三角函数的最值问题
- 格式:pdf
- 大小:182.07 KB
- 文档页数:5
三角函数最值问题的常见类型及解法作者:陈德堂来源:《中学课程辅导高考版·教师版》2010年第04期摘要:归纳出三角函数最值问题常见的七种类型及解法。
关键词:三角函数;最值中国分类号:G424 文献标识码:A文章编号:1992-7711(2010)4-015-02一、形如y=a sin x+b cos x型的函数(化归思想)特点是含有正、余弦函数,并且是一次式.解决此类问题的指导思想是把正、余弦函数转化为只有一种三角函数.应用公式y=a2+b2sin(x+φ)即可,其中tanφ=ba.然后利用三角函数的有界性求最值.例1.求函数y=sin x+3cos x,x∈\π2\〗的最值.分析:由于a sin x+b cos x=a2+b2sin(x+φ),其中tanφ=ba,此结论在运用是时需注意自变量x的取值范围.所以y=sin x+3cos x=2sin(x+π3)因为0≤x≤π2;所以x+π3∈\π3,5π6\〗由三角函数的图象或单调性可知y min=1,y max=2.二、形如y=a sin x+b sin x cos x+c cos x2型的函数(化归思想)特点是含有sin x,cos x的二次式,处理方式是降幂,再化为型一的形式来解.例2.求y=sin2+2sin x cos x+3cos2x的最小值,并求y取最小值时的x 的集合.解:y=sin2x+2sin x cos x+3cos2x=(sin2x+cos2x)+sin2x+2cos2x=1+sin2x+1+cos2x=2+2sin(2x+π4)当sin(2x+π4)=-1时,y取最小值2-2,此时x的集合{x|x=kπ-38π,k∈Z}.三、形如y=a sin2x+b cos c+c型的函数(化归思想和换元思想)特点是含有sin x,cos x,并且其中一个是二次,处理方式是应用sin2x+cos2x=1,使函数式只含有一种三角函数,再应用换元法,转化成二次函数来求解.例3.求函数y=cos2x-2a sin x-a(a为常数)的最大值M.解:y=1-sin2x-2a sin x-a=-(sin x+a)2+a2+1-a令sin x=t,则y=-(t+a)2+a2+1-a,(-1≤t≤1)(1)若-a1时, 在t=-1时,取最大值M=a.(2)若-1(3)若-a>1,即a四、形如y=a sin x+cb cos x+d型的函数(化归思想或数形结合思想)特点是一个分式,分子、分母分别会有正、余弦的一次式.几乎所有的分式型都可以通过分子,分母的化简,最后整理成这个形式,它的处理方式有多种.例4.求函数y=2-sin x2-cosx的最大值和最小值.解法1:原解析式即:sin x-y cos x=2-2y,即sin(x+φ)=2-2y1+y2,∵|sin(x+φ)|≤1,∴2-2y1+y2≤1,解出y的范围即可.解法2:2-sin x2-cos x表示的是过点(2, 2)与点(cos x,sin x)的斜率,而点(cos x,sin x)是单位圆上的点,观察图形可以得出在直线与圆相切时取极值.解法3:应用万能公式设t=tan x2,则y=2t2-2t+23t2+1,即(2-3y)t2-2t+2-y=0,根据Δ≥0解出y的最值即可.五、形如y=sin x cos x型的函数(化归思想或不等式思想)它的特点是关于sin x,cos x的二次式,此类函数用均值不等式求解大为简捷.例5.在直角三角三角形中,两锐角为A和B,则sin A sin B()A.有最大值12和最小值0B.有最大值12,但无最小值C.既无最大值也无最小值D.有最大值1,但无最大值解法1:∵A+B=π2,0∴sin A>0,cos A>0,即sin A cos A>0,又sin AsinB=sin A cos A=12sin2A≤12.故选B.解法2:sin A sin B≤sin2A+sin2B2=sin2A+cos2A2=12.又∵A,B≠0,∴选B.六、含有sin x与cos x的和与积型的函数式(换元思想)其特点是含有或经过化简整理后出现sin x±cos x与sin x cos x的式子,处理方式是应用(sin x±cos x)2进行转化,转化为二次函数的问题.例6.求y=2sin x cos x+sin x+cos x的最大值.解:令sin x+cos x=t(-2≤t≤2),则1+2sin x cos x=t2,所以2sin x cos x=t2-1,所以y=t2-1+t=(t+12)2-54,根据二次函数的图象,解出的最大值是1+2.七、形如y=sin x+a sin x型的函数(分类讨论思想)若0由以上的几种形式可以归纳出解三角函数最值的基本方法:一是应用正弦、余弦函数的有界性来求;二是利用二次函数闭区间内求最大、最小值的方法;此外可以利用重要不等式或利用数形结合的方法来解决.。
