标原点.若,则的面积为()第9题A. B. C. D.【测量目标】直线的方程,直线和抛物线的位置关系.【考查方式】给出抛物线方程求出直线方程,根据直线与抛物线的位置关系求三角形面积.【难易程度】较难【参考答案】C【试题解析】如图,设,由抛物线方程,可得抛物线焦点,(步骤1)抛物线准线方程为,故.(步骤2)可得,,故,直线的斜率为,(步骤3)直线的方程为,(步骤4)联立直线与抛物线方程可得,(步骤5)因为两点横坐标之积为,所以点的横坐标为,(步骤6)可得,,(步骤7)点到直线的距离为,所以.(步骤8)10.6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为 ` ( )A.1或3B.1或4C.2或3D.2或4【测量目标】简单的计数,排列组合的应用.【考查方式】通过实际的问题,利用简单的计数原理和排列组合求值.【难易程度】较难【参考答案】D【试题解析】任意两个同学之间交换纪念品共要交换次,如果都完全交换,每个人都要交换5次,也就是得到5份纪念品,现在6个同学总共交换了13次,少交换了2次,这2次如果不涉及同一个人,则收到4份纪念品的同学人数有4人;如果涉及同一个人,则收到4份纪念品的同学人数有2人,答案为D.2012年普通高等学校招生全国统一考试(安徽卷)数学(理科)第Ⅱ卷(非选择题共100分)请用0.5毫米海瑟墨水签字笔在答题卡上作答,在试卷上答题无效.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置.11.若满足约束条件则的取值范围是______.第11 题图【测量目标】二元线性规划求目标函数的范围.【考查方式】直接给出约束条件,画出可行域,求目标函数的的取值范围.【难易程度】容易【参考答案】【试题解析】法一:画出可行域是如图所示的的边界及内部,令.易知当直线经过点时,直线在轴上截距最大,目标函数取得最小值,即;当直线经过点时,直线在轴上截距最小,目标函数取得最大值,即,所以.法二:界点定值,同法一先画出可行域,令,把边界点代入目标函数可得,,比较可得.12.某几何体的三视图如图所示,该几何体的表面积是______.第12题图【测量目标】三视图求几何体的表面积.【考查方式】观察三视图,通过空间想象得出几何体,求几何体表面积.【难易程度】中等【参考答案】【试题解析】如图,根据三视图还原的实物图为底面是直角梯形的直四棱柱,其表面积为.第12题图13.在极坐标系中,圆的圆心到直线的距离是____________.【测量目标】点到直线的距离,坐标系和参数方程.【考查方式】将参数方程化为一般方程,利用点到直线的距离公式求值.【难易程度】容易【参考答案】【试题解析】圆,即化为直角坐标为,(步骤1)直线的方程也就是直线,即为,(步骤2)圆心到直线的距离为.(步骤3)14.若平面向量,满足,则的最小值是___________.【测量目标】绝对值,均值不等式,向量的异向性.【考查方式】给出绝对值不等式,利用均值不等式求两向量的最值.【难易程度】中等【参考答案】【试题解析】由,有,(步骤1),可得,所以,(步骤2)故当且方向相反时,的最小值为.(步骤3)15.设的内角所对边的长分别为,则下列命题正确的是_____________(写出所有正确命题的编号).①若,则;②若,则;③若,则;④若,则;⑤若,则.【测量目标】正余弦定理判断三角形角的大小,均值不等式,命题之间的关系.【考查方式】根据三角形的边角关系,通过均值不等式以及正余弦定理判断角的大小从而确定命题间的关系.【难易程度】较难【参考答案】①②③【试题解析】对于①,由得,(步骤1)则,因为,所以,故①正确;(步骤2)对于②,由得,即,则,(步骤3)因为,所以,故②正确;(步骤4)对于对于③,可变为,可得,(步骤4)所以,所以,故,③正确;(步骤5)对于④,可变为,可得,所以,(步骤6)因为,所以,④错误;(步骤7)对于⑤,可变为,即,(步骤8)所以,所以,所以,故⑤错误. (步骤9)答案为①②③三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.(本小题满分12分)设函数.(I)求函数的最小正周期;(II)设函数对任意,有,且当时,,求函数在上的解析式.【测量目标】两角和与差的三角函数公式,二倍角公式,三角函数的性质,求分段函数解析式.【考查方式】给出函数解析式,根据三角函数的性质得到周期,利用两角和与差的三角公式以及二倍角公式求分段函数解析式.【难易程度】中等【试题解析】.(步骤1)(1)函数的最小正周期.(步骤2)(2)当时,,(步骤3)当时,,当时, .(步骤4)得:函数在上的解析式为(步骤5)17.(本小题满分12分)某单位招聘面试,每次从试题库随机调用一道试题,若调用的是类型试题,则使用后该试题回库,并增补一道类试题和一道类型试题入库,此次调题工作结束;若调用的是类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有道试题,其中有道类型试题和道类型试题,以表示两次调题工作完成后,试题库中类试题的数量.(Ⅰ)求的概率;(Ⅱ)设,求的分布列和均值(数学期望).【测量目标】基本事件概率,条件概率,离散型随机变量及其分布列均值.【考查方式】通过实际问题考查基本事件的的概率以及分布列和数学期望.【难易程度】中等【试题解析】(I)表示两次调题均为类型试题,概率为.(步骤1)(Ⅱ)时,每次调用的是类型试题的概率为,随机变量可取.,,.(步骤2).(步骤4)答:(Ⅰ)的概率为;(Ⅱ)的均值为.(步骤5)18.