两相步进电机接线及电流设置方法
- 格式:docx
- 大小:11.18 KB
- 文档页数:3
Q2HB44MC二相混合式步进电机驱动器使用说明1.引言:2.驱动器连接:将电机的四个电源线(两个相位)连接到驱动器的输出端子上。
请注意线缆的正确极性连接,以免损坏驱动器或电机。
另外,在连接线缆之前,请确保驱动器和电机的电源已关闭。
3.电源设置:驱动器需要一个外部电源供电。
请根据电机的额定电压选择合适的电源,并将其连接到驱动器的电源输入端子上。
在接通电源之前,先检查一下电源的稳定性和电压是否匹配。
4.步进模式设置:Q2HB44MC(D)驱动器支持全步进和微步进模式。
通过设置驱动器的配置开关,可以选择不同的步进模式。
全步进模式适合一些不需要太高精度控制的应用,而微步进模式则可以提供更高的分辨率和平滑度。
请根据具体需求选择合适的步进模式。
5.步进角度和细分设置:步进电机的角度取决于其旋转电磁铁极对数和步进模式。
通过设置驱动器的细分开关,可以将一次步进划分为更小的步进角度,从而提供更高的精度。
请根据实际需求选择合适的细分设置。
6.保护和故障检测:Q2HB44MC(D)驱动器具有过流和过热保护功能。
当电机过流或过热时,驱动器会自动关闭输出信号,以保护驱动器和电机。
此外,驱动器还支持故障检测功能,可以检测到电机的缺相、断线等故障情况。
如果发生故障,请及时处理并排除故障。
7.反向运动控制:8.外部信号输入和输出:驱动器具有多个外部信号输入和输出端口,可以与控制器或其他外部设备进行通信。
通过这些外部信号,可以实现各种控制功能,如启动/停止信号、速度控制信号等。
请参考驱动器的技术手册,了解每个信号端口的具体功能和使用方法。
总结:Q2HB44MC(D)二相混合式步进电机驱动器是一款功能强大的驱动器,适用于各种步进电机控制应用。
通过合理设置驱动器的参数和模式,可以实现高精度的步进电机运动控制。
请仔细阅读驱动器的技术手册,并根据具体需求进行相应的设置和调整,以获得最佳的控制效果。
MS-09B两相细分步进驱动器电流与配套步进电机及步距角的设置说明MS-09B两相细分步进驱动器用于盘带绣机型Z型绣机构和抬压脚机构。
MS-09B两相细分步进驱动器内有一个6位DIP开关,改变DIP开关的位置可以调节驱动器的输出电流和步进电机的步距角。
请您在进行DIP开关设置之前,仔细阅读表后的特别提示。
一、前4位DIP开关设定驱动器的输出电流,二者的对应关系表如下:特别提示:必须使驱动器的输出电流与步进电机的额定电流相匹配,在力矩足够的条件下,推荐使用尽可能小的电流档。
※盘带绣机型Z型绣机构和抬压脚机构应选用额定电流300mA的步进电机。
对于特种绣头数在2-22头范围内的机型,驱动器的输出电流可按下面公式进行计算。
驱动器输出电流=110mA×特种绣头数例如:特种绣头数为16头,110mA×16=1760mA。
那么,驱动器输出电流就应按1.8A 设置,4位DIP开关设置应为ON OFF OFF ON。
二、DIP开关的第5位用于设置电机的步距角,具体如下:注:1、X表示为ON或OFF均可。
2、DIP开关第5位的缺省设置为ON,即步距角设置为0.9。
特别提示:盘带绣机型Z型绣机构和抬压脚机构用步进驱动器,DIP开关第5位应设置为ON。
三、DIP开关的第6位用于设置主板给出的小电流信号是半流信号还是零电流信号。
具体如下:注:1、X表示为ON或OFF均可。
2、DIP开关第6位的缺省设置为ON,即小电流信号是半流信号。
3、出厂时统一设置为:即驱动器输出电流设定为0.3A,电机步距角设定为0.9度,主板给出的小电流信号是半流信号。
特别提示:盘带绣机型Z型绣机构用步进驱动器,DIP开关第6位应设置为ON。
盘带绣机型抬压脚机构用步进驱动器,DIP开关第6位根据需求进行设置。