三角函数中的最值问题(4种方法)基本方法1、直接法:形如f (x )=a sin x +b (或y =a cos x +b ),值域为[-|a |+b ,|a |+b ],形如y=asinx+bcsinx+c 的函数可反解出sinx,利用|sinx|≤1求解,或分离常数法.2、化一法:形如f (x )=a sin x +b cos x ,f (x )=a sin 2x +b cos 2x +c sin x cos x 的函数可化为f (x )=A sin(ωx +φ)的形式,利用正弦函数的有界性求解,给定x 范围时要注意讨论ωx +φ的范围,注意利用单位圆或函数图象.3、换元法:形如f (x )=a sin 2x +b sin x +c 或f (x )=a cos 2x +b sin x +c 或f (x )=a (sin x ±cos x )+b sin x ·cos x 的函数可通过换元转化为二次函数在某区间上的值域求解.4、几何法(数形结合):形如dx c bx a y ++=cos sin 转化为斜率问题,或用反解法.典型例题例1已知函数f (x )=(sin x+cos x )2+cos 2x ,求f (x )在区间.解:(化一法)因为f (x )=sin 2x+cos 2x+2sin x cos x+cos 2x=1+sin 2x+cos 2x=2sin 2 +1,当x ∈0,2 ∈由正弦函数y=sin x 当2x+π4π2,即x=π8时,f (x )取最大值2+1;当2x+π45π4,即x=π2时,f (x )取最小值0.综上,f (x )在0,上的最大值为2+1,最小值为0.例2求函数y =2+sin x +cos x 的最大值.解:(化一法)y =2+2sin(x +π4),当x =π4+2k π(k ∈Z )时,y max =2+2例3求函数f (x )=cos2x +6cos(π2-x )的最大值.解:(换元法)f (x )=1-2sin 2x +6sin x =-2(sin x -32)2+112.令sin x =t ,则t ∈[-1,1],函数y =-2(t -32)2+112在[-1,1]上递增,∴当t =1时,y 最大=5,即f (x )max =5,例4已知x 是三角形的最小内角,求函数y =sin x +cos x -sin x cos x 的最小值.解:(换元法)由0≤x ≤π3,令t =sin x +cos x =2sin(x +π4),又0<x ≤π3,∴π4<x +π4≤712π,得1<t ≤2;又t 2=1+2sin x cos x ,得sin x cos x =t 2-12,得y =t -t 2-12=-12(t -1)2+1,例5已知sin α+sin β=22,求cos α+cos β的取值范围.解:(换元法)令cos α+cos β=t ,则(sin α+sin β)2+(cos α+cos β)2=t 2+12,即2+2cos(α-β)=t 2+12⇒2cos(α-β)=t 2-32,∴-2≤t 2-32≤2⇒-12≤t 2≤72,∴-142≤t ≤142,即-142≤cos α+cos β≤142.例6求函数y =1+sin x3+cos x的值域解法一:(几何法)1+sin x3+cos x可理解为点P (-cos x ,-sin x )与点C (3,1)连线的斜率,点P (-cos x ,-sin x )在单位圆上,如图所示.故t =1+sin x3+cos x满足k CA ≤t ≤k CB ,设过点C (3,1)的直线方程为y -1=k (x -3),即kx -y +1-3k =0.由原点到直线的距离不大于半径1,得|1-3k |k 2+1≤1,解得0≤k ≤34.从而值域为[0,34].解法二:(反解法)由y =1+sin x3+cos x 得sin x -y cos x =3y -1,∴sin(x +φ)=3y -11+y2其中sin φ=-y 1+y 2,cos φ=11+y 2.∴|3y -11+y2|≤1,解得0≤y ≤34.例7求函数y =2sin x +1sin x -2的值域解法一:(分离常数法)y =2sin x +1sin x -2=2+5sin x -2,由于-1≤sin x ≤1,所以-5≤5sin x -2≤-53,∴函数的值域为[-3,13].解法二:(反解法)由y =2sin x +1sin x -2,解得sin x =2y +1y -2,∵-1≤sin x ≤1,∴-1≤2y +1y -2≤1,解得-3≤y ≤13,∴函数的值域为[-3,13].针对训练1.函数y =3-2cos(x +π4)的最大值为____.此时x =____.2.函数xxy cos -3sin -4的最大值为.3.函数f (x )=sin 2x+3cos ∈的最大值是.4.函数y =12+sin x +cos x的最大值是【解析】1.函数y =3-2cos(x +π4)的最大值为3+2=5,此时x +π4=π+2k π(k ∈Z ),即x =3π4+2k π(k ∈Z ).2.