(本小题满分12分)平面图形,其中是矩形,,,.现将该平面图形分别沿和折叠,使与所在平面都与平面垂直,再分别连接,得到如图空间图形,对此空间图形解答下列问题.第18题图(1)证明:;(2)求的长;(3)求二面角的余弦值.【测量目标】空间中线线、线面、面面的位置关系,空间中的距离以及二面角.【考查方式】线线,线面,面面的垂直的相互转化,证明线线垂直;根据证明得到三角关系求距离;分析所求二面角所形成的三角形,解三角形,求角.【难易程度】中等【试题解析】(1)取的中点为点,连接,则,∴,∵平面平面,∴平面,(步骤1)同理:平面,得,∴共面,(步骤2)又∵,∴平面,∴.(步骤3)(2)延长到,使,得,(步骤4),平面平面∴平面,∴平面,(步骤5).(3),∴是二面角的平面角.(步骤6)在中,,在中,,∴二面角的余弦值为.(步骤7)19.(本小题满分13分)设.(I)求在上的最小值;(II)设曲线在点的切线方程为,求的值.【测量目标】函数、导数的基础知识,运用导数研究函数性质,导数的几何性质.【考查方式】给出含参的函数解析式,利用导数对参数进行分类讨论求函数的最值;根据导数的几何性质,得到切点方程联立该点函数方程求值.【难易程度】中等【试题解析】(I)设,则.(步骤1)①当时,在上是增函数,得:当时,的最小值为.(步骤2)②当时,,当且仅当时,的最小值为.(步骤3)(II),(步骤4)由题意得:20. (本小题满分13分)如图,分别是椭圆的左,右焦点,过点作轴的垂线交椭圆的上半部分于点,过点作直线的垂线交直线于点;(I)若点的坐标为,求椭圆的方程;(II)证明:直线与椭圆只有一个交点.第20 题图【测量目标】椭圆方程和椭圆几何性质,直线与椭圆的位置关系. 【考查方式】通过图形以及已知条件求椭圆方程;根据直线与圆的位置关系进行证明.【难易程度】中等【试题解析】(I)点代入,得:.(步骤1).①又. ②.③(步骤2)由①②③得:,即椭圆的方程为.(步骤3)(II)设,则.(步骤4)得:,(步骤5).(步骤6)过点与椭圆相切的直线斜率.(步骤7)得:直线与椭圆只有一个交点.21.(本小题满分13分)数列满足:.(I)证明:数列是单调递减数列的充分必要条件是;(II)求的取值范围,使数列是单调递增数列.【测量目标】数列概念及其性质,不等式及其性质,充要条件.【考查方式】给出数列关系式,分步骤证明充分,必要条件;分类讨论,归纳求参数的取值范围使得数列单调递增.【难易程度】较难【试题解析】(I)必要条件当时,数列是单调递减数列;(步骤1)充分条件数列是单调递减数列.(步骤2)得:数列是单调递减数列的充分必要条件是.(II)由(I)得:.①当时,,不合题意;(步骤3)②当时,,,(步骤4).(步骤5)当时,与同号,由,.(步骤6)当时,存在,使与异号.(步骤7)与数列是单调递减数列矛盾得:当时,数列是单调递增数列.(步骤8)。
绝密★启用前2012年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1至第3页,第Ⅱ卷第4至第6页.全卷满分150分,考试时间120分钟. 考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位.2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效.............,.在.答题卷、草稿纸上答题无效............. 4.考试结束,务必将试题卷和答题卡一并上交. 参考公式:如果事件A 与B 互斥;则()()()P A B P A P B +=+ 如果事件A 与B 相互独立;则()()()P AB P A P B =如果A 与B 是事件,且()0P B >;则()()()P AB P A B P B =第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z 满足:(i)(2i)5z --=;则z =( )A .22i --B .22i -+C .2-2iD .2+2i2.下列函数中,不满足(2)2()f x f x =的是( )A .()||f x x =B .()||f x x x =-C .()1f x x =+D .()f x x =-3.如图所示,程序框图(算法流程图)的输出结果是( )A .3B .4C .5D .84.公比为2的等比数列{}n a 的各项都是正数,且31116a a =,则210log =a ( )A .4B .5C .6D .75.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则 ( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差6.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥则“αβ⊥”是“a b ⊥”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.2521(2)(1)x x +-的展开式的常数项是( )A .3-B .2-C .2D .38.在平面直角坐标系中,(0,0),(6,8)O P ,将向量OP 绕点O 按逆时针旋转3π4后得到向量OQ ,则点Q 的坐标是( )A.(- B.(- C.(2)--D.(-9.过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,O 为是坐标原点.