八年级数学上册第二章练习题
- 格式:doc
- 大小:654.52 KB
- 文档页数:2
2019 年八年级数学上册第二章练习题 (附答案) 初中阶段对于学生们来说也是十分重要的一个时期,对每个学生来说尤为重要,下文为大家准备了八年级数学上册第二章练习题,供大家参考。
一、选择题(每小题 3 分,共30 分)1. (2019?天津中考)估计的值在( )A.1 和 2 之间B.2 和 3 之间C.3 和 4 之间D.4 和 5 之间2. (2019?安徽中考)与1+ 最接近的整数是( )A.4B.3C.2D.13. (2019?南京中考)估计介于( )A.0.4 与0.5 之间B.0.5 与0.6 之间C.0.6 与0.7 之间D.0.7与0.8 之间4. ( 2019?湖北宜昌中考)下列式子没有意义的是( )A. B. C. D.5. (2019?重庆中考)化简的结果是( )A. B. C. D.6. 若a,b 为实数,且满足|a-2|+ =0,则b-a 的值为( )A.2B.0C.-2D. 以上都不对7. 若a,b 均为正整数,且a>,b> ,则a+b 的最小值是( )A.3B.4C.5D.68. 已知=-1,=1,=0,则abc的值为()A.0B.-1C.-D.9. (2019?福州中考)若(m?1)2? =0,则m+n的值是()A.-1B.0C.1D.210. 有一个数值转换器,原理如图所示:当输入的x=64 时,输出的y 等于()A.2B.8C.3D.2二、填空题(每小题 3 分,共24 分)11. _________________________________ (2019?南京中考)4 的平方根是___________________ ;4 的算术平方根是__________ .12. ____________________________________ (2019?河北中考)若|a|= ,则a= ______________________ .13. 已知:若≈ 1.910,≈ 6.042,则≈,± ≈.14. 绝对值小于π的整数有.15. 已知|a-5|+ =0,那么a-b= .16. 已知a,b为两个连续的整数,且a>>b,则a+b= .17. ___________________________________ (2019?福州中考)计算:( ?1)( ?1)= _____________ .18. (2019?贵州遵义中考) + = .三、解答题(共46 分)19. (6 分)已知,求的值.20. (6 分)若5+ 的小数部分是a,5- 的小数部分是b,求ab+5b 的值.21. (6 分)先阅读下面的解题过程,然后再解答:形如的化简,只要我们找到两个数a,b,使,,即,,那么便有:例如:化简:.解:首先把化为,这里,,因为,,即,,所以.根据上述方法化简:.22. (6 分)比较大小,并说明理由:(1) 与6;(2) 与.23. (6 分)大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部写出来,于是小平用-1 来表示的小数部分,你同意小平的表示方法吗? 事实上小平的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分. 请解答:已知:5+ 的小数部分是,5- 的整数部分是b,求+b 的值.24. (8 分)计算:(1) - ;(2) - .25. (8 分)阅读下面计算过程:试求:(1) 的值;(2) ( 为正整数)的值;(3) 的值.第二章实数检测题参考答案一、选择题1.C 解析:11 介于9 和16 之间,即9,b>,∴ a 的最小值是3,b 的最小值是2,则a+b 的最小值是 5. 故选 C.8. C解析:∵ =-1,=1,=0,∴ a=-1,b=1,c= ,∴ abc=- .故选 C.9. A解析:根据偶次方、算术平方根的非负性,由(m?1)2? =0, 得m-1=0 ,n+2=0 ,解得m=1,n=-2 ,∴ m+n=1+(-2)=-1.10. D 解析:由图得64 的算术平方根是8,8的算术平方根是 2 . 故选 D.二、填空题4 的算术平方根是 2. 11. 2 解析:∵ ∴ 4 的平方根是,12. 解析:因为,所以,所以13.604.2 0±.019 1 解析:≈ 604.2;± =±≈± 0.019 1.14. ±3,±2,±1,0 解析:π≈ 3.,14大于-π的负整数有:-3 ,-2 ,-1,小于π的正整数有:3,2,,0 的绝对值也小于π.我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
第二章实数测试题一、选择题(每题3分,共30分)1.有一组数如下:-π,13,|-2|,4,7,39,0.808008…(相邻两个8之间0的个数逐次加1).其中无理数有( )A .4个B .5个C .6个D .7个2.下列说法中,正确说法的个数是( ) ①-64的立方根是-4; ②49的算术平方根是±7; ③127的立方根是13; ④116的平方根是14. A .1 B .2 C .3 D .43.下列各组数中,互为相反数的一组是( )A .-3与3-27 B .-3与(-3)2 C .-3与-13D .||-3与34.下列各式计算正确的是( )A .2+3= 5B .43-33=1C .23×33=6 3D .27÷3=35.下列各式中,无论x 为任何数都没有意义的是( )A .-7xB .-1999x 3C .-0.1x 2-1D .3-6x 2-56.若a =15,则实数a 在数轴上的对应点P 的大致位置是( )图17.如图2是一数值转换机,若输出的结果为-32,则输入的x的值为( )图2A.-4B.4C.±4D.±58.若a,b均为正整数,且a>7,b>320,则a+b的最小值是( )A.6 B.5 C.4 D.39.实数a,b在数轴上所对应的点的位置如图3所示,且||a>||b,则化简a2-||a+b 的结果为( )图3A.2a+b B.-2a+bC.b D.2a-b10.已知x=2-3,则代数式(7+4 3)x2+(2+3)x+3的值是( )A.2+ 3 B.2- 3 C.0 D.7+4 3请将选择题答案填入下表:二、填空题(每题3分,共18分)11.计算:252-242=________.图412.如图4,正方形ODBC 中,OC =1,OA =OB ,则数轴上点A 表示的数是________. 13.用计算器计算并比较大小:39________7.(填“>”“=”或“<”) 14.若|x -y|+y -2=0,则xy -3的值是________.15.若规定一种运算为a ★b =2(b -a),如3★5=2×(5-3)=22,则2★3=________.16.设a ,b 为非零实数,则a |a|+b2b 所有可能的值为________.三、解答题(共52分)17.(6分)实数a ,b 在数轴上所对应的点的位置如图5所示,试化简:a 2-b 2-(a -b )2.图518.