解析式表示过A (cos x ,sin x ),B (3,4)的直线的斜率,则过定点(3,4)与单位圆相切时的切线斜率为最值,所以设切线的斜率为k ,则直线方程为y-4=k (x-3),即kx-y-3k+4=+11,∴k max3.由题意可知f (x )=1-cos 2x+3cos x-34=-cos 2x+3cos x+14=-cos -+1.因为x ∈0,cos x ∈[0,1].所以当cos f (x )取得最大值1.4.∵y =12+2sin (x +π4),又2-2≤2+2sin(x +π4)≤2+2∴y ≤12-2=1+22,含参问题一、单选题1.已知函数()sin cos (0,0)62af x x x a πωωω⎛⎫=++>> ⎪⎝⎭,对任意x ∈R ,都有()f x ≤,若()f x 在[0,]π上的值域为3[2,则ω的取值范围是()A.11,63⎡⎤⎢⎥⎣⎦B.12,33⎡⎤⎢⎣⎦C.1,6⎡⎫+∞⎪⎢⎣⎭D.1,12⎡⎤⎢⎥⎣⎦【解析】()sin cos 62af x x x πωω⎛⎫=++ ⎪⎝⎭1cos 2a x x ωω++max ()f x =02a a >∴= ,())3f x x πω∴=+0,0x πω≤≤> ,333x πππωωπ∴≤+≤+,3()2f x ≤ 2233πππωπ∴≤+≤,1163ω∴≤≤.故选:A2.已知函数()()cos 0f x x x ωωω=+>,当()()124f x f x -=时,12x x -最小值为4π,把函数()f x 的图像沿x 轴向右平移6π个单位,得到函数()g x 的图像,关于函数()g x ,下列说法正确的是()A.在,42ππ⎡⎤⎢⎣⎦上是增函数B.其图像关于直线6x π=对称C.在区间,1224ππ⎡⎤-⎢⎥⎣⎦上的值域为[]2,1--D.函数()g x 是奇函数【解析】因()()cos 2sin 06f x x x x πωωωω⎛⎫=+=+> ⎪⎝⎭,当()()124f x f x -=时,12x x -最小值为4π,则()f x 的最小正周期为22T ππω==,即4ω=,所以()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,把函数()f x 的图像沿x 轴向右平移6π个单位,得()2sin 42sin 42cos 46662f x g x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=,所以,()g x 为偶函数,故D 选项不正确;由4,k x k k Z πππ≤≤+∈,即,44k k x k Z πππ+≤≤∈,故()g x 在区间(),44k k k Z πππ+⎡⎤∈⎢⎥⎣⎦上为减函数,所以()g x 在区间,42ππ⎡⎤⎢⎥⎣⎦上为减函数,故A选项不正确;由4,2x k k Z ππ=+∈,即,48k x k Z ππ=+∈,所以()g x 图像关于,48k x k Z ππ=+∈对称,故B选项不正确;当,1224x ππ⎡⎤∈-⎢⎥⎣⎦时,4,36x ππ⎡⎤∈-⎢⎣⎦,则()21g x -≤≤-,所以C 选项正确.故选:C.3.已知函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦,则ω的取值范围是()A.30,2⎛⎤ ⎥⎝⎦B.3,32⎡⎤⎢⎥⎣⎦C.73,2⎡⎤⎢⎥⎣⎦D.57,22⎡⎤⎢⎥⎣⎦【解析】因为0>ω,所以当0,2x π⎡⎤∈⎢⎥⎣⎦时,[,]4424x ππωππω-∈--因为函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦所以52244πωπππ≤-≤,解得332ω≤≤,故选:B.4.已知函数()(2)f x x ϕ=+22ππϕ-≤≤,若()0f x >在5(0,)12π上恒成立,则3(4f π的最大值为()B.0C.D.2-【解析】因为5(0,)12x π∈,故52(,)6x πϕϕϕ+∈+;由()0f x >,即1sin(2)2x ϕ+>-,得722266k x k πππϕπ-+<+<+,k Z ∈,故57(,)(2,2)666k k πππϕϕππ+⊆-++,k Z ∈,故2657266k k πϕπππϕπ⎧≥-+⎪⎪⎨⎪+≤+⎪⎩,解得2263k k πππϕπ-+≤≤+,k Z ∈;又22ππϕ-≤≤,故63ππϕ-≤≤,5.已知曲线()sin cos f x x m x ωω=+,()m R ∈相邻对称轴之间的距离为2π,且函数()f x 在0x x =处取得最大值,则下列命题正确的个数为()①当0,126x ππ⎡⎤∈⎢⎥⎣⎦时,m的取值范围是⎣;②将()f x 的图象向左平移04x 个单位后所对应的函数为偶函数;③函数()()y f x f x =+的最小正周期为π;④函数()()y f x f x =+在区间00,3x x π⎛⎫+ ⎪⎝⎭上有且仅有一个零点.