若3AF =,则AOB ∆的面积为 ( )A.2 BCD.10.6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品,已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为( )A .1或3B .1或4C .2或3D .2或4第Ⅱ卷(非选择题 共100分)姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上.11.若,x y 满足约束条件:0,23,23,x x y x y ⎧⎪+⎨⎪+⎩≥≥≤则x y -的取值范围为______.12.某几何体的三视图如图所示,该几何体的表面积是______.13.在极坐标系中,圆4sin ρθ=的圆心到直线π()6R θρ=∈的距离是______. 14.若平面向量a,b 满足:|2|3-≤a b ;则⋅a b 的最小值是______.15.设ABC ∆的内角,,A B C 所对的边为,,a b c ,则下列命题正确的是______(写出所有正确命题的编号).①若2ab c >;则π3C <②若2a b c +>;则π3C <③若333a b c +=;则π2C <④若()2a b c ab +<;则π2C >⑤若22222()2a b c a b +<;则π3C >三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)设函数2π())sin 4f x x x =++ (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)设函数()g x 对任意x ∈R ,有π()()2g x g x +=,且当π[0,]2x ∈时,1()()2g x f x =-.求()g x 在区间[π,0]-上的解析式.17.(本小题满分12分)某单位招聘面试,每次从试题库随机调用一道试题,若调用的是A 类型试题,则使用后该试题回库,并增补一道A 类试题和一道B 类型试题入库,此次调题工作结束;若调用的是B 类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有n m +道试题,其中有n 道A 类型试题和m 道B 类型试题,以X 表示两次调题工作完成后,试题库中A 类试题的数量. (Ⅰ)求2X n =+的概率;(Ⅱ)设m n =,求X 的分布列和均值(数学期望).18.(本小题满分12分)平面图形111ABB AC C 如图1所示,其中11BB C C 是矩形,12,4BC BB ==,AB AC ==1111A B A C ==.现将该平面图形分别沿BC 和11B C 折叠,使ABC ∆与111A B C ∆所在平面都与平面11BB C C 垂直,再分别连接111,,A A A B AC ,得到如图2所示的空间图形.对此空间图形解答下列问题. (Ⅰ)证明:1AA BC ⊥; (Ⅱ)求1AA 的长;(Ⅲ)求二面角1A BC A --的余弦值.2012年普通高等学校招生全国统一考试(安徽卷)数学(理科)答案解析【解析】{}n a 是等比数列,且,又等比数列4=,16a ∴=log 32=log 【解析】1(45x =甲甲的成绩的平均数等于乙的成绩的平均数;甲的成绩的中位数甲的成绩的方差为甲的成绩的极差【解析】αβ⊥,”的充分条件,m ,则a ⊥故选A .【解析】第一个因式取【解析】(0,0)O ,设(10cos OP =5,又OP 按旋转OQ,10cos OQ θ⎡=+ ⎢⎝⎭⎦∴【提示】由点,知(6,8)OP =,设(10cos OP =。
2012年普通高等学校夏季招生全国统一考试数学理工农医类(安徽卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.全卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z 满足(z -i)(2-i)=5,则z =( ) A .-2-2i B .-2+2i C .2-2i D .2+2i2.下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1 D .f (x )=-x3.如图所示,程序框图(算法流程图)的输出结果是( )A .3B .4C .5D .8 5.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差 6.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7. (x 2+2)(21x-1)5的展开式的常数项是( )A .-3B .-2C .2D .38.在平面直角坐标系中,点O (0,0),P (6,8).将向量OP 绕点O 按逆时针方向旋转3π4后得向量O Q,则点Q 的坐标是( )A .(-B .(-C.(-2)D.(-2)9.过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,则△AOB的面积为… ()A.2BC.2D.10.6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为()A.1或3 B.1或4 C.2或3 D.2或4第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.11.若x,y满足约束条件2323xx yx y≥⎧⎪≥⎨⎪≤⎩,+,+,则x-y的取值范围是__________.12.