八上数月考试题
- 格式:doc
- 大小:228.00 KB
- 文档页数:2
武汉市部分学校八年级12月联考数学试卷一、选择题(共10小题,每小题3分,共30分)1. 在ABC 中,40B ∠=°,80C ∠=°,则A ∠度数为( )A. 30°B. 40°C. 50°D. 60° 2. 一个八边形的内角和的度数为( )A. 720°B. 900°C. 1080°D. 1260° 3. 已知点(),2A m 和()3,B n 关于y 轴对称,则()2023m n +的值为( ) A. 1− B. 0 C. 1 D. ()20205− 4. 如图,AB ∥CD ,∠A =35°,∠C =80°,那么∠E 等于( )A. 35°B. 45°C. 55°D. 75° 5. 如图,在等边 ABC 中,AD 是它的角平分线,DE ⊥AB 于E ,若AC =8,则BE =( )A. 1B. 2C. 3D. 46. 如图,已知AD 是△ABC 的角平分线,AD 的中垂线交AB 于点F ,交BC 的延长线于点E .以下四个结论:(1)∠EAD =∠EDA ;(2)DF ∥AC ;(3)∠FDE =90°;(4)∠B =∠CAE .恒成立的结论有( )A. (1)(2)B. (2)(3)(4)C. (1)(2)(4)D. (1)(2)(3)(4) 7. 对于实数a 、b ,定义一种运算:()2*a b a b =−.给出三个推断:①**a b b a =;②()222**a b a b =;③()()**a b a b −=−,其中正确的推断个数是( ) A. 0 B. 1 C. 2 D. 38. 等腰三角形的周长为12,则腰长a 的取值范围是( )的A. a>6B. a<3C. 4<a<7D. 3<a<69. 如图,ABC 是等边三角形,E 、F 分别在AC 、BC 上,且AE CF =,则下列结论:①AF BE =,②60BDF ∠=°,③BD CE =,其中正确的个数是( )个A. 1B. 2C. 3D. 410. 如图,AF D C ∥,BC 平分ACD ∠,BD 平分EBF ∠,且BC BD ⊥,下列结论:①BC 平分ABE ∠;②AC BE ;③90BCD D∠+∠=°;④60DBF ∠=°,其中正确个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题(每小题3分,共18分)11. 已知等腰三角形的两边长分别为5 cm ,8 cm ,则该等腰三角形的周长是______cm .12. 如图,点B ,F ,C ,E 在同一条直线上,欲证ABC DEF ∆≅∆,已知AC DF =,AB DE =,还可以添加的条件是______.13. 五条线段的长度分别为1cm ,2cm ,3cm ,4cm ,5cm ,以其中三条线段为边长共可以组成_____个三角形.14 分解因:22424x xy y x y −−++=______________________.15. 如图,在ABC 中,AC 的垂直平分线PD 与BC 的垂直平分线PE 交于点P ,垂足分别为D ,E ,连接PA ,PB ,PC ,若45PAD ∠=°,则ABC ∠=_____°.的.16. 如图,在四边形ABCD 中,ACBC ⊥于点C ,且AC 平分BAD ∠,若ADC △的面积为210cm ,则ABD △的面积为________2cm .三、解答题(共8小题,共72分)17. 因式分解:(1)3−a b ab ;(2)22363ax axy ay ++18. 在ABC 中,2B A ∠=∠,40C B ∠=∠+°.求ABC 的各内角度数.19. 如图所示,已知点A 、E 、F 、D 在同一条直线上,AE=DF ,BF ⊥AD ,CE ⊥AD ,垂足分别为F 、E ,BF=CE ,求证:(1)△ABF ≌△DCE(2)AB ∥CD20 先化简,再求值:(x +3y )2﹣2x (x +2y )+(x ﹣3y )(x +3y ),其中x =﹣1,y =2.21. 