故33()()42f ππϕϕ⎡⎤+++-⎢⎥⎣⎦,故3()4f π的最大值为0.故选:BA.1B.2C.3D.4【解析】函数()f x 的相邻对称轴之间的距离为2π,则周期为22T ππ=⨯=,∴22πωπ==,()sin 2cos 2f x x m x =+)x ϕ=+,其中cos ϕ=,sin ϕ=[0,2)ϕπ∈,()f x 在0x 处取最大值,则022,2x k k Z πϕπ+=+∈,0222k x πϕπ=+-,k Z ∈,①若0[,]126x ππ∈,则[2,2]63k k ππϕππ∈++,1sin 2ϕ≤≤,12解m ≤正确.②如()sin(28f x x π=+,0316x π=时函数取最大值,将()f x 的图象向左平移04x 个单位后得313()sin[2(4)sin(2)1688g x x x πππ=+⨯+=+,不是偶函数,错;③()()y f x f x =+中,()y f x =是最小正周期是π,()y f x =的最小正周期是2π,但()()y f x f x =+的最小正周期还是π,正确;④003[,44x x x ππ∈++时,()()0y f x f x =+=,因此在区间00,3x x π⎛⎫+ ⎪⎝⎭上有无数个零点,错;∴正确的命题有2个.故选:B.6.已知函数()cos 4cos 12=+-xf x x 在区间[0,]π的最小值是()A.-2B.-4C.2D.4【解析】22()cos 4cos 12cos 14cos 12(cos 1)42222x x x x f x x =+-=-+-=+-,由[0,]x π∈知,[0,]22x π∈,cos [0,1]2x ∈,则当x π=时,函数()f x 有最小值min ()2f x =-.故选:A.7.已知()cos31cos xf x x=+,将()f x 的图象向左平移6π个单位,再把所得图象上所有点的横坐标变为原来的12得到()g x 的图象,下列关于函数()g x 的说法中正确的个数为()①函数()g x 的周期为2π;②函数()g x 的值域为[]22-,;③函数()g x 的图象关于12x π=-对称;④函数()g x 的图象关于,024π⎛⎫⎪⎝⎭对称.A.1个B.2个C.3个D.4个【解析】()()cos 2cos311cos cos x x xf x x x+=+=+cos 2cos sin 2sin 12cos 2cos x x x x x x -=+=.即:()2cos 2f x x =且,2x k k Z ππ≠+∈.()2cos(4)3g x x π=+且,62k x k Z ππ≠+∈.①因为函数()g x 的周期为2π,因此①正确.②因为,62k x k Z ππ≠+∈,故() 2.g x ≠-因此②错误.③令4,3x k k Z ππ+=∈,得,124k x k Z ππ=-+∈.故③正确k ππ二、填空题8.函数()2sin()sin()2sin cos 66f x x x x x ππ=-++在区间[0,2π上的值域为__________.【解析】由11(x)sinx cosx)(sinx cosx)sin 2x2222f =-++22312(sin x cos x)sin 2x 44=-+2231sin cos sin 222x x x=-+11cos 2sin 22x x =--+1x )24π=-当[0,]2x π∈时,2[,]444x ππ3π-∈-,则sin(2)[42x π-∈-,所以11(x)[,22f ∈-.故答案为:11[,22-9.若函数()()2cos 2cos 202f x x x πθθ⎛⎫=++<< ⎪⎝⎭的图象过点()0,1M ,则()f x 的值域为__________.【解析】由题意可得()02cos 2cos 02cos 211f θθ=+=+=,得cos 20θ=,02πθ<<,02θπ∴<<,22πθ∴=,则4πθ=,()22cos cos 2cos 22sin 2sin 2sin 12f x x x x x x x π⎛⎫∴=++=-=--+ ⎪⎝⎭2132sin 22x ⎛⎫=-++ ⎪⎝⎭,令[]sin 1,1t x =∈-,则213222y t ⎛⎫=-++ ⎪⎝⎭.当12t =-时,该函数取最大值,即max 32y =,当1t =时,该函数取最小值,即min 3y =-.因此,函数()y f x =的值域为33,2⎡⎤-⎢⎥⎣⎦.故答案为:33,2⎡⎤-⎢⎥⎣⎦.10.函数32()sin 3cos ,32f x x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭的值域为_________.