(6分)计算:(1)()-62-25+(-3)2;(2)50×8-6×32;(3)(3+2-1)(3-2+1).19.(6分)已知a ,b 互为相反数,c ,d 互为倒数,x 是2的平方根,求5(a +b )a 2+b 2-2cd +x 的值.20.(6分)如果a 是100的算术平方根,b 是125的立方根,求a 2+4b +1的平方根.21.(6分)某中学要在操场的一块长方形土地上进行绿化,已知这块长方形土地的长为510 m,宽为415 m.(1)求该长方形土地的面积(精确到0.1 m2);(2)如果绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金约为多少元?22.(6分)如图6所示,某地有一地下工程,其底面是正方形,面积为405 m2,四个角是面积为5 m2的小正方形渗水坑,根据这些条件如何求a的值?与你的同伴进行交流.图6下面是小康提供的解题方案,根据解题方案请你完成本题的解答过程:①设大正方形的边长为x m,小正方形的边长为y m,那么根据题意可列出关于x的方程为__________,关于y的方程为__________;②利用平方根的意义,可求得x=________(取正值,结果保留根号),y=________(取正值,结果保留根号);③所以a=x-2y=____________=__________(结果保留根号);④答:________________________.23.(8分)如图7,在Rt△OA1A2中,∠A1=90°,OA1=A1A2=1,以OA2为直角边向外作直角三角形,…,使A1A2=A2A3=A3A4=…=A n-1A n=1.(1)计算OA2和OA3的长;(2)猜想OA75的长(结果化到最简);(3)请你用类似的思路和方法在数轴上画出表示-3和10的点.图724.(8分)先阅读材料,再回答问题:因为(2-1)(2+1)=1,所以12+1=2-1;因为(3-2)(3+2)=1,所以13+2=3-2;因为(4-3)(4+3)=1,所以14+3=4- 3.依次类推,你会发现什么规律?请用你发现的规律计算式子12+1+13+2+…+1100+99的值.答案1.A 2.B 3.B 4.D 5.C 6.B 7.C 8.A 9.C 10.A 11.7 12.- 213.< 14.12 15.6-216.±2,017.解:由数轴易知a <0,b >0,|a |<|b |, 所以原式=-a -b -(b -a )=-2b . 18.解:(1)原式=6-5+3=4. (2)原式=5 2×2 2-3 22=20-3=17.(3)(3+2-1)(3-2+1)=[]3+(2-1)[]3-(2-1) =3-(2-1)2=3-3+2 2 =2 2.19.解:由题意知a +b =0,cd =1,x =± 2. 当x =2时,原式=-2+2=0; 当x =-2时,原式=-2-2=-2 2, 故原式的值为0或-2 2.20.[解析] 先根据算术平方根、立方根的定义求得a ,b 的值,再代入所求代数式即可计算.解:因为a 是100的算术平方根,b 是125的立方根, 所以a =10,b =5, 所以a 2+4b +1=121, 所以a 2+4b +11=11,所以a2+4b+11的平方根为±11.21.[解析] (1)根据这块长方形土地的长为5 10 m,宽为415 m,直接得出面积即可;(2)利用绿化该长方形土地每平方米的造价为180元,即可求出绿化该长方形土地所需资金.解:(1)该长方形土地的面积为510×415=100 6≈244.9(m2).(2)因为绿化该长方形土地每平方米的造价为180元,所以180×244.9=44082(元).答:绿化该长方形土地所需资金约为44082元.22.解:①x2=405 y2=5②9 5 5③9 5-2 5 7 5④a的值为7 523.解:(1)OA2=12+12=2,OA3=()22+12= 3.(2)OA75=75=5 3.(3)如图所示:24.解:规律:当n是正整数时,1n+1+n=n+1-n,故12+1+13+2+…+1100+99=(2-1)+(3-2)+…+(100-99)=100-1=9.。
北师大版八年级上册数学第二章实数练习题(带解析)考试范围:xxx ;考试时间:100分钟;命题人:xxx题号一二三四<五总分得分[1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释评卷人得分.一、单选题(注释)1、下列各式计算正确的是A.B.(>)C.=、D.2、下列计算中,正确的是()A.B.C.5=5·D.=3a(3、实数a在数轴上的位置如图所示,则a,-a,,a2的大小关系是()A.a<-a<<a2B.-a<<a<a2 C.<a<a2<-a D.<a2<a<-a 4、下列各式中,计算正确的是()A.+=~B.2+=2C.a-b=(a-b)D.=+=2+3=55、在实数中,有()A.最大的数B.最小的数C.绝对值最大的数。
D.绝对值最小的数6、下列说法中正确的是()A.和数轴上一一对应的数是有理数B.数轴上的点可以表示所有的实数C.带根号的数都是无理数D.不带根号的数都不是无理数(7、一个正方形的草坪,面积为658平方米,问这个草坪的周长是()A.B.C.D.8、下列各组数,能作为三角形三条边的是()A.,,<B.,,C.,,D.,, 9、将,,用不等号连接起来为()A.<<B.<<C.<<@D.<<10、用计算器求结果为(保留四个有效数字)()A.B.±C.D.-!11、2nd x2 2 2 5 ) enter显示结果是()A.15B.±15C.-15D.25更多功能介绍、一个正方体的体积为28360立方厘米,正方体的棱长估计为()A.22厘米B.27厘米*C.厘米D.40厘米13、设=,=,下列关系中正确的是()A.a>b B.a≥b C.a<b D.a≤b-14、化简的结果为()A.-5B.5-C.--5D.不能确定15、在无理数,,,中,其中在与之间的有()^A.1个B.2个C.3个D.4个16、的算术平方根在()A.与之间B.与之间,C.与之间D.与之间17、下列说法中,正确的是()A.一个有理数的平方根有两个,它们互为相反数B.一个有理数的立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是-1,0,1。
第二章:实数【无理数】1.定义:无限不循环小数的小数叫做无理数;注:它必须满足“无限”以及“不循环”这两个条件。
2.常见无理数的几种类型:(1)特殊意义的数,如:圆周率以及含有的一些数,如:2-,3等;ππππ(2)特殊结构的数(看似循环而实则不循环):如:2.010 010 001 000 01…(两个1之间依次多1个0)等。
(3)无理数与有理数的和差结果都是无理数。
如:2-是无理数π(4)无理数乘或除以一个不 为0的有理数结果是无理数。
如2,π(5)开方开不尽的数,如:等;应当要注意的是:带根号的数不一定是无理数,39,5,2如:等;无理数也不一定带根号,如:)9π3.有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