某几何体的三视图如图所示,该几何体的表面积是__________.13.在极坐标系中,圆ρ=4sinθ的圆心到直线π6θ=(ρ∈R)的距离是__________.14.若平面向量a,b满足|2a-b|≤3,则a·b的最小值是__________.15.设△ABC的内角A,B,C所对边的长分别为a,b,c,则下列命题正确的是__________(写出所有正确命题的编号).①若ab>c2,则π3C<②若a+b>2c,则π3C<③若a3+b3=c3,则π2C<④若(a+b)c<2ab,则π2C>⑤若(a2+b2)c2<2a2b2,则π3 C>三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.设函数f(x)2cos(2x+π4)+sin2x.(1)求f(x)的最小正周期;(2)设函数g(x)对任意x∈R,有g(x+π2)=g(x),且当x∈[0,π2]时,g(x)=12-f(x).求g(x)在区间[-π,0]上的解析式.17.某单位招聘面试,每次从试题库中随机调用一道试题.若调用的是A类型试题,则使用后该试题回库,并增补一道A类型试题和一道B类型试题入库,此次调题工作结束;若调用的是B类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有n+m道试题,其中有n道A类型试题和m道B类型试题.以X表示两次调题工作完成后,试题库中A类型试题的数量.(1)求X=n+2的概率;(2)设m=n,求X的分布列和均值(数学期望).18.平面图形ABB1A1C1C如图1所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC A1B1=A1C1现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A1A,A1B,A1C,得到如图2所示的空间图形.对此空间图形解答下列问题.(1)证明:AA1⊥BC;(2)求AA1的长;(3)求二面角A-BC-A1的余弦值.19.设函数f(x)=a e x+1e xa+b(a>0).(1)求f(x)在[0,+∞)内的最小值;(2)设曲线y=f(x)在点(2,f(2))处的切线方程为32y x=,求a,b的值.20.如图,点F1(-c,0),F2(c,0)分别是椭圆C:22221x ya b+=(a>b>0)的左、右焦点,过点F1作x轴的垂线交椭圆C的上半部分于点P,过点F2作直线PF2的垂线交直线2a xc =于点Q.(1)如果点Q的坐标是(4,4),求此时椭圆C的方程;(2)证明:直线PQ与椭圆C只有一个交点.21.数列{x n}满足x1=0,x n+1=-x n2+x n+c(n∈N*).(1)证明:{x n}是递减数列的充分必要条件是c<0;(2)求c的取值范围,使{x n}是递增数列.1.D由题意可得,z-i=55(2i)2i(2i)(2i)+=--+=2+i,所以z=2+2i.2.C∵f(2x)=2x+1,而2f(x)=2x+2,∴f(2x)≠2f(x),只有C不满足.3. B 由程序框图依次可得,x =1,y =1→x =2,y =2→x =4,y =3→x =8,y =4→输出y =4.4. B 由题意可得,a 3a 11=a 72=16,∴a 7=4. ∴a 10=a 7q 3=25.∴log 2a 10=log 225=5.5. C 由图可得,4567865x ++++==甲,356965x ⨯++==乙,故A 项错;而甲的成绩的中位数为6,乙的成绩的中位数为5,故B 项错;222222(46)(56)(66)(76)(86)25s -+-+-+-+-==甲,22223(56)(66)(96)2.45s ⨯-+-+-==乙,故C 项正确;甲的成绩的极差为4,乙的成绩的极差也为4,故D 项错.6. A 由面面垂直的性质定理可得,α⊥β,α∩β=m ,b β,b ⊥mb ⊥α.又∵aα,∴a ⊥b ,但反之则不成立.7.D (21x-1)5的通项为T r +1=5C r(21x)5-r(-1)r=(-1)r5C r1x 10-2r .要使(x 2+2)(21x-1)5的展开式为常数,须令10-2r =2或0,此时r =4或5.故(x 2+2)(21x-1)5的展开式的常数项是(-1)4×45C +2×(-1)5×55C =3.8. A 设OP 与x 轴正半轴的夹角为θ,则3cos 5θ=,4sin 5θ=,则由三角函数定义可得,O Q =(O P cos(θ+3π4),O P sin(θ+3π4)). ∵O P cos(θ+3π4)=62+82×(cos θcos 3π4-sin θsin3π4)=3410()5252⎡⨯⨯--⨯=-⎢⎣⎦, O P sin(θ+3π4)×(sin θcos3π4+cos θsin3π4)=4310(5252⎡⨯⨯-+⨯=⎢⎣⎦∴O Q=(-),即点Q 的坐标为(-,).9.C 设点A (x 1,y 1),B (x 2,y 2),由|AF |=3及抛物线定义可得,x 1+1=3,∴x 1=2.∴A 点坐标为(2,,则直线AB的斜率021k ==-∴直线AB 的方程为y=(x-1),即为0y --=,则点O到该直线的距离为3d =.由241y x y x ⎧⎪⎨=-⎪⎩=,),消去y 得,2x 2-5x +2=0,解得x 1=2,212x =.∴|BF |=x 2+1=32,∴39322AB =+=.∴119||22232AOB S AB d ∆=⋅=⨯⨯=.10. D 6位同学之间互相交换,总共有26C =15种,而实际只交换了13次,故有2次未交换.