【解析】由题意,可得()3232ππf x sin x 3cos x sin x 3sin x 3,x ,,32⎡⎤=+=-+∈-⎢⎥⎣⎦,令t sinx =,t ⎡⎤∈⎢⎥⎣⎦,即()32g t t 3t 3=-+,t ⎡⎤∈⎢⎥⎣⎦,则()()2g't 3t 6t 3t t 2=-=-,当t 0<<时,()g't 0>,当0t 1<<时,()g't 0>,即()y g t =在⎡⎤⎢⎥⎣⎦为增函数,在[]0,1为减函数,又g ⎛=⎝⎭()g 03=,()g 11=,故函数的值域为:⎤⎥⎣⎦.11.(2019·广东高三月考(文))函数()cos 2|sin |f x x x =+的值域为______.【解析】2219()cos 2|sin |12|sin ||sin |2|sin |48f x x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,所以当1sin 4x =时,()f x 取到最大值98,当sin 1x =时,()f x 取到最小值0,所以()f x 的值域为90,8⎡⎤⎢⎥⎣⎦故答案为:90,8⎡⎤⎢⎥⎣⎦。
三角函数的最值问题 The Standardization Office was revised on the afternoon of December 13, 2020三角函数的最值问题三角函数最值问题散见于不同的章节,或作为问题的背景、或作为单独的数学问题、或作为解题的工具。
今天,我们就求解最值的方法层面展开讨论!一 化为单名函数的形式例1 函数f(x)=x x x x 44sin cos sin 2cos --① 求f(x)得最小正周期;② ⎥⎦⎤⎢⎣⎡∈2,0πx 时,求f(x)的最小值。
解:(1) x x x x x f cos sin 2sin cos )(22--= x x 2sin 2cos -= )222sin 222(cos 2⋅-=x x )42cos(2π+=x ∴ f(x)最小正周期是π=T(2)20π≤≤x ∴ ⎥⎦⎤⎢⎣⎡∈+45,422πππx ∴ 442ππ=+x 即0=x 时最大值是1 ππ=+42x 即83π=x 时最小值是-2 注意① 辅助角公式)sin(cos sin 22ϕ++=+x b a x b x a 的应用② 注意三角函数区间最值的正确取舍二 单名函数的复合型例2 31sin sin =+y x ,求x y 2cos sin -的最值解:∵ x y sin 31sin -= ∴ 1sin 311≤-≤-x ∴ 34sin 32≤≤-x ∴ 1211)21(sin cos sin 22--=-=x x y u ∴ 21sin =x u 的最小值为1211- ; 32sin -=x u 的最大值为94 注意:隐含条件不可忽视!三 关系代换x x cos sin ±与x x cos sin例3 求函数xx x x y cos sin 1cos sin ++=的最值 解:令x x t cos sin += 则 x x t cos sin 12+=∴ )1(211212-=+-=t t t y ∴ 22≤≤-t 且 1≠t∴ )12(21)12(21-≤≤+-y 且 1-≠y注意① 代换要等效 ;② 原函数中对代换量的现定!四 限量代换例4 求函数21x x y -+=的值域解:函数的定义域[]1,1-∈x令 θcos =x , πθ≤≤0 )4sin(2sin cos πθθθ+=+=y ∴ 21≤≤-y注意:限量代换要求对代换量进一步分析并“定性”五 建立关系等式整体带入或转化例5 设A y x =+,求y x sin sin 的最值解:∵ y x y x y x sin sin cos cos )cos(+=- y x y x y x sin sin cos cos )cos(-=+∴ )cos(cos )cos()cos(sin sin 2y x A y x y x y x +-=+--=∴21cos sin sin 21cos +≤≤-A y x A ∴ y x sin sin 最大值为21cos +A , 最小值为21cos -A 注意:找沟通已知与未知的一个或两个函数!练习:1求)3cos(sin 3π++=x x y 的最值 2 Rt ABC ∆中,090=∠C ,求B A sin sin +的最大值 3 求x x y cos sin +=的最大值与最小值4 求x x a x f 2cos sin 42)(--=的最值5已知A y x =+,求y x cos sin 的最值 6 )2sin(5)(ϕ+=x x f 对任意都有)3()3(x f x f +=-ππ (1)求ϕ的最小值;(2)ϕ取最小值时若⎥⎦⎤⎢⎣⎡-∈6,6ππx ,求f(x) 的最小值。
三角函数中的范围与最值问题在三角函数中,角度的范围通常用弧度来表示。
常见的三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。
1. 正弦函数(sin)的取值范围是[-1, 1],其中最大值为1,最小值为-1。
正弦函数的图像是一个周期性的波形,它在0度、180度、360度等整数倍的角度上取到最大值1,在90度、270度等整数倍的角度上取到最小值-1.