例:(1)下列各数:①3.141、②0.33333……、③、④π、⑤、⑥、⑦0.3030003000003…75-252.±32-…(相邻两个3之间0的个数逐次增加2)、其中是有理数的有____;是无理数的有___。
(填序号)(2)有五个数:0.125125…,0.1010010001…,-,,其中无理数有 ( )个π432【算术平方根】:1.定义:如果一个正数x 的平方等于a ,即,那么,这个正数x 就叫做a 的算术平方根,a x =2记为:“”,读作,“根号a”,其中,a 称为被开方数。
例如32=9,那么9的算术平方根a 是3,即。
39=特别规地,0的算术平方根是0,即,负数没有算术平方根00=2.算术平方根具有双重非负性:(1)若 有意义,则被开方数a 是非负数。
(2)算术平方根a 本身是非负数。
3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。
因此,算术平方根只有一个值,并且是非负数,它只表示为:;而平方根具有两a个互为相反数的值,表示为:。
八年级上册数学第二章测试一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是。
是正比例函数,则m的值是2、若函数y= -2x k= 。
m+2。
2),则3、已知一次函数y=kx+5的图象经过点(-1,。
时,,则当x=3y=____ =1时,y=24、已知y与x成正比例,且当x象限。
y=ax+b不经过第 P(a,b)在第二象限,则直线5、点,那么这个一次函数的表达-2)轴的交点坐标是(0,6、已知一次函数y=kx-k+4的图象与y 。
式是______________1,a), B(3,b)在函数y=-3x+4的象上,、已知点A(-则a与b的大小关系是____ 。
728、地面气温是20℃,如果每升高100m,气温下降6℃,则气温t(℃)与高度h(m)的函数关系式是__________。
9、一次函数y=kx+b与y=2x+1平行,且经过点(-3,4),则表达式为:。
10、写出同时具备下列两个条件的一次函数表达式(写出一个即可)。
(1)y随着x的增大而减小,(2)图象经过点(1,-3)。
二、选择题1-111、下列函数(1)y=πx (2)y=2x-1 (3)y= (4)y=2-3x 中,是一次函数的有()xy个(D)1 (C)2个 4(A)个(B)3个3??2xy?、下面哪个点不在函数)的图像上( 1211)(D)(1,2)(C)(3,0),13(A)(-5,)(B)(0.5( ) (第13题图)13、直线y=kx+b在坐标系中的位置如图,则O 2 x1111,b?1k?,b??1k?k,k??b??1??,b?1)B ))(A (C(D)(222214、下列一次函数中,随着增大而减小而的是()y?3xy?3x?2y?3?2xy??3x?2 D))( C()(A)( B15、已知一次函数y=kx+b的图象如图所示,则k,b的符号是( )(A) k>0,b>0 (B) k>0,b<0(C) k<0,b>0 (D) k<0,b<0题图)15(第16、函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m的取值范围是( )33?1?m?m?m??1m??1((A)C)(B)(D)4417、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h (厘米)与燃烧时间t (时)的函数关系的图象是( )) (A) (B) (C)(D图像的是nm nx(m ,是常数,且mn<0)=18、下图中表示一次函数ymx+n与正比例函数y=( ).三、计算题x,且一次函数的图象与,4)、已知一个正比例函数和一个一次函数的图象相交于点19A(10),轴交于点B(3 (1)求这两个函数的解析式; (2)画出它们的图象;y= -6成正比,且当y -2与xx=1时,、已知20 的值a(ax求y与之间的函数关系式 (2)若点,2)在这个函数图象上,求(1)1的图象相交于,的图象经过点、已知一次函数21y=kx+b(-1 -5)y= ,且与正比例函数 x2.点(2,a),求(1)a的值(2)k,b的值(3)这两个函数图象与x轴所围成的三角形的面积。
八年级数学上册第2章2.1~2.3课堂测试卷组卷人: 家长签名:班级:_________________ 姓名:_________________ 座号:________________一. 选择题 (共10小题,答案写在表格内) 题号 1 2 3 4 5 6 7 8 9 10 答案1.下列各式正确的是( * ) A .164=±B .2(3)3-=-C .819±=±D .42-=2.化简2(4)-的结果是( * ) A .4-B .4C .4±D .2±3.若23x =,则x 的值是( * ) A .3-B .3C .9±D .3±4.下列说法不正确的是( * ) A .5的平方根是5± B .425的平方根是25C .0.09的算术平方根是0.3D .6-是36的平方根5.一个正数的平方根分别为:26a +与3a -,则这个正数是( * ) A .1B .4C .9D .166.如图将三个大小不同的正方形如图放置,顶点处两两相接,若正方形A 的面积为16,C 的面积为9,则B 的边长为( * )A .25B .12C .7D .57.将边长分别为1和2的长方形如图剪开,拼成一个与长方形面积相等的正方形,则该正方形的边长是( * )A .2B .2C .1.5D .18.有一列数按如下规律排列:231567,,,,,244163264---⋯ 则第10个数是( * ) A .9102-B .9102 C .10112-D .101129.若2(1)20a b -+-=,则2022()(a b -= * ) A .1B .1-C .0D .202210.有一个数值转换器,原理如下:当输入的9x =时,输出的y 等于( * ) A 9B .9±C 3D .3二.填空题(共15小题) 11.在实数2-,π,2225,3,3.14,无理数有 个.12.在实数2-,π,25 2.1010010001⋯⋯(相邻两个1之间的0的个数依次增加1)中,无理数有 个.13.以下各数:①1-;②2π;8④227; ⑤1.010010001⋯(相邻两个1之间依次多一个0), 其中是无理数的有 .(只填序号)14.2的算术平方根是 ; 2是 的算术平方根.15.16的平方根是,2(6)-的算术平方根是.16.若24m-与31m-是同一个正数a的平方根,则m a+=.17.给出下列说法:①5的平方根是5±;②23的平方根是49;③3-是9的一个平方根;④42=±;⑤0.01的算术平方根是0.1.其中正确的是.18.若21x+=,则26x+的平方根是.19.已知a,b是实数,且|5|280a b++-=,则a b-=.20.已知21a-的平方根是3±,23a b++的算术平方根是4.则2a b-的值为.21.若x,y满足2(2)180x y++-=,则x y+的值是.22.已知2x-的立方根是2-,则31x+的算术平方根是.23.21(1)0a b++-=,则32a b+的立方根为.24.观察分析下列数据,发现其中的规律:0,3-,6,3-,23,15-,32,⋯⋯,则第31个数据是.25.如图,有一个数值转换器,当输入625x=时,输出的y等于.八年级数学上册第2章2.1~2.3课堂测试卷参考答案一. 选择题二.填空题11. 1 12. 2 13. ②⑤③14. ;4.15. 2±16. 5或97 17. ①③⑤18. 2±19. -920. -3 21. 4 22. 5 23. -124. 25.。