如图,在平面直角坐标系中,点()30A −,,点()1,5B −. (1)①画出线段AB 关于y 轴对称的线段CD ;②在y 轴上找一点P 使PA PB +的值最小(保留作图痕迹); (2)按下列步骤,用不带刻度直尺在线段CD 找一点Q 使45BAQ ∠=°. ①在图中取点E ,使得BE BA =,且BE BA ⊥,则点E 的坐标为___________; ②连接AE 交CD 于点Q ,则点Q 即为所求.22. 如图,在Rt ABC △中,90ABC ∠=°,ABC 的角平分线AE 、CF 相交于点D ,点G 为AB 延长线上一点,DG 交BC 于点H ,ACD AGD △≌△,21GDF ∠=∠.(1)求证:GD CF ⊥;(2)求证:CH AF AC +=..的23. 已知等边ABC ,AD 是BC 边上的高.(1)如图1,点E 在AD 上,以BE 为边向下作等边BEF △,连接CF . ①求证:AE CF =;②如图2,M 是BF 的中点,连接DM ,求证:12DM AE =; (2)如图3,点E 是射线AD 上一动点,连接BE ,CE ,点N 是AE 的中点,连接NB ,NC ,当90BNC ∠=°时,直接写出BEC ∠的度数为______ .24. 在平面直角坐标系中,点A 的坐标为()0,4(1)如图1,若点B 的坐标为()3,0,ABC 是等腰直角三角形,BA BC =,90ABC ∠=°,求C 点坐标;(2)如图2,若点E 是AB 的中点,求证:2AB OE =; (3)如图3,ABC 是等腰直角三角形,BA BC =,90ABC ∠=°,ACD 是等边三角形,连接OD ,若30AOD ∠=°,求B 点坐标。
东莞市东华初级中学2023-2024 学年八上数学月考模拟 (6)一.选择题(共10小题, 每小题3分, 共30分)1. 下列图形中,不是轴对称图形的的是( )A.B. C. D. 【答案】A【解析】【分析】根据轴对称图形的定义,即可求解.【详解】解:A .不是轴对称图形,故本选项符合题意;B .是轴对称图形,故本选项不符合题意;C .是轴对称图形,故本选项不符合题意;D .是轴对称图形,故本选项不符合题意;故选:A .【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.2. 以下列各组线段为边长,能组成三角形的是( )A. 2,3,6B. 3,4,8C. 5,6,10D. 7,8,18【答案】C【解析】【分析】根据三角形的三边关系逐项判断即可得.三角形的三边关系:任意两边之和大于第三边.【详解】解:A 、236+<,不满足三角形的三边关系定理,不能组成三角形;B 、348+<,不满足三角形的三边关系定理,不能组成三角形;C 、5611+>,满足三角形的三边关系定理,能组成三角形;D 、7818+<,不满足三角形的三边关系定理,不能组成三角形.故选:C .【点睛】本题考查了三角形的三边关系,掌握三角形的三边关系是解题关键.3. 如图,AD 是ABC 的中线,CE 是ACD 的中线,23cm ACE S = 则ABC S = ( )2cm .A. 3B. 6C. 12D. 24【答案】C【解析】 【分析】根据三角形的中线将三角形分成面积相等的两部分即可.【详解】解:由三角形的中线将三角形分成面积相等的两部分可知,CE 是ACD 的中线,12ACE ADC S S =△△, AD 是ABC 的中线, 12ADC ABC S S =, 14ACE ABC S S ∴= , 23cm ACE S = ,2412cm ABC ACE S S ∴== .故选:C .【点睛】本题考查三角形的面积,知道三角形的中线将三角形分成面积相等的两部分是关键.4. 在∆ABC 中,∠ A :∠ B :∠ C=2:3:5,则∆ABC 是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 不能确定【答案】C【解析】【分析】根据比例设∠A 、∠B 、∠C 分别为k 、2k 、3k ,然后根据三角形的内角和等于180°列式求出三角形各内角的度数作出判断即;依据是三角形按角分类有锐角三角形、直角三角形、钝角三角形.三个角都是锐角的三角形叫锐角三角形;有一个角是钝角的三角形叫钝角三角形;有一个角是直角的三角形叫直角三角形.