2. 余弦函数(cos)的取值范围也是[-1, 1],最大值为1,最小值为-1。
余弦函数的图像与正弦函数相似,但是相位不同,它在90度、270度等整数倍的角度上取到最大值1,在0度、180度、360度等整数倍的角度上取到最小值-1.
3. 正切函数(tan)的取值范围是整个实数集合(无穷),在某些特定角度上可能不存在。
例如,当角度为90度、270度等整数倍时,正切函数不存在。
在其他情况下,正切函数的值在相邻的两个最大值和最小值之间取值。
需要注意的是,在计算机中使用三角函数时,一般使用弧度制而非角度制。
弧度制是以圆的半径为单位来衡量角度的制度,1个弧度等于在半径为1的圆上所对应的弧长。
要将角度转换为弧度,可以使用以下公式:
弧度 = 角度×π / 180
以上是三角函数范围和最值的一般规律,但在具体问题中可
能存在特殊情况,需要根据具体的数学模型或方程来求解。
三角函数最值问题的几种常见解法一 、配方法若函数表达式中只含有正弦函数或余弦函数,切它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理。
例1 函数3cos 3sin 2+--=x x y 的最小值为( ).A . 2B . 0C . 41- D . 6 [分析]本题可通过公式x x 22cos 1sin -=将函数表达式化为2cos 3cos 2+-=x x y ,因含有cosx 的二次式,可换元,令cosx=t ,则,23,112+-=≤≤-t t y t 配方,得41232-⎪⎭⎫ ⎝⎛-=t y , ∴≤≤-,11t 当t=1时,即cosx=1时,0min =y ,选B.例2 求函数y=5sinx+cos2x 的最值[分 析] :观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一。
()48331612,,221sin 683316812,,22,1sin ,1sin 183345sin 21sin 5sin 2sin 21sin 5max min 222=+⨯-=∈+=∴=-=+⨯-=∈-=-=∴≤≤-+⎪⎭⎫ ⎝⎛--=++-=-+=y z k k x x y z k k x x x x x x x x y ππππ 二 、引入辅助角法例3已知函数()R x x x x y ∈+⋅+=1cos sin 23cos 212当函数y 取得最大值时,求自变量x 的集合。
[分析] 此类问题为x c x x b x a y 22cos cos sin sin +⋅+=的三角函数求最值问题,它可通过降次化简整理为x b x a y cos sin +=型求解。
解: ().47,6,2262,4562sin 21452sin 232cos 2121452sin 432cos 41122sin 2322cos 121max =∈+=∴+=+∴+⎪⎭⎫ ⎝⎛+=+⎪⎪⎭⎫ ⎝⎛+=++=+⋅++⋅=y z k k x k x x x x x x x x y ππππππ三 、利用三角函数的有界性在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法。
1三角函数最值问题的几种常见解法一 配方法 例1 函数3sin 3cos 2+--=x x y 的最小值为及y=4cos 5sin 2-+x 的最小值和最大值例2 求函数y=5sinx+cos2x 的最值 二 引入辅助角法 例3已知函数()R x x x x y ∈+⋅+=1cos sin 23cos212当函数y 取得最大值时,求自变量x 的集合。
三 利用三角函数的有界性 例4求函数1cos 21cos 2-+=x x y 的值域 函数 y=3cos 4cos 2++x x例5 (2003年高考题)已知函数())cos (sin sin 2x x x x f +=,求函数f(x)的最小正周期和最大值。
四 引入参数法(换元法)例6 求函数y=sinx+cosx+sinxcosx 的最大值。
练习 求函数的最值。
五 利用基本不等式法 和利用均值不等式求解的最值 例7(1)函数的最值;(2) 求函数的最值。
(3)求函数xxy 22cos4sin1+=的最值。
六 利用函数在区间内的单调性 例8 已知()π,0∈x ,求函数xx y sin 2sin +=的最小值。
七 数形结合 例9 求函数()π<<--=x xx y 0cos 2sin 的最小值。
八 判别式法 例10 求函数xx x x y tan sectan sec 22+-=的最值。