两相步进电机控制程序一、初始化设置在控制步进电机之前,需要进行一些初始化设置。
这包括:1. 配置微控制器:选择适合的微控制器,并为其分配必要的资源和接口。
2. 电机参数设定:根据步进电机的规格和性能,设定合适的参数,如步进角度、驱动电流等。
3. 接口配置:配置微控制器与步进电机驱动器之间的接口,包括电源、信号线等。
二、电机驱动脉冲生成为了使步进电机按照设定的方向和步数转动,需要生成合适的驱动脉冲。
这通常通过微控制器实现,具体步骤如下:1. 确定目标位置:根据应用需求,确定步进电机需要转到的目标位置。
2. 计算步数:根据目标位置和步进电机的步进角度,计算出需要转动的步数。
3. 生成驱动脉冲:根据步数和电机的工作模式(单拍、双拍等),生成合适的驱动脉冲序列。
三、电机方向控制步进电机的方向可以通过改变驱动脉冲的顺序来控制。
一般来说,有两种方式来控制电机的方向:1. 通过改变脉冲的顺序:正向或反向发送脉冲序列,可以控制电机向正向或反向转动。
2. 通过使用不同的工作模式:一些步进电机驱动器支持不同的工作模式,如全步、半步、1/4步等。
通过选择不同的工作模式,可以改变电机的转动方向和速度。
四、电机速度调节调节步进电机的速度可以通过改变驱动脉冲的频率来实现。
一般来说,脉冲频率越高,电机转速越快。
同时,也可以通过改变工作模式来调节电机的速度。
五、电机状态监测与保护为了确保步进电机的安全运行,需要实时监测电机的状态,并进行必要的保护措施。
这包括:1. 温度监测:监测电机的温度,防止过热。
2. 电流监测:监测电机的驱动电流,防止过流。
3. 位置监测:通过编码器等传感器监测电机的实际位置,防止位置丢失或错误。
4. 故障诊断:通过分析监测数据,判断电机是否出现故障,并采取相应的处理措施。
六、异常处理与故障诊断为了提高控制程序的鲁棒性,需要设计异常处理与故障诊断机制。
这包括:1. 异常情况检测:通过分析监测数据和运行状态,检测出异常情况。
两相步进电机接线颜色
在实际的步进电机接线过程中,了解和正确连接电机的颜色对于确保电机正常运行至关重要。
步进电机通常使用四线或六线连接方法,其中最常见的是两相步进电机。
对于两相步进电机,一般有四根线,其中两根是同一相的,另外两根是另一相的。
首先,我们需要了解两相步进电机的电机线颜色含义。
在步进电机的四根线中,通常会有红色、绿色、蓝色和黑色。
其中,红色和蓝色是一组,代表一相;绿色和黑色是一组,代表另一相。
接下来是正确的接线方法。
对于两相步进电机,通常分为A相和B相两组。
一种常见的连接方法是将红色线连接到驱动器的A+端口,将蓝色线连接到A-端口;将绿色线连接到B+端口,将黑色线连接到B-端口。
这种连接方法可以确保电机在驱动器的控制下正常运转。
此外,还有一种常见的连接方法是将红色线连接到驱动器的A+端口,将绿色线连接到A-端口;将蓝色线连接到B+端口,将黑色线连接到B-端口。
这种连接方法与前一种方法相比只是A相和B相的线顺序调换了,但同样可以确保电机正常运行。
需要注意的是,在接线过程中务必确保连接的安全可靠,避免短路或断路等问题发生。
另外,在接线完成后,可以通过手动旋转电机轴来检查电机是否正常工作。
如果电机无法正常转动,需要重新检查接线是否正确连接或者检查电机是否存在其他问题。
总的来说,了解两相步进电机的接线颜色以及正确的接线方法是确保电机正常运行的关键。
通过按照正确的连接方法连接电机的各色线,可以有效避免接线错误导致的问题,同时也可以更好地控制和操作步进电机。
希望本文对您在步进电机接线过程中有所帮助。
1。
二相电机正反转接线图二相电机正反转接线实物图本文主要是关于二相电机的相关介绍,并着重对二相电机正反转接线进行了详尽的阐述。
单相电机单相电机一般是指用单相交流电源(AC220V)供电的小功率单相异步电动机。