【详解】设∠A 、∠B 、∠C 分别为2k 、3k 、5k ,则2k+3k+5k=180°∴ ∠A=36° ∠B=54° ∠C=90°所以这个三角形是直角三角形.故答案为C.【点睛】此题考查三角形内角和定理,解题关键在于列出方程解答.5. 三角形中,到三边距离相等的点是( )A. 三条高线所在直线的交点B. 三条中线的交点C. 三条角平分线的交点D. 三边的垂直平分线的交点【答案】C【解析】【分析】直接根据角平分线的性质即可得出结论.【详解】解:∵角的平分线上的点到角的两边的距离相等,∴在三角形中,到三边距离相等的点是三条角平分线的交点,故选:C .【点睛】本题考查角平分线的性质:角平分线上的点到角两边的距离相等,熟记性质是关键.6. 在平面直角坐标系中,将点()3,2P −向右平移3个单位得到点P ′,则点P ′关于x 轴的对称点的坐标为( )A. ()0,2−B. (0,2C. ()6,2−D. ()6,2−− 【答案】A【解析】【分析】先根据点向右平移3个单位点的坐标特征:横坐标加3,纵坐标不变,得到点P ′的坐标,再根据关于x 轴的对称点的坐标特征:横坐标不变,纵坐标变为相反数,得到对称点的坐标即可.【详解】解:∵将点()3,2P −向右平移3个单位,∴点P ′的坐标为:(0,2),∴点P ′关于x 轴的对称点的坐标为:(0,-2).故选:A .【点睛】本题考查平移时点的坐标特征及关于x 轴的对称点的坐标特征,熟练掌握对应的坐标特征是解题的关键.7. 一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是( )A. 5B. 6C. 7D. 8【分析】多边形的外角和是360度,多边形的内角和比它的外角和的2倍还大180°,则多边形的内角和是2360180900×+=度;n 边形的内角和是(2)180n −°,则可以设这个多边形的边数是n ,这样就可以列出方程(2)180900n −°=°,解之即可. 【详解】解:多边形的内角和是2360180900×+=度,设这个多边形的边数是n ,根据题意得:(2)180900n −°=°,解得7n =,即这个多边形的边数是7.故选:C .【点睛】本题考查了多边形的内角和公式和外角和定理,解题的关键是掌握多边形内角和公式(2)180n −°.8. 如图,已知O 是AB 的中点,添加下列一个条件后,仍无法判定AOC BOD △△≌的是( )A. OC OD =B. A B ∠=∠C. AC BD =D. C D ∠=∠【答案】C【解析】 【分析】根据全等三角形的判定定理逐项分析判断即可求解.【详解】解:∵O 是AB 的中点,∴AO BO =,又AOC BOD ∠=∠A. 添加OC OD =,根据SAS 可以证明AOC BOD △△≌,故该选项不符合题意;B. 添加A B ∠=∠,根据ASA 可以证明AOC BOD △△≌,故该选项不符合题意;C 添加AC BD =,不能证明AOC BOD △△≌,故该选项符合题意;D. 添加C D ∠=∠,根据AAS 可以证明AOC BOD △△≌,故该选项不符合题意.故选:C .【点睛】本题考查了全等三角形的判定定理,掌握全等三角形的判定定理是解题的关键.9. 在△ABC 中,与∠A 相邻的外角是110°,要使△ABC 为等腰三角形,则∠B 的度数是( )A. 70°B. 55°C. 70°或55°D. 70°或55°或40°.【分析】已知给出了∠A的相邻外角是110°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.【详解】∵∠A的相邻外角是110°,∴∠A=70°,分两种情况:(1)当∠A为底角时,另一底角∠B=∠A=70°,或顶角∠B=40°(2)当∠A为顶角时,则底角∠B= 55°.故选:D.【点睛】考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.10. 如图,BN为∠MBC的平分线,P为BN上一点,且PD⊥BC于点D,∠APC+∠ABC=180°,给出下列结论:①∠MAP=∠BCP;②P A=PC;③AB+BC=2BD;④四边形BAPC的面积是△PBD面积的2倍,其中结论正确的个数有()A. 4个B. 3个C. 2个D. 1个【答案】A【解析】【分析】过点P作PK⊥AB,垂足为点K.