第2章三角形选择题训练1.三角形的内角和等于()A.90°B.180°C.270°D.360°2.下列长度的三条线段,能组成三角形的是()A.2,2,4B.5,6,12C.5,7,2D.6,8,103.将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°4.如图,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠C的度数是()A.50°B.60°C.70°D.80°5.判断命题“如果n<1,那么n 2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A.﹣2B.﹣C.0D.6.下列命题是假命题的是()A.平行四边形既是轴对称图形,又是中心对称图形B.同角(或等角)的余角相等C.线段垂直平分线上的点到线段两端的距离相等D.正方形的对角线相等,且互相垂直平分7.若一个等腰三角形的两边长分别为2,4,则第三边的长为()A.2B.3C.4D.2或48.如图,在△ABC中AC=BC,点D和E分别在AB和AC上,且AD=AE.连接DE,过点A的直线GH与DE平行,若∠C=40°,则∠GAD的度数为()A.40°B.45°C.55°D.70°9.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°10.如图,△ABC中,AC=BC<AB.若∠1、∠2分别为∠ABC、∠ACB的外角,则下列角度关系何者正确()A.∠1<∠2B.∠1=∠2C.∠A+∠2<180°D.∠A+∠1>180°11.如图,DE是△ABC的边AB的垂直平分线,D为垂足,DE交AC于点E,且AC=8,BC=5,则△BEC的周长是()A.12B.13C.14D.1512.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50°B.70°C.75°D.80°13.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC14.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A.0.5B.1C.1.5D.215.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为()A.4B.3C.2D.116.如图,在等边三角形ABC中,AE=CD,CE与BD相交于点G,EF⊥BD于点F,若EF=2,则EG的长为()A.B.C.D.417.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙18.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c19.如图,在△ABC中,∠ACB为钝角.用直尺和圆规在边AB上确定一点D.使∠ADC=2∠B,则符合要求的作图痕迹是()A.B.C.D.20.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD21.如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°22.如图,已知AB=AC,AB=5,BC=3,以A,B两点为圆心,大于AB的长为半径画圆弧,两弧相交于点M,N,连接MN与AC相交于点D,则△BDC的周长为()A.8B.10C.11D.1323.通过如下尺规作图,能确定点D是BC边中点的是()A.B.C.D.24.如图,在Rt△ABC中,∠ACB=90°,分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于D、E两点,作直线DE交AB于点F,交BC于点G,连结CF.若AC=3,CG=2,则CF 的长为()A.B.3C.2D.25.如图,AD是△ABC的外角∠EAC的平分线,AD∥BC,∠B=32°,则∠C的度数是()A.64°B.32°C.30°D.40°26.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°27.如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为()A.65°B.70°C.75°D.85°28.下列四个命题:①两直线平行,内错角相等;②对顶角相等;③等腰三角形的两个底角相等;④菱形的对角线互相垂直其中逆命题是真命题的是()A.①②③④B.①③④C.①③D.①29.下列命题是假命题的是()A.三角形两边的和大于第三边B.正六边形的每个中心角都等于60°C.半径为R的圆内接正方形的边长等于RD.只有正方形的外角和等于360°30.下列长度的3根小木棒不能搭成三角形的是()A.2cm,3cm,4cm B.1cm,2cm,3cmC.3cm,4cm,5cm D.4cm,5cm,6cm31.用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.332.如图,∠EOF的顶点O是边长为2的等边△ABC的重心,∠EOF的两边与△ABC的边交于E,F,∠EOF=120°,则∠EOF与△ABC的边所围成阴影部分的面积是()33.如图,墙上钉着三根木条a,b,C,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是()A.5°B.10°C.30°D.70°34.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段DC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S四边形OCED=CD?OE35.已知n是正整数,若一个三角形的3边长分别是n+2、n+8、3n,则满足条件的n的值有()A.4个B.5个C.6个D.7个36.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE 的长是()第2章三角形选择题训练参考答案与试题解析1.【分析】根据三角形的内角和定理进行解答便可.【解答】解:因为三角形的内角和等于180度,故选:B.【点评】本题主要考查了三角形的内角和定理,熟记“三角形的内角和等于180度“是解题的关键.2.