不妨设为甲与乙、丙与丁之间未交换或甲与乙、甲与丙之间未交换,当甲与乙、丙与丁之间未交换时,甲、乙、丙、丁4位同学都收到4份礼物;当甲与乙、甲与丙之间未交换时,只有乙、丙两位同学收到4份礼物,故选D .11.答案:[-3,0]解析:作出可行域如图所示,令z =x -y ,当z =0时,得l 0:x -y =0.平移l 0,当l 0过点A (0,3)时满足z 最小,此时z min =0-3=-3;当l 0过点B (1,1)时,此时z max =1-1=0,故x -y 的取值范围为[-3,0].12.答案:92解析:由三视图可知,该几何体为底面是直角梯形且侧棱垂直于底面的棱柱,该几何体的表面积为S =2×12×(2+5)×4+[2+5+4]×4=92.13.解析:由极坐标下圆的方程ρ=4sin θ可得,ρ2=4ρsin θ,所以x 2+y 2=4y ,即x 2+(y -2)2=4,表示以(0,2)为圆心,2为半径的圆.又π6θ=(ρ∈R )表示直线3y x =,∴由点到直线的距离公式可得d ==14.答案:98-解析:∵|2a -b |≤3,∴4a 2+b 2≤9+4a ·b .∵4a 2+b 2≥4|a |·|b |≥-4a ·b , ∴9+4a ·b ≥-4a ·b . ∴98⋅≥-a b .15.答案:①②③解析:对于①,由ab >c 2可得2222221cos 2222a b ca b abab ab C ababab+-+--=>≥=.故π3C <,∴①正确;对于②,由a +b >2c 可得2a b c +<,故22()4a b c +<.故22222222()33()2144242cos 22222a b ab ab a b a b ab a b cC abababab++-+-⨯-+-=>=≥=.∴π3C <,②正确;对于③,由a 3+b 3=c 3可得332a b c c+=,故a 2+b 2-c 2=a 2+b 2-33a b c+=223322()()()a cbc a b a c a b c b c c +-+-+-=.又a 3+b 3=c 3,故c >a ,c >b ,故22()()0a c a b c b c-+->,故a 2+b 2>c 2.故π2C <,③正确;对于④,2ab c a b<+,故22222244()4a ba b c ab a b ab<≤=+.故222221cos 222a b ca b abC abab+-+-=>≥.∴π3C <,④不正确; 对于⑤,由(a 2+b 2)c 2<2a 2b 2可得2222222222a ba b c ab a b ab <≤=+.故2222221cos 2222a b ca b abab ab C ababab+-+--=>≥=.∴π3C <,⑤不正确.综上可知,①②③正确.16.解:(1)f (x )2cos(2x +π4)+sin 2x=2(cos2x cosπ4-sin2x sin π4)+1cos 22x-=11sin222x -, 故f (x )的最小正周期为π. (2)当x ∈[0,π2]时,g (x )=12-f (x )=12sin2x .故①当x ∈[π2-,0]时,x +π2∈[0,π2].由于对任意x ∈R ,g (x +π2)=g (x ),从而g (x )=g (x +π2)=12sin [2(x +π2)]=12sin(π+2x )=12-sin2x .②当x ∈[-π,π2-)时,x +π∈[0,π2).从而g (x )=g (x +π)=12sin [2(x +π)]=12sin2x .综合①,②得g (x )在[-π,0]上的解析式为 ()1πsin2π,,221πsin2,0.22x x g x x x ⎧⎡⎫∈--⎪⎪⎢⎪⎣⎭⎨⎡⎫⎪-∈-⎪⎢⎪⎣⎭⎩,=,17.解:以A i 表示第i 次调题调用到A 类型试题,i =1,2.(1)P (X =n +2)=P (A 1A 2)=1(1)2()(2)n n n n m n m n m n m n ++⋅=++++++. (2)X 的可能取值为n ,n +1,n +2. P (X =n )=121( )4n nP A A n n n n=⋅=++.P (X =n +1)=121211()()22nn nnP A A P A A n n n n n n n n++=⋅+⋅=+++++,P (X =n +2)=P (A 1A 2)=1124n n n n n n +⋅=+++,从而X 的分布列是EX =n ×14+(n +1)×12+(n +2)×14=n +1.18. (向量法)(1)证明:取BC ,B 1C 1的中点分别为D 和D 1,连接A 1D 1,DD 1,AD .由四边形BB 1C 1C 为矩形知,DD 1⊥B 1C 1.因为平面BB 1C 1C ⊥平面A 1B 1C 1, 所以DD 1⊥平面A 1B 1C 1.又由A 1B 1=A 1C 1知,A 1D 1⊥B 1C 1.故以D 1为坐标原点,可建立如图所示的空间直角坐标系D 1-xyz . 由题设,可得A 1D 1=2,AD =1.由以上可知AD ⊥平面BB 1C 1C ,A 1D 1⊥平面BB 1C 1C ,于是AD ∥A 1D 1. 所以A (0,-1,4),B (1,0,4),A 1(0,2,0),C (-1,0,4),D (0,0,4).故1AA =(0,3,-4),BC =(-2,0,0),10AA BC ⋅=.因此1AA BC ⊥,即AA 1⊥BC .