证明Rt△BPK≌Rt△BPD,△P AK≌△PCD,利用全等三角形的性质即可解决问题.【详解】解:过点P作PK⊥AB,垂足为点K.∵PK ⊥AB ,PD ⊥BC ,∠ABP =∠CBP ,∴PK =PD ,在Rt △BPK 和Rt △BPD 中,BP BP PK PD = =, ∴Rt △BPK ≌Rt △BPD (HL ),∴BK =BD ,∵∠APC +∠ABC =180°,且∠ABC +∠KPD =180°,∴∠KPD =∠APC ,∴∠APK =∠CPD ,故①正确,在△P AK 和△PCD 中,AKP PDC PK PDAPK CPD ∠=∠ = ∠∠=, ∴△P AK ≌△PCD (ASA ),∴AK =CD ,P A =PC ,故②正确,∴BK ﹣AB =BC ﹣BD ,∴BD ﹣AB =BC ﹣BD ,∴AB +BC =2BD ,故③正确,∵Rt △BPK ≌Rt △BPD ,△P AK ≌△PCD (ASA ),∴S △BPK =S △BPD ,S △APK =S △PDC ,∴S 四边形ABCP =S 四边形KBDP =2S △PBD .故④正确.故选A . 【点睛】本题考查全等三角形的判定和性质,角平分线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.二.填空题(共5小题,每小题3分,共15分)11. 如图,正方形网格中,∠1+∠2+∠3=_____________【答案】135°在【解析】【分析】先证明△ABC ≌△AEF ,然后证明∠1+∠3=90°,再根据等腰直角三角形的性质可得∠2=45°,进而可得答案.【详解】解:如下图∵在△ABC 和△AEF 中,AB AE B E BC FE ∠∠===∴△ABC ≌△AEF (SAS ),∴∠BAC =∠4,∵∠BAC =∠1,∴∠4=∠1,∵∠3+∠4=90°,∴∠1+∠3=90°,∵AG=DG ,∠AGD=90°,∴∠2=45°,∴∠1+∠2+∠3=135°,故答案为:135°【点睛】本题考查了三角形全等判定和性质,等腰直角三角形的性质,准确识图判断出全等三角形是解题的关键.12. 已知一个正n 边形的每个内角为120°,则这个多边形的对角线有_________条.【答案】9【解析】【分析】多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线有(3)n −条,即可求得对角线的条数.【详解】解: 多边形的每一个内角都等于120°,∴每个外角是60°,的则多边形的边数为360606°÷°=,则该多边形有6个顶点,则此多边形从一个顶点出发的对角线共有633−=条.∴这个多边形的对角线有1(63)92×=条, 故答案为:9. 【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.同时考查了多边形的边数与对角线的条数的关系.13. 如图, 已知ABC 是等边三角形,4cm AB =,BD 是ABC 的高,点E 在BC 的延长线上,连接DE .若30E ∠=°,则CE 的长为_________cm .【答案】2【解析】【分析】根据等边三角形的性质解答即可.【详解】解: 等边ABC 的边长4cm AB =,60ACB ∠=°∴,4cm AC AB ==BD 是ABC 的高,12cm 2DC AC ∴==, 30E ∠=° ,E EDC ACB ∠+∠=∠,603030EDC ACB E ∴∠=∠−∠=°−°=°,EDC E ∴∠=∠,2cm CD CE ∴==.故答案为:2.【点睛】此题考查等边三角形的性质,关键是根据等边三角形的三线合一解答.14. 如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥BA 于E ,AB =6 cm ,则△DEB 的周长是______cm .【答案】6【解析】【分析】首先根据角平分线的性质可得CD =DE ,即可证得()Rt ACD Rt AED HL ≌,可得AC =AE ,再根据BC =AC ,可得△DEB 的周长=BC +BE =AC +BE =AE +BE =AB ,据此即可解答.