【分析】根据三角形两边之和大于第三边可以判断各个选项中的三天线段是否能组成三角形,本题得以解决.【解答】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.【点评】本题考查三角形三边关系,解答本题的关键是明确三角形两边之和大于第三边.3.【分析】利用三角形外角性质(三角形的一个外角等于不相邻的两个内角和)解题或利用三角形内角和解题皆可.【解答】解:如图:∵∠BCA=60°,∠DCE=45°,∴∠2=180°﹣60°﹣45°=75°,∵HF∥BC,∴∠1=∠2=75°,故选:C.【点评】主要考查了一副三角板所对应的角度是60°,45°,30°,90°和三角形外角的性质.本题容易,解法很灵活.4.【分析】由∠B=30°,∠ADC=70°,利用外角的性质求出∠BAD,再利用AD平分∠BAC,求出∠BAC,再利用三角形的内角和,即可求出∠C的度数.【解答】解:∵∠B=30°,∠ADC=70°∴∠BAD=∠ADC﹣∠B=70°﹣30°=40°∵AD平分∠BAC∴∠BAC=2∠BAD=80°∴∠C=180°﹣∠B﹣∠BAC=180°﹣30°﹣80°=70°故选:C.【点评】本题考查了三角形的外角性质定理,角平分线的定义以及三角形的内角和定理,本题较为综合,但难度不大.5.【分析】反例中的n满足n<1,使n 2﹣1≥0,从而对各选项进行判断.【解答】解:当n=﹣2时,满足n<1,但n2﹣1=3>0,所以判断命题“如果n<1,那么n2﹣1<0”是假命题,举出n=﹣2.故选:A.【点评】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.【分析】由平行四边形的性质得出A是假命题;由同角(或等角)的余角相等,得出B是真命题;由线段垂直平分线的性质和正方形的性质得出C、D是真命题,即可得出答案.【解答】解:A.平行四边形既是轴对称图形,又是中心对称图形;假命题;B.同角(或等角)的余角相等;真命题;C.线段垂直平分线上的点到线段两端的距离相等;真命题;D.正方形的对角线相等,且互相垂直平分;真命题;故选:A.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.【分析】分4是腰长与底边两种情况,再根据三角形任意两边之和大于第三边讨论求解即可.【解答】解:①4是腰长时,三角形的三边分别为4、4、2,能组成三角形,所以,第三边为4;②4是底边时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,综上所述,第三边为4.故选:C.【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于要分情况讨论.8.【分析】根据等腰三角形和平行线的性质即可得到结论.【解答】解:∵AC=CB,∠C=40°,∴∠BAC=∠B=(180°﹣40°)=70°,∵AD=AE,∴∠ADE=∠AED=(180°﹣70°)=55°,∵GH∥DE,∴∠GAD=∠ADE=55°,故选:C.【点评】本题考查了等边三角形的性质,平行线的性质,熟练掌握等腰三角形的性质是解题的关键.9.【分析】先根据等腰三角形的性质和三角形的内角和可得∠ACB=75°,由三角形外角的性质可得∠AED的度数,由平行线的性质可得同位角相等,可得结论.【解答】解:∵AB=AC,且∠A=30°,∴∠ACB=75°,在△ADE中,∵∠1=∠A+∠AED=145°,∴∠AED=145°﹣30°=115°,∵a∥b,∴∠AED=∠2+∠ACB,∴∠2=115°﹣75°=40°,故选:C.【点评】本题主要考查了等腰三角形的性质,平行线的性质,题目比较基础,熟练掌握性质是解题的关键.10.【分析】由AC=BC<AB,得∠A=∠ABC<∠ACB,再由三角形的外角性质定理和三角形的内角和可得正确答案.【解答】解:∵AC=BC<AB,∴∠A=∠ABC<∠ACB,∵∠1、∠2分别为∠ABC、∠ACB的外角,∴∠2=∠A+∠ABC,∴∠A+∠2=∠A+∠A+∠ABC<∠ACB+∠A+∠ABC=180°,故选:C.【点评】本题考查了等腰三角形的性质定理,三角形的外角性质定理及三角形的内角和,这些都是一些基础知识点,难度不大.11.【分析】直接利用线段垂直平分线的性质得出AE=BE,进而得出答案.【解答】解:∵DE是△ABC的边AB的垂直平分线,∴AE=BE,∵AC=8,BC=5,∴△BEC的周长是:BE+EC+BC=AE+EC+BC=AC+BC=13.故选:B.【点评】此题主要考查了线段垂直平分线的性质,正确掌握线段垂直平分线的性质是解题关键.12.【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠DAC=70°,故选:B.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.13.【分析】分别判断选项所添加的条件,根据三角形的判定定理:SSS、SAS、AAS进行判断即可.【解答】解:选项A、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加AB=DE可用AAS进行判定,故本选项错误;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选:A.【点评】本题主要考查对全等三角形的判定,平行线的性质等知识点的理解和掌握,熟练地运用全等三角形的判定定理进行证明是解此题的关键,是一个开放型的题目,比较典型.14.【分析】根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出△ADE ≌△CFE,根据全等三角形的性质,得出AD=CF,根据AB=4,CF=3,即可求线段DB的长.【解答】解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB﹣AD=4﹣3=1.故选:B.【点评】本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定△ADE≌△FCE是解此题的关键,解题时注意运用全等三角形的对应边相等,对应角相等.15.【分析】由SAS证明△AOC≌△BOD得出∠OCA=∠ODB,AC=BD,①正确;由全等三角形的性质得出∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,得出∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图所示:则∠OGC=∠OHD=90°,由AAS证明△OCG≌△ODH(AAS),得出OG=OH,由角平分线的判定方法得出MO平分∠BMC,④正确;由∠AOB=∠COD,得出当∠DOM=∠AOM时,OM才平分∠BOC,假设∠DOM=∠AOM,由△AOC ≌△BOD得出∠COM=∠BOM,由MO平分∠BMC得出∠CMO=∠BMO,推出△COM≌△BOM,得OB=OC,而OA=OB,所以OA=OC,而OA>OC,故③错误;即可得出结论.