这种电机通常在定子上有两相绕组,转子是普通鼠笼型的。
两相绕组在定子上的分布以及供电情况的不同,可以产生不同的起动特性和运行特性。
工作原理当单相正弦电流通过定子绕组时,电机就会产生一个交变磁场,这个磁场的强弱和方向随时间作正弦规律变化,但在空间方位上是固定的,所以又称这个磁场是交变脉动磁场。
这个交变脉动磁场可分解为两个以相同转速、旋转方向互为相反的旋转磁场,当转子静止时,这两个旋转磁场在转子中产生两个大小相等、方向相反的转矩,使得合成转矩为零,所以电机无法旋转。
当我们用外力使电动机向某一方向旋转时(如顺时针方向旋转),这时转子与顺时针旋转方向的旋转磁场间的切割磁力线运动变小;转子与逆时针旋转方向的旋转磁场间的切割磁力线运动变大。
这样平衡就打破了,转子所产生的总的电磁转矩将不再是零,转子将顺着推动方向旋转起来。
要使单相电机能自动旋转起来,我们可在定子中加上一个起动绕组,起动绕组与主绕组在空间上相差90度,起动绕组要串接一个合适的电容,使得与主绕组的电流在相位上近似相差90度,即所谓的分相原理。
这样两个在时间上相差90度的电流通入两个在空间上相差90度的绕组,将会在空间上产生(两相)旋转磁场,在这个旋转磁场作用下,转子就能自动起动,起动后,待转速升到一定时,借助于一个安装在转子上的离心开关或其他自动控制装置将起动绕组断开,正常工作时只有主绕组工作。
因此,起动绕组可以做成短时工作方式。
但有很多时候,起动绕组并不断开,我们称这种电机为单相电机,要改变这种电机的转向,只要把辅助绕组的接线端头调换一下即可。
在单相电动机中,产生旋转磁场的另一种方法称为罩极法,又称单相罩极式电动机。
此种电动机定子做成凸极式的,有两极和四极两种。
通过上图可知,A,~A是联通的,B和~B是联通。
那么,A和~A是一组a,B和~B是一组b。
不管是两相四相,四相五线,四相六线步进电机。
内部构造都是如此。
至于究竟是四线,五线,还是六线。
就要看A和~A之间,B和B~之间有没有公共端com抽线。
如果a组和b 组各自有一个com端,则该步进电机六线,如果a和b组的公共端连在一起,则是5线的。
所以,要弄清步进电机如何接线,只需把a组和b组分开。
用万用表打。
四线:由于四线没有com公共抽线,所以,a和b组是绝对绝缘的,不连通的。
所以,用万用表测,不连通的是一组。
五线:由于五线中,a和b组的公共端是连接在一起的。
用万用表测,当发现有一根线和其他几根线的电阻是相当的,那么,这根线就是公共com端。
对于驱动五线步进电机,公共com端不连接也是可以驱动步进电机的。
六线:a和b组的公共抽线com端是不连通的。
同样,用万用表测电阻,发现其中一根线和其他两根线阻止是一样的,那么这根线是com端,另2根线就属于一组。
对于驱动四相六线步进电机,两根公共com端不接先也可以驱动该步进电机的。
步进电机相关概念:相数:产生不同对极N、S磁场的激磁线圈对数。
常用m表示。
拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A.步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。
θ=360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。
四拍运行时步距角为θ=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=0.9度(俗称半步)。
定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的)静转矩:电机在额定静态电作用下,电机不作旋转运动时,电机转轴的锁定力矩。
2相四线,四相五线,四相六线步进电机接线及驱动方法步进电机原理按照常理来说,步进电机接线要根据线的颜色来区分接线 的步进电机,线的颜色不一样。