(2)解:因为1AA =(0,3,-4),所以15A A =,即AA 1=5. (3)解:连接A 1D .由BC ⊥AD ,BC ⊥AA 1,可知BC ⊥平面A 1AD ,BC ⊥A 1D , 所以∠ADA 1为二面角A -BC -A 1的平面角.因为DA=(0,-1,0),1DA=(0,2,-4), 所以1cos ,5DA DA =-=-,即二面角A -BC -A 1的余弦值为5-.(或用法向量求解)(综合法)(1)证明:取BC ,B 1C 1的中点分别为D 和D 1,连接A 1D 1,DD 1,AD ,A 1D .由条件可知,BC ⊥AD ,B 1C 1⊥A 1D 1.由上可得AD ⊥平面BB 1C 1C ,A 1D 1⊥平面BB 1C 1C , 因此AD ∥A 1D 1,即AD ,A 1D 1确定平面AD 1A 1D . 又因为DD 1∥BB 1,BB 1⊥BC ,所以DD 1⊥BC . 又考虑到AD ⊥BC ,所以BC ⊥平面AD 1A 1D , 故BC ⊥AA 1.(2)解:延长A 1D 1到G 点,使GD 1=AD .连接AG . 因为AD GD 1,所以AG DD1BB 1. 由于BB 1⊥平面A 1B 1C 1,所以AG ⊥A 1G . 由条件可知,A 1G=A 1D 1+D 1G =3,AG =4, 所以AA 1=5.(3)解:因为BC ⊥平面AD 1A 1D ,所以∠ADA 1为二面角A -BC -A 1的平面角. 在Rt △A 1DD 1中,DD 1=4,A 1D 1=2,解得sin ∠D 1DA 15,cos ∠ADA 1=cos(π2+∠D 1DA 1)=5-即二面角A -BC -A 1的余弦值为5-19.解:(1)f ′(x )=a e x -1exa ,当f ′(x )>0,即x >-ln a 时,f (x )在(-ln a ,+∞)上递增; 当f ′(x )<0,即x <-ln a 时,f (x )在(-∞,-ln a )上递减.①当0<a <1时,-ln a >0,f (x )在(0,-ln a )上递减,在(-ln a ,+∞)上递增,从而f (x )在[0,+∞)上的最小值为f (-ln a )=2+b ;②当a ≥1时,-ln a ≤0,f (x )在[0,+∞)上递增,从而f (x )在[0,+∞)上的最小值为f (0)=a +1a+b .(2)依题意2213(2)e e2f a a '=-=,解得a e 2=2或21e 2a =-(舍去).所以22ea =,代入原函数可得2+12+b =3,即12b =.故22ea =,12b =.20. (1)解:方法一:由条件知,P (-c ,2ba).故直线PF 2的斜率为22202PF bb a kc c ac-==---.因为PF 2⊥F 2Q ,所以直线F 2Q 的方程为22222ac ac y x bb=-.故Q (2ac,2a ). 由题设知,24ac=,2a =4,解得a =2,c =1. 故椭圆方程为22143xy+=.方法二:设直线2a x c=与x 轴交于点M . 由条件知,P (-c ,2ba).因为△PF 1F 2∽△F 2MQ ,所以1122||||||||PF F F F M M Q =.即222||bc a aM Q cc=-,解得|MQ |=2a ,所以24,24,a c a ⎧=⎪⎨⎪=⎩a =2,c =1.故椭圆方程为22143xy+=.(2)证明:直线PQ 的方程为22222ax y a cba ac ac--=---, 即c y x a a=+.将上式代入椭圆方程得x 2+2cx +c 2=0, 解得x =-c ,2by a=. 所以直线PQ 与椭圆C 只有一个交点.21. (1)证明:先证充分性,若c <0,由于x n +1=2n x -+x n +c ≤x n +c <x n ,故{x n }是递减数列;再证必要性,若{x n }是递减数列,则由x 2<x 1可得c <0.(2)解:假设{x n }是递增数列.由x 1=0,得x 2=c ,x 3=-c 2+2c . 由x 1<x 2<x 3,得0<c <1.由x n <x n +1=2n x -+x n +c 知,对任意n ≥1都有x n①x n +1=2n x -x n -c(1x nx n ).②由①式和②式可得1-x n >0,即x n <1由②式和x n ≥0还可得,对任意n ≥1-x n +1≤(1-x n ).③反复运用③x n ≤(1)n -1x 1)<(1)n -1.x n <1x n <(1n -1两式相加,知1<(1)n -1对任意n ≥1成立.根据指数函数y =(1x 的性质,得1≤0,14c ≤,故0<c ≤14.若0<c ≤14,要证数列{x n }为递增数列,即x n +1-x n =2n x -+c >0.即证x 0n ≥1成立.下面用数学归纳法证明当0<c ≤14时,x n n ≥1成立.当n =1时,x 1=012,结论成立.假设当n =k (n ∈N *)时结论成立,即x k 因为函数f (x )=-x 2+x +c 在区间(-∞,12]内单调递增,所以x k +1=f (x k )<f这就是说当n =k +1时,结论也成立.故x n n ≥1成立.因此,x n +1=x n -2n x +c >x n ,即{x n }是递增数列. 综上可知,使得数列{x n }单调递增的c 的取值范围是(0,14].。
2012年安徽省普通高等学校招生统一考试试题、参考答案
(理科数学)
本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页,共150分.