【详解】解:∵AD 平分∠CAB 交BC 于D ,DE ⊥BA 于E ,∠C =90°,∴CD =DE ,在Rt ACD 与Rt AED 中,==AD AD CD ED, ()Rt ACD Rt AED HL ∴ ≌,∴AC =AE ,∴△DEB 的周长=BD +DE +BE =BD CD +BE =BC +BE ,又∵BC =AC ,∴△DEB 的周长=BC +BE =AC +BE =AE +BE =AB =6 cm .故答案是:6.【点睛】本题考查了角平分线的性质,全等三角形的判定与性质,三角形周长的求法,熟练掌握和运用角平分线的性质定理及证明直角三角形全等的方法是解决本题的关键.15. 如图,已知30MON ∠=°,点123A A A 、、…在射线ON 上,点1B 、2B 、3B …在射线OM 上,112A B A △、223A B A △、334A B A △…均为等边三角形,若12OA =,则 202120212022A B A △的边长为_________.【答案】20212【解析】【分析】利用等边三角形的性质,以及外角的性质,推出每个等边三角形的边长分别为:123,,OA OA OA ,推出相应的数字规律,即可得解.【详解】解:∵112A B A △为等边三角形,∴11260∠=°B A A , ∵11211B A A B O A O =∠+∠∠,30MON ∠=°,∴1130B A O O ∠=∠=°, ∴1112A B OA ==, 同理可得:223A B A △、334A B A △…的边长分别为:23,OA OA由12OA =,可求得,112A B A △的边长12OA =, 223A B A △的边长22222OA ==×=,334A B A △的边长233222OA ==×=,,从而得1n n n A B A + 的边长为2n ,∴202120212022A B A △的边长为20212,故答案为:20212.【点睛】本题考查等边三角形的性质,等腰三角形的判定和性质,三角形外角的性质.熟练掌握等边三角形的三个角均为60°,三角形的一个外角等于与它不相邻的两个内角和是解题的关键.三.解答题(一)(共3小题,每小题8分, 共24分)16. 如图,在△ABC 中,AD ⊥BC 于点D ,AE 平分∠BAC ,若30BAE ∠=°,20CAD ∠=°,求∠B 的度数.【答案】50°.【解析】【分析】先利用角平分线定义求得260BAC BAE ∠=∠=°,在Rt ACD 利用直角三角形的两锐角互余求得C ∠,最后在ABC 中利用三角形的内角和即可求解.【详解】解:∵AE 平分∠BAC ,30BAE ∠=°, ∴260BAC BAE ∠=∠=°,∵20CAD ∠=°,AD ⊥BC ,∴9070C CAD ∠=°−∠=°,∴在ABC 中,18050B BAC C ∠=°−∠−∠=°.【点睛】本题考查了角平分线的定义,直角三角形的性质,三角形的内角和定理,熟练掌握定义和定理是解题的关键.17. 如图,△ABC 中,90C ∠=°,AC =BC .(1)用直尺和圆规作BAC ∠BC 于点D (保留作图痕迹)(2)过点D 画△ABD 的边AB 上的高DE ,交线段AB 于点E ,若△BDE 的周长是5cm ,求AB 的长.【答案】(1)见解析;(2)AB 的长为5cm【解析】分析】(1)利用基本作图作AD 平分∠BAC ;(2)根据角平分线上的点到角的两边的距离相等可得CD=DE ,然后利用“HL ”证明Rt △ACD 和Rt △AED 全等,根据全等三角形对应边相等可得AC=AE ,然后求出AB 等于△BDE 的周长.【详解】(1)如图,AD 即为所作;的【(2)∵AD 平分∠BAC ,∠C=90°,DE ⊥AB ,∴CD=DE ,在Rt △ACD 和Rt △AED 中,AD AD CD DE = =, ∴Rt △ACD ≌Rt △AED (HL ),∴AE=AC ,∵AC=BC ,∴BC=AE ,∵△BDE 的周长=BE+BD+DE=BE+BD+CD=BE+BC=BE+AE=AB ,∴AB=5cm .