【解答】解:∵∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图2所示:则∠OGC=∠OHD=90°,在△OCG和△ODH中,,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,④正确;∵∠AOB=∠COD,∴当∠DOM=∠AOM时,OM才平分∠BOC,假设∠DOM=∠AOM∵△AOC≌△BOD,∴∠COM=∠BOM,∵MO平分∠BMC,∴∠CMO=∠BMO,在△COM和△BOM中,,∴△COM≌△BOM(ASA),∴OB=OC,∵OA=OB∴OA=OC与OA>OC矛盾,∴③错误;正确的个数有3个;【点评】本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.16.【分析】由等边三角形的性质可得∠ABC=∠BAC=∠ACB=60°,AB=AC=BC,由“SAS”可证∠ACE=∠DBC,由外角的性质可得∠EGF=60°,由直角三角形的性质可求EG的长.【解答】解:∵△ABC是等边三角形∴∠ABC=∠BAC=∠ACB=60°,AB=AC=BC,∵AE=CD,∠BAC=∠ACB,AC=BC∴△AEC≌△CDB(SAS)∴∠ACE=∠DBC,∵∠EGF=∠BCG+∠DBC=∠BCG+∠ACE=∠ACB∴∠EGF=60°,且EF⊥BD∴∠FEG=30°∴EF=FG=2,EG=2FG∴EG=故选:B.【点评】本题考查了全等三角形的判定和性质,等边三角形的性质,直角三角形的性质,求∠EGF =60°是本题的关键.17.【分析】根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.【解答】解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;【点评】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.【分析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF=a+(b﹣c)=a+b﹣c;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,故选:D.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.【分析】由∠ADC=2∠B且∠ADC=∠B+∠BCD知∠B=∠BCD,据此得DB=DC,由线段的中垂线的性质可得答案.【解答】解:∵∠ADC=2∠B且∠ADC=∠B+∠BCD,∴∠B=∠BCD,∴DB=DC,∴点D是线段BC中垂线与AB的交点,故选:B.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握三角形外角的性质、中垂线的性质及其尺规作图.20.【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【解答】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;设∠MOA=∠AOB=∠BON=α,则∠OCD=∠OCM=,∴∠MCD=180°﹣α,又∵∠CMN=∠OCN=α,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.21.【分析】利用等腰三角形的性质和基本作图得到CG⊥AB,则CG平分∠ACB,利用∠A=∠B和三角形内角和计算出∠ACB,从而得到∠BCG的度数.【解答】解:由作法得CG⊥AB,∵AC=BC,∴CG平分∠ACB,∠A=∠B,∵∠ACB=180°﹣40°﹣40°=100°,∴∠BCG=∠ACB=50°.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.22.【分析】利用基本作图得到MN垂直平分AB,利用线段垂直平分线的定义得到DA=DB,然后利用等线段代换得到△BDC的周长=AC+BC.【解答】解:由作法得MN垂直平分AB,∴DA=DB,∴△BDC的周长=DB+DC+BC=DA+DC+BC=AC+BC=5+3=8.故选:A.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.23.【分析】作线段BC的垂直平分线可得线段BC的中点.【解答】解:作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选:A.【点评】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.24.【分析】利用线段垂直平分线的性质得到FB=FC,CG=BG=2,FG⊥BC,再证明BF=CF,则CF 为斜边AB上的中线,然后根据勾股定理计算出AB,从而得到CF的长.【解答】解:由作法得GF垂直平分BC,∴FB=FC,CG=BG=2,FG⊥BC,∵∠ACB=90°,∴FG∥AC,∴BF=CF,∴CF为斜边AB上的中线,∵AB==5,∴CF=AB=.故选:A.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.25.【分析】根据平行线的性质求出∠EAD,根据角平分线的定义得到∠EAC=2∠EAD=64°,根据三角形的外角性质计算即可.【解答】解:∵AD∥BC,∴∠EAD=∠B=32°,∵AD是△ABC的外角∠EAC的平分线,∴∠EAC=2∠EAD=64°,∵∠EAC是△ABC的外角,∴∠C=∠EAC﹣∠B=64°﹣32°=32°,故选:B.【点评】本题考查的是平行线的性质、三角形的外角性质、角平分线的定义,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.26.【分析】根据角平分线的定义得到∠EBM=∠ABC、∠ECM=∠ACM,根据三角形的外角性质计算即可.【解答】解:∵BE是∠ABC的平分线,∴∠EBM=∠ABC,∵CE是外角∠ACM的平分线,∴∠ECM=∠ACM,则∠BEC=∠ECM﹣∠EBM=×(∠ACM﹣∠ABC)=∠A=30°,故选:B.【点评】本题考查的是三角形的外角性质、角平分线的定义,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.27.【分析】根据三角形外角与内角的关系及三角形内角和定理解答.【解答】解:∵DE⊥AB,∠A=35°∴∠AFE=∠CFD=55°,∴∠ACB=∠D+∠CFD=15°+55°=70°.故选:B.【点评】此题考查三角形外角与内角的关系:三角形的一个外角等于和它不相邻的两个内角的和.三角形内角和定理:三角形的三个内角和为180°.28.【分析】首先写出各个命题的逆命题,然后进行判断即可.【解答】解:①两直线平行,内错角相等;其逆命题:内错角相等两直线平行是真命题;②对顶角相等,其逆命题:相等的角是对顶角是假命题;③等腰三角形的两个底角相等,其逆命题:有两个角相等的三角形是等腰三角形是真命题;④菱形的对角线互相垂直,其逆命题:对角线互相垂直的四边形是菱形是假命题;故选:C.