第I 卷
考生注意:
1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.
2.第I 卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II 卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.
3.考试结束,监考员将试题卷、答题卡一并收回.
参考公式:
如果事件A B ,互斥,那么 球的表面积公式
()()()P A B P A P B +=+ 24πS R =
如果事件A B ,相互独立,那么 其中R 表示球的半径
()()()P A B P A P B =g g 球的体积公式
如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =
n 次独立重复试验中恰好发生k 次的概率 ()(1)k k n k n n P k C P P -=-
其中R 表示球的半径。
2012年普通高等学校招生全国统一考试(安徽卷)数学(理科)答案1-5 DCBBC 6-10 ADACD 11. [3,0]- 12. 92 13. 3 14. 98- 15. ①②③16【解析】22111()cos(2)sin cos 2sin 2(1cos 2)24222f x x x x x x π=++=-+-11sin 222x =-(I )函数()f x 的最小正周期22T ππ== (2)当[0,]2x π∈时,11()()sin 222g x f x x =-=当[,0]2x π∈-时,()[22x ππ+∈11()()sin 2()sin 22222g x g x x x ππ=+=+=-当[,)2x ππ∈--时,()[2x ππ+∈11()()sin 2()sin 222g x g x x x ππ=+=+=得:函数()g x 在[,0]π-上的解析式为1sin 2(0)22()1sin 2()22x x g x x x πππ⎧--≤≤⎪⎪=⎨⎪-≤<⎪⎩17【解析】(I )2X n =+表示两次调题均为A 类型试题,概率为12n n m n m n +⨯+++ (Ⅱ)m n =时,每次调用的是A 类型试题的概率为12p =随机变量X 可取,1,2n n n ++21()(1)4P X n p ==-=,1(1)2(1)2P X n p p =+=-=,21(2)4P X n p =+== X n1n + 2n +P1412 14111(1)(2)1424EX n n n n =⨯++⨯++⨯=+答:(Ⅰ)2X n =+的概率为12n n m n m n +⨯+++(Ⅱ)求X 的均值为1n +18【解析】(I )取11,BC B C 的中点为点1,O O ,连接1111,,,AO OO AO AO 则AB AC AO BC =⇒⊥,面ABC ⊥面11BB C C AO ⇒⊥面11BB C C 同理:11AO ⊥面11BB C C 得:1111//,,,AO AO A O A O ⇒共面 又11,OO BC OO AO O ⊥=⇒ BC ⊥面111AOO A AA BC ⇒⊥(Ⅱ)延长11AO 到D ,使1O D OA = 得:11////O D OA AD OO ⇒ 1O O B C ⊥,面111A BC ⊥面11BB C C 1OO ⇒⊥面111A B C ⇒AD ⊥面111A B C 222214(21)5A A A D D A =+=++= (Ⅲ)11,AO BC AO BC AOA ⊥⊥⇒∠是二面角1A BC A --的平面角 在11Rt OO A ∆中,222211114225A O OO AO =+=+=在1Rt OAA ∆中,22211115cos 25AO AO AA AOA AO AO +-∠==-⨯ 得:二面角1A BC A --的余弦值为55-。
2012年普通高等学校招生全国统一考试(安徽卷)
数学(文科)
第Ⅰ卷(选择题 共50分)
一、 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,
只有一项是符合题目要求的。
(1)复数z 满足(z-2)i =2+ i ,则 z =
(A ) -1- i (B )1- i (C ) -1+3 i (D )1-2 i
(2)设集合A= 3213x x -≤-≤ ,集合B 为函数y=lg (x-1)的定义域,则A ⋂B= (A ) (1,2) (B )[1, 2]
(C ) [ 1,2 ) (D )(1,2 ] (3)(2
l o g 9
) · (3log 4)=
(A )
14 (B )1
2
(C ) 2 (D )4
(4)命题“存在实数x,,使x > 1”的否定是
(A ) 对任意实数x, 都有x > 1 (B )不存在实数x ,使x ≤ 1
(C ) 对任意实数x, 都有x ≤ 1 (D )存在实数x ,使x ≤ 1
(5)公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a =
(A ) 1 (B )2
(C ) 4 (D )8