特别是国外的步进电机那么,步进电机接线应该用万用表打表。
~B 是一组b o 不管是两相四相,四相五线,四相六线步进电机。
内部构造都是如此。
至于究竟是四线,五线,还是六线。
就要看 A 和~A 之间,B 和B~之间有没有公共端com 抽线。
如果a 组和b 组各自有一个com 端,则该步进电机六线,如果 a 和b 组的公 共端连在一起,则是 5 线的。
但是不同公司生产B 和~B 是联通。
那么, A 和~A 是一组a , B 和通过上图可知,A, ~A 是联通的,步进电机内部构造如下图所以,要弄清步进电机如何接线,只需把 a 组和 b 组分开。
用万用表打。
四线:由于四线没有com公共抽线,所以,a和b组是绝对绝缘的,不连通的。
所以,用万用表测,不连通的是一组。
五线:由于五线中,a和b组的公共端是连接在一起的。
用万用表测,当发现有一根线和其他几根线的电阻是相当的,那么,这根线就是公共com端。
对于驱动五线步进电机,公共com端不连接也是可以驱动步进电机的。
六线:a和b组的公共抽线com端是不连通的。
同样,用万用表测电阻,发现其中一根线和其他两根线阻止是一样的,那么这根线是com端,另2根线就属于一组。
对于驱动四相六线步进电机,两根公共com端不接先也可以驱动该步进电机的。
步进电机相关概念:相数:产生不同对极N S磁场的激磁线圈对数。
常用m表示。
拍数: 完成一个磁场周期性变化所需脉冲数或导电状态用n 表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD- DA-AB四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A.步距角:对应一个脉冲信号,电机转子转过的角位移用9表示。
B =360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。
随着微电子信息技术的发展进步,步进电机设备被广泛应用于社会生活的各个领域中。
有用户反映在使用两相步进电机时发现步进电机的转矩小,或达不到额定标称的转矩值,这时就只好加大步进电机的尺寸和标称电流,以满足动力要求。
其实有的时候并不是电机的问题,而是在步进电机选择或驱动器工作电流的设定上有不妥之处,没有发挥出步进电机的最大效率而造成。
下面维科特将给您详细讲解分析为何会出现这样的情况:先从步进电机驱动器方面考虑,目前大多数两相步进电机的驱动器是采用全桥输出的四线接法,如果两相步进电机也是四线的,驱动器按照电机的标称电流设定,应该说是正确的,而且效率最高,输出转矩能够达到最大值。
目前,新生产的步进电机大多是这种形式的。
一般步进电机标注的电流是相电流(或电阻),就是每组线圈的电流值(或电阻),如果两相六线制步进电机采用第一种接法,相当于将两组线圈串联起来,那么其每相电阻加大,额定工作电流减小,即使驱动器设置成标称电流也达不到各相的额定输出值。
所以在选用驱动器和步进电机时出现电流匹配问题。
步进电机厂家建议正确的方法是应将驱动器的输出电流设定为步进电机额定相电流的0.7倍(也不是通常认为串联起来的电流减半)。
两相六线制的步进电机有两种接法,第一种是舍弃中心抽头接两端,实际就是将每组的两个相线圈串联起来使用,电机堵转矩大和效率高些,但是高速性能差。
第二种是接中心抽头和一端,这种接法电机高速性能好些,但是每相有一组线圈空闲,堵转矩小和效率低些。
目前大多是采用第一种接线方法。
这就出现一个问题,两相驱动器的电流到底应该设置多大正确,一般都是按电机标称电流值来设定,这就出现了前面提到的电机效率问题。
两相八线制的步进电机接法也有两种,第一种是将每两组线圈串联使用,这样驱动器的电流也是设定为电机相电流的0.7倍,这种接法电机发热量小,但是高转速性能差些。