故AB 的长为5cm .【点睛】本题考查了作图-基本作图:作一个角的平分线,角平分线的性质,全等三角形的判定与性质,熟记性质并求出AB 等于△BDE 的周长是解题的关键.18. 已知: 如图,在Rt ABC △中,90C ∠=°,D 是AC 上一点,DE AB ⊥于E ,且DE DC =.(1)求证:BD 平分ABC ∠;(2)若36A ∠=°,求BDC ∠的度数.【答案】(1)见详解 (2)63°【解析】【分析】(1)根据角平分线的性质解答即可;(2)根据三角形的内角和解答即可.【小问1详解】证明: DC BC ⊥ ,DE AB ⊥,DE DC =∴点D 在ABC ∠的平分线上,BD ∴平分ABC ∠;【小问2详解】解:90C ∠=° ,36A ∠=°,9054ABC A ∴∠=°−∠=°,BD 平分ABC ∠,1272DBC ABC ∴∠=∠=°, ∴在Rt BDC 中,9063BDC DBC ∠=°−∠=°.【点睛】本题重点考查了角平分线的性质,根据角平分线的性质解答是关键.四.解答题(二) (共3 每小题9分, 共27分)19. 如图,在ABC 中,90C ∠=°,AD 是BAC ∠的平分线,DE AB ⊥于E ,F 在AC 上,BD DF =.求证:(1)CF EB =;(2)2AB AF BE =+.【答案】(1)见解析 (2)见解析【解析】【分析】(1)根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得DE DC =.再根据()Rt Rt HL CDF EBD ≌,得CF EB =;(2)利用角平分线性质证明()Rt Rt HL ADC ADE ≌△△,得到AC AE =,再将线段AC 进行转化.【小问1详解】证明:∵AD 是BAC ∠的平分线,DE AB ⊥,90C ∠=°,∴DE DC =,在Rt CDF △和Rt EBD △中,BD DF DC DE = =, ∴()Rt Rt HL CDF EBD ≌,∴CF EB =;【小问2详解】证明:在Rt ADC 与Rt ADE △中,CD DE AD AD= = , ∴()Rt Rt HL ADC ADE ≌△△,∴AC AE =,∴2AB AE BE AC BE AF CF BE AF BE =+=+=++=+.【点睛】本题主要考查了角平分线的性质,全等三角形的性质与判定,解题的关键是熟练掌握全等三角形的判定与性质.20. 如图,在平面直角坐标系中,网格中每个小方格都是边长为1个单位长度的正方形,四边形ABCD 的顶点均在格点上.(1)在图中画出四边形ABCD 关于y 轴对称的四边形1111D C B A ;(2)分别写出点A 、C 的对应点11A C 、的坐标.【答案】(1)见解析 (2)点11A C 、的坐标分别为()()117,83,2A C 、【解析】【分析】(1)分别确定A ,B ,C ,D 的对应点1A ,1B ,1C ,1D ,再顺次连接即可;(2)根据1A , 1C 在坐标系内的位置可得其坐标.【小问1详解】解:如图,四边形1111D C B A 为所作.【小问2详解】点11A C 、的坐标分别为()()117,83,2A C 、.【点睛】本题考查的是坐标与图形,画关于y 轴对称的图形,熟练地利用轴对称的性质画图是解本题的关键.21. 如图,在ABC 中,AB AC =,D 是AB 上的一点,过点D 作DE BC ⊥于点E ,延长ED 和CA ,交于点F .(1)求证:ADF △是等腰三角形;(2)若30F ∠=°,4BD =,2AD =,求EC 的长.【答案】(1)见解析 (2)4【解析】【分析】(1)根据AB AC =得到B C ∠=∠,结合垂直以及等角的余角相等即可证明;(2)结合(1)中的结论以及题目条件得到ABC 是等边三角形然后根据已知条件计算即可.【小问1详解】解:AB AC = ,B C ∴∠=∠,FE BC ⊥ ,9090F C BDE B °∴∠+∠=∠+∠=°,,F BDE ∴∠=∠,而BDE FDA ∠=∠F FDA ∴∠=∠,AF AD ∴=,ADF ∴ 是等腰三角形;【小问2详解】解:DE BC ⊥ ,90DEB ∴∠=°,30F ∠=° ,4BD =,30BDE F ∴∠=∠=°,60B ∴∠=°,122BE BD ∴==, AB AC = ,ABC ∴ 是等边三角形,6BC AB AD BD ∴==+=,4EC BC BE ∴=−=.