【点评】本题主要考查了写一个命题的逆命题的方法,首先要分清命题的条件与结论.29.【分析】利用三角形的三边关系、正多边形的外角和、正多边形的计算及正多边形的外角和分别判断后即可确定正确的选项.【解答】解:A、三角形两边的和大于第三边,正确,是真命题;B、正六边形的每个中心角都等于60°,正确,是真命题;C、半径为R的圆内接正方形的边长等于R,正确,是真命题;D、所有多边形的外角和均为360°,故错误,是假命题,故选:D.【点评】本题考查了命题与定理的知识,解题的关键是了解三角形的三边关系、正多边形的外角和、正多边形的计算及正多边形的外角和等知识,难度不大.30.【分析】看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:A、2+3>4,能构成三角形,不合题意;B、1+2=3,不能构成三角形,符合题意;C、4+3>5,能构成三角形,不合题意;D、4+5>6,能构成三角形,不合题意.故选:B.【点评】此题考查了三角形三边关系,看能否组成三角形的简便方法:看较小的两个数的和能否大于第三个数.31.【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【解答】解:①若a>b,ab>0,则<,真命题;②若ab>0,<,则a>b,真命题;③若a>b,<,则ab>0,真命题;∴组成真命题的个数为3个;故选:D.【点评】本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.32.【分析】连接OB、OC,过点O作ON⊥BC,垂足为N,由点O是等边三角形ABC的内心可以得到∠OBC=∠OCB=30°,结合条件BC=2即可求出△OBC的面积,由∠EOF=∠BOC,从而得到∠EOB=∠FOC,进而可以证到△EOB≌△FOC,因而阴影部分面积等于△OBC的面积.【解答】解:连接OB、OC,过点O作ON⊥BC,垂足为N,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O为△ABC的内心∴∠OBC=∠OBA=∠ABC,∠OCB=∠ACB.∴∠OBA=∠OBC=∠OCB=30°.∴OB=OC.∠BOC=120°,∵ON⊥BC,BC=2,∴BN=NC=1,∴ON=tan∠OBC?BN=×1=,∴S△OBC=BC?ON=.∵∠EOF=∠AOB=120°,∴∠EOF﹣∠BOF=∠AOB﹣∠BOF,即∠EOB=∠FOC.在△EOB和△FOC中,,∴△EOB≌△FOC(ASA).∴S阴影=S△OBC=故选:C.【点评】此题考查了等边三角形的性质、等腰三角形的性质、三角函数的定义、全等三角形的判定与性质、三角形的内心、三角形的内角和定理,有一定的综合性,作出辅助线构建全等三角形是解题的关键.33.【分析】根据对顶角相等求出∠3,根据三角形内角和定理计算,得到答案.【解答】解:∠3=∠2=100°,∴木条a,b所在直线所夹的锐角=180°﹣100°﹣70°=10°,故选:B.【点评】本题考查的是三角形内角和定理、对顶角的性质,掌握三角形内角和等于180°是解题的关键.34.【分析】利用基本作图得出角平分线的作图,进而解答即可.【解答】解:由作图步骤可得:OE是∠AOB的角平分线,∴∠CEO=∠DEO,CM=MD,S四边形OCED=CD?OE,但不能得出∠OCD=∠ECD,故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).35.【分析】分两种情况讨论::①若n+2<n+8≤3n,②若n+2<3n≤n+8,分别依据三角形三边关系进行求解即可.【解答】解:①若n+2<n+8≤3n,则,解得,即4≤n<10,∴正整数n有6个:4,5,6,7,8,9;②若n+2<3n≤n+8,则,解得,即2<n≤4,∴正整数n有2个:3和4;综上所述,满足条件的n的值有7个,故选:D.【点评】本题主要考查了三角形三边关系的运用,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.36.【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.【解答】解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=3.∴DE=EC﹣CD=3﹣1=2故选:B.【点评】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解决问题的关键,学会正确寻找全等三角形,属于中考常考题型.。
八年级数学上册第二章测试题1.一个自然数的算术平方根是x ,则下一个自然数的算术平方根是A. x +1B. x 2+1C. 1+xD. 12+x 2. 如果2(x -2)3=643,则x 等于 A. 21 B. 27 C. 21或27 D. 以上答案都不对3. 已知21+=m ,21-=n ,且)763)(147(22--+-n n a m m =8,则a 的值等于A.-5B.5C.-9D.94. 若a .b 为实数,a ≠b ,ab ≠0,且满足a 2 =3a +1,b 2=3b +1,则a 2 + b 2 为A.7B.9C.10D.115. (-23)2的平方根是A. ±8B. 8C. -8D. 不存在6. 设m=|1|-+x x ,则m 的最小值是A. 0B. 1C. ―1D. 27.下列说法中正确的是A.绝对值最小的实数是零B.实数a 的倒数是1aC.两个无理数的和.差.积.商仍是无理数D.一个数平方根和它本身相等,这个数是0或18. 根式2)3(-的值是A.-3B.3或-3C.3D.99. 如图:数轴上点A 表示的数为x ,则x 2-13的立方根是A. 5-13B. -5-13C. 2D. -210. 下列说法:①无理数是无限不循环小数 ②无理数是带根号的数 ③任意实数都可以开方 ④有理数和无理数都是实数,其中正确的个数是A. 1个B. 2个C. 3个D. 4个11. 将75,75,75三数按从小到大的顺序用“<”号连接起来________. 12. 观察一列等式32+42=52,52+122=132,72+242=252,92+402=412 …请写出第5个这样的式子_______你发现了这些等式所共有的规律了吗?请你用含 n 的式子来表示这个规律________13.|-49|的平方根是__________. -64的立方根是__________. 14. 3641-的相反数是______,-23的倒数是______. 15. 下面由火柴棒拼出的一系列图形中,第n 个图形是由n 个正方形组成的,通过观察可以发现:4=n 3=n 2=n 1=n (1)第四个图形中火柴棒的根数是________;(2)第n 个图形中火柴棒的根数是________。