第二种接法是将每两组线圈并联使用,驱动器的电流设定为电机相电流的1.4倍,其优点是高转速性能好些,但是电机发热量大,但是步进电机有点温度是正常的,只要低于电机的消磁温度就行,一般步进电机的消磁温度在105度左右。
两相电机的接线方法
两相电机接线方法通常是指三相电机在缺少一相时(即单相运行或启动),通过增加电容或其他启动装置,模拟出类似于两相交流电源的效果来实现电机的启动和运行。
以下是一般情况下两相电机(这里可以理解为单相电机通过电容起动形成类似两相效果)的接线步骤:
1.单相电机带电容启动接线:
-单相电机通常有六个接线端子,其中两个用于连接启动电容,另两个直接连接到电源。
-启动电容通常与主绕组串联以产生旋转磁场,而运行电容(如果适用的话)则可能并联接入主绕组或使用不同的接线方式。
-根据电机内部设计,将启动电容的一端接到主线圈的一个端子上,另一端接到另一个端子或者专用的启动开关上。
-然后,主线圈的剩余端子会通过倒顺开关等控制设备与电源相连,以改变电流方向实现正反转控制。
2.两相交流电机正常接线:
-如果是真正的两相交流电机,则需要按照电机铭牌上的额定电压和相序正确连接到两相电源。
-一般情况下,两相电机有四根引线,分别对应两个不同相位的线圈。
-将每相线圈的一端分别连接到两相电源上,确保相序正确,并且根据电机是否需要正反转功能选择合适的控制装置进行连接。
两相步进电机接线方法步进电机是一种常见的电动机类型,广泛应用于各种自动化设备中。
其中,两相步进电机是一种常见型号,具有较简单的接线方法,适用于许多应用场景。
在进行两相步进电机的接线时,正确的操作能够确保电机正常运行,提高设备的稳定性和可靠性。
两相步进电机的工作原理首先,我们来了解一下两相步进电机的工作原理。
两相步进电机由两组线圈(A相和B相)组成,通过改变不同线圈通电的极性以及电流来控制电机的转动。
当电流流入线圈时,会在电机内部产生磁场,从而使得电机转动到特定的位置。
通过控制电流的大小和极性,可以控制电机的转动方向和步距角度,从而实现精确定位和控制。
两相步进电机的接线方法在进行两相步进电机的接线时,需要将电机绕组和驱动器正确地连接起来,以确保电机能够正常工作。
常见的两相步进电机接线方法有以下几种:•串联接线法:将A相的两端分别接到驱动器的一个端口上,同理将B相的两端接到另一个端口上。
这样可以简化接线,但需要注意保持A相和B相线圈之间没有短路。
•并联接线法:将A相和B相各自的两端并联在一起,然后将并联后的A相和B相分别接到驱动器的两个端口上。
这样可以减小线圈电阻,提高电机的响应速度。
•混合接线法:将A相的一端接到驱动器的一个端口上,另一端与B相的一端并联后再接到另一个端口上。
这种接线方法综合了串联和并联的特点,可以在一定程度上平衡电机的性能。
选择合适的接线方法取决于具体的应用需求和电机参数,可以根据实际情况进行调整和优化。
接线注意事项在进行两相步进电机的接线时,需要注意以下几个问题:1.保持电机线圈之间的绝缘:避免线圈之间短路或接触,确保每条线圈都能正常工作。
2.正确连接驱动器:根据驱动器的接口要求正确连接电机,保证电机能够被准确控制。
3.控制接线长度:尽量减小接线长度,减少电阻和信号干扰,提高电机的运行效率。
4.注意电流和极性:根据电机的额定电流和极性要求设置驱动器参数,确保电机正常运行。
在接线完成后,可以通过对电机进行逐步调试和测试来确认电机的运行是否正常,同时也可以根据实际情况进行参数的调整和优化,以获得最佳的性能表现。
两相步进电机接线及电流设置方法
摘要: 在使用两相步进电机时发现步进电机的转矩小,或达不到额定标称的转矩值,只好加大步进电机的尺寸和标称电流,以满足动力要求。
其实有的时候并不是电机的问题,而是在步进电机选择或驱动器工作电流的设定上有不妥之处,没有发挥出步进...