2九 分类讨论法 例 11 设()⎪⎭⎫ ⎝⎛≤≤--+-=20214sin cos 2πx a x a x x f ,用a 表示f(x)的最大值M(a).三角函数 最值1设M 和m 分别表示函数1cos 31-=x y 的最大值和最小值,则M+m等于( )(A )32(B )32-(C ) 34-(D )-2(2003北京春季)2、函数f(x)=2sin 1sin 3+-x x 的最大值是,最小值是3 求函数f(θ)=2cos 1--θθSin 的最大值与最小值是什么?(两种方法解答)4求函数278cos 2[,]63sin y x x x ππ=--∈-,的值域5、(2000年高考)已知:212cos 12siny x x x x R =+⋅+∈,,求y 的最大值及此时x 的集合. .6、(90年高考)求函数sin cos sin cos y x x x x =++的最小值.37:已知[]πθ,0∈,f (θ)=sin(cos θ)的最大值为a,最小值为b ,g(θ)=cos(sin θ)的最大值为c,最小值为d,则a,b,c,d 的大小顺序为 。
三角函数中几何的最值问题引言三角函数是数学中的重要概念,广泛应用于几何学中。
在解决几何问题时,我们常常会遇到三角函数的最值问题,即要找到某个三角函数的最大或最小值。
本文将介绍三角函数中几何的最值问题的一些基本概念和解题策略。
基本概念在三角函数中,最常见的三角函数包括正弦函数(sin)和余弦函数(cos)。
这些函数可以表示角度和三角形的关系。
对于给定的角度,正弦函数返回对应的三角形的对边与斜边的比值,余弦函数返回对应的三角形的邻边与斜边的比值。
最大值和最小值在解决三角函数的最值问题时,我们通常需要找到某个角度范围内的最大值或最小值。
这可以通过观察函数的图像或分析函数的性质来确定。
例如,正弦函数和余弦函数的取值范围都在-1到1之间,因此它们的最大值和最小值都在这个范围内。
解题策略要解决三角函数中几何的最值问题,可以采用以下简单的策略:1. 观察函数的图像:通过绘制函数的图像,可以直观地观察到函数的最值点,并确定最大值或最小值的位置。
2. 使用性质和公式:三角函数有许多重要的性质和公式,可以用来简化问题。
例如,利用正弦函数和余弦函数的周期性可以帮助我们找到最值点。
3. 列出方程求解:有时候,我们需要利用数学结论和方程求解来找到最值点。
例如,如果要求解正弦函数的最大值,可以列出导数为零的方程,并求解得到最值点。
结论三角函数中几何的最值问题是几何学和三角函数的重要应用之一。
通过观察函数的图像、使用性质和公式以及列出方程求解,我们可以解决这些问题,并找到最大值和最小值的位置。
在解题过程中,需要注意使用简单的策略,并避免复杂的法律问题的引入。
上述是三角函数中几何的最值问题的概述,希望对您有所帮助。
如需更多详细的信息和例题,请参考相关数学教材或咨询数学教师。
三角函数的最值问题
河南省漯河实验高中张银焕
高中数学中,函数的最值是比较重要的内容之一,并且一直是各类考试的热点问题。
同样,三角函数的最大值,最小值也是非常重要的。
从近几年的高考试卷中可以看到,三角函数的最值问题是高考中一个重要内容。
在学习和教学中发现三角函数最值问题不仅仅是一个热点问题,也是一个难点问题。
一、三角函数最值问题的常见类型
1.1y=acosx+bsinx 型.
通常是化为y=22b a +sin(x+a),其中(tanΦ=
a b ).这种类型可借助三角函数的值域来求最值.
例1当-2π≤x≤2
π时,函数f(x)=sinx+3cosx 的最值是什么?
分析f(x)=2(
12cosx)=2sin(x+3π).由-2π≤x≤2π,可得–6π≤x+3π≤56π,所以–12≤sin(x+3
π)≤1.所以-1≤f(x)≤2.
所以f(x)的最大值是2、最小值是-1.
1.2y=sin sin c x d a x b
++型.通常是先解出sinx=d by ay c −−后,再解出不等式|d by ay c
−−|≤1得出y 的范围.例2求y=2sin 1sin 2
x x −+的最值.分析由y=2sin 1sin 2x x −+,解得sinx=212y y −−−.再有|212
y y −−−|≤1,解得-3≤y≤13
.所以y 的最大值是
13、最小值是-3.1.3y=cos sin c x d a x b
++型.通常是将原式化为aysinx-ccosx=d-by,即22)(c
ay +sin(x-Φ)=d-by.得
sin(x-Φ)≤|1|≤1,得出
y 的范围.
例3
求函数y=
12sin cos x x ++的最大值.分析由y=12sin cos x x ++,知y≠0.于是原式可以化为ysinx+ycosx=1-2y,即2ysin(x+4π)=1-2y.
∵y≠0,∴sin(x+
4π)=.解得≤y≤1+.
所以y 的最大值是.1.4y=asin 2x+bsinx+c(或y=acos 2x+bcosx+c)型.
通常用配方法求最值,但是应该注意条件-1≤sinx1≤以及对称轴与区间[-1,1]的位置关系.
例4求函数y=cos 2x-2asinx-a.(a 为定值)的最大值M.