(6)如图所示,程序框图(算法流程图)的输出结果是
(A)3 (B)4
(C)5 (D)8
(7)要得到函数y=cos(2x+1)的图象,只要将函数y=cos2x 的图象(A)向左平移1个单位
(B)向右平移1个单位
(C)向左平移1
2
个单位
(D)向右平移1
2
个单位
(8)若x ,y满足约束条件
23
23
x
x y
x y
≥
⎧
⎪
+≥
⎨
⎪+≤
⎩
则z=x-y的最小值是来源学§科§网Z§X§X§K]
(A)-3 (B)0
(C)3
2
(D)3
(9)若直线x-y+1=0与圆(x-a)+y =2有公共点,则实数a取值范围是
(A)[-3 , -1 ] (B)[ -1 , 3 ]
(C)[ -3 , 1 ] (D)(- ∞,-3 ] U [1 ,+ ∞)
(10)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于
(A)1
5
(B)
2
5
(C ) 35 (D )45
2012年普通高等学校招生全国统一考试(安徽卷)
数学(文科)
第Ⅱ卷(非选择题 共100分)
考生注事项:
请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效。
二.填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。
(11)设向量(1,2),(1,1),(2,).a m b m c m a c ==+=+若()⊥b ,则| a |=____________.
来源
学科网ZXXK]
(12)某几何体的三视图如图所示,则该几何体的体积等于______.
(13)若函数()|2|f x x a =+的单调递
增区间是
(1,(1)),(0)f a b a =>,则a =________.
(14)过抛物线24y x =的焦点F 的直线交该抛物线于,A B 两点,若||3AF =,则||BF =______
(15)若四面体ABCD 的三组对棱分别相等,即AB CD =,AC BD =,AD BC =,则________.(写出所有正确结论编号) ①四面体ABCD 每组对棱相互垂直 ②四面体ABCD 每个面的面积相等
③从四面体ABCD 每个顶点出发的三条棱两两夹角之和大于90。
而小于180。
④连接四面体ABCD 每组对棱中点的线段互垂直平分来源:Z*xx*]
⑤从四面体ABCD 每个顶点出发的三条棱的长可作为一个三角形的三边长
三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤,解答写在答题卡上的指定区域内。
(16)(本小题满分12分)
设△ABC 的内角A B C 、、所对田寮的长分别为a 、b 、c ,且有2sin cos B cos A cos C + sin A C 。
(Ⅰ)求角A 的大小;来源学科网Z.X.X.K]
(Ⅱ)若2b =,1c =,D 为BC 的中点,求AD 的长。
(17)(本小题满分12分)
设定义在(0,+∞)上的函数1
()(0)f x ax b a ax
=++> (Ⅰ)求()f x 的最小值;
(Ⅱ)若曲线()y f x =在点(1,(1))f 处的切线方程为3
2
y x =
,求,a b 的值。
(18)(本小题满分13分)
若某产品的直径长与标准值的差的绝对值不超过1mm 时,则视为合格品,否则视为不合格品。
在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品。
计算这50件不合格品的直径长与标准值的差(单位:mm ), 将所得数据分组,得到如下频率分布表:
分组 频数 频率 [-3, -2) 0.1 [-2, -1) 8 (1,2] 0.5 (2,3] 10 (3,4] 合计 50 1
(Ⅰ)将上面表格中缺少的数据填在答题卡的相应位置;
(Ⅱ)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;
(Ⅲ)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品。
据此估算这批产品中的合格品的件数。
(19)(本小题满分 12分)
如图,长方体1111D C B A ABCD -中,底面1111D C B A 是正方形,O 是BD 的中点,E
是棱1AA 上任意一点。
(Ⅰ)证明:BD 1EC ⊥ ;
(Ⅱ)如果AB =2,AE =2,AE =2,1EC OE ⊥, 求1AA 的长。
20.(本小题满分13分)
如图,
21F F 分别是椭圆C :22a x +22
b
y =1(0>>b a )的
左、右焦点,A 是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.
(Ⅰ)求椭圆C 的离心率;
(Ⅱ)已知△A B F 1的面积为403,求a, b 的值.
(21)(本小题满分13分) 设函数)(x f =
2
x
+X sin 的所有正的极小值点从小到大排成的数列为{n x }.
(Ⅰ)求数列{n x }.
(Ⅱ)设{n
x }的前n 项和为n S ,求n S sin .。