八年级数学上册练习题【五篇】【导语:】这篇关于八年级数学上册练习题【五篇】的文章,是特地为大家整理的,希望对大家有所帮助!第二章实数一、选择题1.在下列实数中,是无理数的为()(A)0(B)-3.5(C)(D)2.A为数轴上表示-1的点,将点A沿数轴移动3个单位到点B,则点B所表示的实数为().(A)3(B)2(C)-4(D)2或-43.一个数的平方是4,这个数的立方是()(A)8(B)-8(C)8或-8(D)4或-44.实数m、n在数轴上的位置如图1所示,则下列不等关系正确的是()(A)n<m(B)n2<m2(C)n0<m0(D)|n|<|m|5.下列各数中没有平方根的数是()(A)-(-2)(B)3(C)(D)-(2+1)6.下列语句错误的是()(A)的平方根是±(B)-的平方根是-(C)的算术平方根是(D)有两个平方根,它们互为相反数7.下列计算正确的是().(A)(B)(C)(D)—18.估计56的大小应在().(A)5~6之间(B)6~7之间(C)8~9之间(D)7~8之间9.已知,那么()(A)0(B)0或1(C)0或-1(D)0,-1或110.已知为实数,且,则的值为()(A)3(B)(C)1(D)二、填空题11.的平方根是____________,()2的算术平方根是____________。
12.下列实数:,,,︱-1︱,,,0.1010010001……中无理数的个数有个。
13.写出一个3到4之间的无理数。
14.计算:。
15.的相反数是______,绝对值是______。
三、解答题16.计算:17.某位同学的卧室有25平方米,共用了64块正方形的地板砖,问每块砖的边长是多少?18.如图2,一只蚂蚁沿棱长为的正方体表面从顶点A爬到顶点B,则它走过的最短路程为多少?19.如图3,一架长2.5米的梯子,斜靠在一竖直的墙上,这时,梯底距离墙底端0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯子的低端将滑出多少米?20.学校要在一块长方形的土地上进行绿化,已知这块长方形土地的长=5,宽=4(1)求该长方形土地的面积.(精确到0.01)(2)若绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金为多少元?第三章位置与坐标一、选择题1.如图1,小手盖住的点的坐标可能是()(A)(5,2)(B)(-6,3)(C)(―4,―6)(D)(3,-4)2.在平面直角坐标系中,下列各点在第二象限的是()(A)(2,1)(B)(2,-1)(C)(-2,1)(D)(-2,-1)3.点P(—2,3)关于y轴对称的点的坐标是()(A)(—2,—3)(B)(3,—2)(C)(2,3)(D)(2,—3)4.平面直角坐标系内,点A(,)一定不在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限5.如果点P(在轴上,则点P的坐标为()(A)(0,2)(B)(2,0)(C)(4,0)(D)(0,6.已知点P的坐标为(,且点P到两坐标轴的距离相等,则点P的坐标为()(A)(3,3)(B)(3,(C)(6,(D)(3,3)或(6,7.已知点A(2,0)、点B(-,0)、点C(0,1),以A、B、C三点为顶点画平行四边形,则第四个顶点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限8.若P()在第二象限,则Q()在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.如图2是某战役中缴获敌人防御工程的坐标地图碎片,依稀可见:一号暗堡的坐标为(1,2),四号暗堡的坐标为(-3,2).另有情报得知:指挥部坐标为(0,0),你认为敌军指挥部的位置大约是()(A)A处(B)B处(C)C处(D)D处10.以边长为4的正方形的对角线建立平面直角坐标系,其中一个顶点位于轴的负半轴上,则该点坐标为()(A)(2,0)(B)(0,-2)(C)(0,)(D)(0,)二、填空题11.点A在轴上,且与原点的距离为5,则点A的坐标是________.12.如图3,每个小方格都是边长为1个单位长度的正方形,如果用(0,0)表示A点的位置,用(3,4)表示B点的位置,那么用表示C点的位置.13.已知点M,将点M向右平移个单位长度得到N点,则N点的坐标为________.14.第三象限内的点,满足,,则点的坐标是.15.如图4,将AOB绕点O逆时针旋转900,得到。
八年级上册第二章《实数》单元检测题
一、选择题
1、25的平方根是( )
A 、5
B 、-5
C 、±5
D 、5±
2、下列各组数中互为相反数的是( ) A 、2)2(2--与 B 、382--与 C 、2)2(2-与 D 、22与-
3、在下列各数中是无理数的有( )
-0.333…, 4, 5, π-, 3π, 3.1415, 2.010101…(相邻两个1之间有1个0),76.0123456…(小数部分由相继的正整数组成).
A.3个
B.4个
C. 5个
D. 6个
4、下列平方根中,是最简二次根式的是( ) A. 3
1 B. 20 C. 2
2 D. 121 5、下列计算正确的是( ) A.2+3=5 B 、2+2=22 C 、
28=4 D 、22+32=52 6、 下列结论正确的是( ) A.6)6(2-=-- B.9)3(2=- C.16)16(2±=- D.()2552-=--
7、一个长方形的长与宽分别时6cm 、3cm ,它的对角线的长可能是( )
A 、整数
B 、分数
C 、有理数
D 、无理数
8x 必须满足的条件是( )
A .x ≥1
B .x >-1
C .x ≥-1
D .x >1
9.下列命题中:①有理数是有限小数;②有限小数是有理数;③无理数都是无限小数;④无限小数都是无理数;⑤无理数包括正无理数、零、负无理数;⑥无理数都可以用数轴上的点来表示;⑦一个数的算术平方根一定是正数;⑧一个数的立方根一定比这个数小.其中正确的有( )
(A )3个 (B )4个 (C )5个 (D )6个
二、填空题
10、36的平方根是 ; 16的算术平方根是 ;
11、8的立方根是 ; 327-= ;
12、37-的相反数是 ;绝对值等于3的数是 ;
13、=-2)4( ;=-33)6( ; 2)196(= .
14、把下列各数填入集合内:-7, 0.32,
31,46, 0, 8,21,3216,-2π. ①有理数集合: { …}; ②无理数集合: { …}; ③正实数集合: { …}; ④实数集合: { …}.
15.若410,则满足条件的整数a 有__________个.
三、解答题
16、求下列各式的值:
(1)44.1; (2)3027.0-; (3)610-; (4)64
9 ; (5)25241+; 17、化简:
(1)2328-+; (2) 14010
1010-+
(3)
92731-+; (4)0)31(33122-++;
(5)2)75)(75(++-
(6))31)(21(-+
(7)2)3322(-.
18.某种易拉罐呈圆柱状,其底面直径为7 cm ,将6个这样的易拉罐如下图堆放,求这6个易拉罐所占的宽度与高度.。