在使用两相步进电机时发现步进电机的转矩小,或达不到额定标称的转矩值,只好加大步进电机的尺寸和标称电流,以满足动力要求。
其实有的时候并不是电机的问题,而是在步进电机选择或驱动器工作电流的设定上有不妥之处,没有发挥出步进电机的最大效率。
首先,从驱动器方面考虑,目前大多数两相步进电机的驱动器是采用全桥输出的四线接法,如果两相步进电机也是四线的,驱动器按照电机的标称电流设定,应该说是正确的,而且效率最高,输出转矩能够达到最大值。
目前,新生产的步进电机大多是这种形式的。
而目前网友大多是买的二手早期生产的步进电机,多是两相六线制的(四组两对串联线圈,每对有中心抽头),还有少量八线制的(四组两对独立线圈)。
是两相六线制步进电机有两种接法,第一种是舍弃中心抽头接两端,实际就是将每组的两个相线圈串联起来使用,电机堵转矩大和效率高些,但是高速性能差。
第二种是接中心抽头和一端,这种接法电机高速性能好些,但是每相有一组线圈空闲,堵转矩小和效率低些。
目前网友大多是采用第一种接线方法。
这就出现一个问题,两相驱动器的电流到底应该设置多大正确,一般还都是按电机标称电流值来设定,这就出现了前面提到的电机效率问题。
一般步进电机标注的电流是相电流(或电阻),就是每组线圈的电流值(或电阻),如果两相六线制步进电机采用第一种接法,相当于将两组线圈串联起来,那幺其每相电阻加大,额定工作电流减小,即使驱动器设置成标称电流也达不到各相的额定输出值。
所以在选用驱动器和步进电机时出现电流匹配问题。
正确的方法是应将驱动器的输出电流设定为步进电机额定相电流的0.7 倍(也不是通常认为串联起来的电流减半)。
举例,比如一个带中心抽头的两相步进电机,标称电流是3A,驱动器电流应该设定为3*0.7=2.1A。
所以就出现你尽管选了3A 的步进电机,实际上它的功率相当于两相四线制
的2.1A 步进电机。
再谈谈八线制的步进电机接法,也有两种,第一种是将每两组线圈串联使用,这样驱动器的电流也是设定为电机相电流的0.7 倍,这种接法电机发热量小,但是高转速性能差些。
第二种接法是将每两组线圈并联使用,驱动器的电流设定为电机相电流的1.4 倍,其优点是高转速性能好些,但是电机发热量大,但是步进电机有点温度是正常的,只要低于电机的消磁温度就行,一般步进电机的消磁温度在105 度左右。
所以在你有了输出电流不可调的步进电机驱动器(指两相全桥输出驱动器,如网友常用的TA8435,TB6560、A3977 等驱动芯片)后,如何选用步进电机很重要,如果你的驱动器是2A 的,尽量选用两相四线制2A 的电机(如二手的日本东方电机大多是这种)如果你选用两相六线制电机,就要选标称相电流为2 / 0.7=2.9A(大约)的电机。
这样才能更好地发挥驱动器的作用。
不过你要是选用的驱动器是半桥输出(如SLA7062M、SLA7026 等驱动芯片),那只能接两相六线制电机,驱动器的电流和电机标称电流是一致的。
不过这种驱动器目前很少,效率低。
对于六线和八线步进电机相线圈采用并联工作,可以发挥出最大的输出转矩和表现出很好的动力性能,六线电机是无法接成并联形式的,实际已经在内部串联起来了,串联的公共端是中心抽头。
只有八线电机的相线圈是可以并联使用的。
如果能将电机后盖打开,看一下里边的接线结构,是可以进行改动的,使六线电机变成八线电机,这样就可以并联使用了,但不是所有的六线电机都能改制,只有从电机后面看到的连线接头形式的可以改动,而有的电机是焊盘接头,改制就需要高超的技术了。
我已经改制了几个步进电机,即串联也可以并联使用,并联使用时相电流是原来的1.4 倍,高速运转性能大大提高,转矩也提高不少。