分析
y=cos 2x-2asinx-a=1-sin 2x-2asinx-a=-(sinx+a)2+a 2-a+1.(1)
若a>1,则sinx=-1时,M=-(-1+a)2+a 2-a+1=a.(2)
若a<-1,则sinx=1时,M=-(1+a)2+a 2
-a+1=-3a.(3)若-1≤a≤1,则sinx=a 时,M=a 2-a+1.1.5
y=asin 2x+bsinxcosx+ccos 2x 型.通常是运用降幂公式、倍角公式整理后化为y=acosx+bsinx 型.例5若0≤θ≤π,且f(θ)=53cos 2θ+3sin 2θ-4sinθcosθ,
求f(θ)的最大值和最小值.
分析利用降幂公式可得:f(θ)=−−++22cos 1322cos 13
5θθ)23
sin(4332sin 2θπθ−+=.由0≤θ≤π,可得-53π<3π-2θ≤3
π.所以-1≤sin(3π-2θ)≤1.所以f(θ)的最大值是33+4、最小值是33-4.
1.6y=sinxcos 2x 型.
通常是用均值不等式求解.
例6已知sin 2α+sin 2β+sin 2
γ=1(α、β、γ为锐角),那么cosαcosβcosγ最大值是什么?
分析
由sin 2α+sin 2β+sin 2γ=1,得sin 2α+sin 2β=cos 2γ.那么cos 2αcos 2βcos 2γ=cos 2αcos 2β(sin 2α+sin 2β)≤(3sin sin cos cos 2222βαβα+++)3=827
.
所以.1.7f(sinx±cosx、sinxcosx)型.
通常是用和差换元的方法化为二次函数问题.
例7求函数y=sinxcosx+sinx+cosx 的最大值.
分析设sinx+cosx=t(|t|≤2),则sinxcosx=212t −.这样y=212t −+t=12
(t+1)2-1(-2≤t≤2).所以t=2时y 的最大值是12(2+1)2-1=2+12
.二、三角函数最值问题的常见错误.
最值问题是中学数学中很常见,很重要的体型,也是高考的热点,此类问题在代数、三角、立体几何和解析几何中屡屡出现,它的解法灵活多变,在学习中发现大家在解题时常常出现错误,而且有的还相当隐蔽,现列举解三角函数最值时常见错误加以分析仅供参考。
2.1
忽视隐含条件.例8已知3sin 2x+2cos 2y=2sinx,求sin 2x+cos 2y 的最值.
错解由已知得cos 2y=sinx-2
3sin 2x(*).所以sin 2x+cos 2y=-21sin 2x+sinx=-2
1)1(sin 212+−x .所以当sinx=1时,sin 2x+cos 2y 的最大值是2
1.
当sinx=-1时sin 2x+cos 2
y 的最小值是-2
3.剖析如果取sinx=-1,由已知得cos 2y=-2
5,矛盾.其原因是从(*)中挖掘出隐含条件0≤sinx≤3
2.正解由已知得cos 2y=sinx-23sin 2x,因为cos 2y≥0,所以sinx-23sin 2x ≥0.
所以0≤sinx≤
32.所以sin 2x+cos 2y=21sin 2x+sinx=-2
1)1(sin 212+−x .所以当sinx=32时,sin 2x+cos 2y 的最大值是94.当sinx=0时,sin 2x+cos 2
y 的最小值是0.2.3滥用基本不等式.
用不等式解最值问题是,往往因为误用“和”与“积”的最值定理,不考虑等式有无成立的可能,运用不等式的传递性时忽视前后等式成立的条件是否一致,这都可能导致错误结论.
例9.求函数y=x x x x 2222sec cos csc sin +++的最小值.
误解y=x x x x 2222sec cos csc sin +++,误认为
42cos 1cos sec cos ,2sin 1sin csc sin min 22222222=∴≥+=+≥+
≥+y x
x x x x x x x 这里没有考虑等号成立的条件上面两式不可能同时取等号,所以得出错误的解.
正解5
5cot tan 3csc sec 1min 2222==≥++=++=y k x x x x x y 时,即当π三角函数最值是中学教学的一个重要内容,加强这一内容的教学有助于进一步掌握已经学过的三角的知识,沟通三角、代数、几何之间的联系,培养思维能力,把三角函数最值的基本体型,解题方法以及常见的错误综合在一起,有利于触类旁通,举一反三,从而也避免了易出现的错误!此论文有不足之处望多多指教!
三角函数的最值问题
作者:张银焕
作者单位:河南省漯河实验高中
刊名:
中学生导报(教学研究)
英文刊名:Zhong Xue Sheng Dao Bao(Jiao Xue Yan Jiu)
年,卷(期):2011(16)
本文链接:/Periodical_zxsdb-jxyj201116015.aspx。