【点睛】本题主要考查等腰三角形的判定以及余角的性质,含30°角的直角三角形的性质,熟练掌握等腰及等边三角形的性质以及含30°角的直角三角形的性质是解决本题的关键.五.解答题(三) (共2小题,每小题 12分,共24分)22. 如图 1,A (-2,0),B (0,4),以 B 点为直角顶点在第二象限作等腰直角△ABC .(1)求C 点的坐标;(2)在坐标平面内是否存在一点P,使△PAB 与△ABC 全等?若存在,直接写出P 点坐标,若不存在,请说明理由;(3)如图2,点E 为y 轴正半轴上一动点, 以E 为直角顶点作等腰直角△AEM,过M 作MN⊥x 轴于N,求OE-MN 的值.【答案】(1)C(-4,6);(2)存在一点P,使△PAB与△ABC全等,符合条件的P的坐标是(-6,2)或(2,-2)或(4,2)或(-4,6);(3)2.【解析】【分析】(1))作CE⊥y轴于E,证△CEB≌△BOA,推出CE=OB=4,BE=AO=2,即可得出答案;(2)分为四种情况,画出符合条件的图形,构造直角三角形,证三角形全等,即可得出答案;(3)作MF⊥y轴于F,证△EFM≌△AOE,求出EF,即可得出答案.【详解】解:(1)作CE⊥y轴于E,如图1,∵A(-2,0),B(0,4),∴OA=2,OB=4,∵∠CBA=90°,∴∠CEB=∠AOB=∠CBA=90°,∴∠ECB+∠EBC=90°,∠CBE+∠ABO=90°,∴∠ECB=∠ABO ,在△CBE 和△BAO 中ECB ABO CEB AOB BC AB ∠∠∠∠===∴△CBE ≌△BAO ,∴CE=BO=4,BE=AO=2,即OE=2+4=6,∴C (-4,6).(2)存在一点P ,使△PAB 与△ABC 全等,分为四种情况:①如图2,当P 和C 重合时,△PAB 和△ABC 全等,即此时P 的坐标是(-4,6);②如图3,过P 作PE ⊥x 轴于E ,则∠PAB=∠AOB=∠PEA=90°,∴∠EPA+∠PAE=90°,∠PAE+∠BAO=90°,∴∠EPA=∠BAO ,在△PEA 和△AOB 中EPA BAO PEA AOB PA AB ∠∠∠∠===∴△PEA ≌△AOB ,∴PE=AO=2,EA=BO=4,∴OE=2+4=6,即P 的坐标是(-6,2);③如图4,过C 作CM ⊥x 轴于M ,过P 作PE ⊥x 轴于E ,则∠CMA=∠PEA=90°,∵△CBA ≌△PBA ,∴∠PAB=∠CAB=45°,AC=AP ,∴∠CAP=90°,∴∠MCA+∠CAM=90°,∠CAM+∠PAE=90°,∴∠MCA=∠PAE ,在△CMA 和△AEP 中MCA PAE CMA PEA AC AP ∠∠∠∠===∴△CMA ≌△AEP ,∴PE=AM ,CM=AE ,∵C (-4,6),A (-2,0),∴PE=4-2=2,OE=AE-A0=6-2=4,即P 的坐标是(4,2);④如图5,过P 作PE ⊥x 轴于E ,∵△CBA ≌△PAB ,∴AB=AP ,∠CBA=∠BAP=90°,则∠AEP=∠AOB=90°,∴∠BAO+∠PAE=90°,∠PAE+∠APE=90°,∴∠BAO=∠APE ,在△AOB 和△PEA 中BAO APE AOB PEA AB AP ∠∠∠∠===∴△AOB ≌△PEA ,∴PE=AO=2,AE=OB=4,∴0E=AE-AO=4-2=2,即P 的坐标是(2,-2),综合上述:符合条件的P 的坐标是(-6,2)或(2,-2)或(4,2)或(-4,6).(3)如图6,作MF ⊥y 轴于F ,则∠AEM=∠EFM=∠AOE=90°,∵∠AEO+∠MEF=90°,∠MEF+∠EMF=90°,∴∠AEO=∠EMF ,在△AOE 和△EMF 中∵AOE EFM AEO EMF AE EM ∠∠∠∠===∴△AEO ≌△EMF (AAS ),∴EF=AO=2,MF=OE ,∵MN ⊥x 轴,MF ⊥y 轴,∴∠MFO=∠FON=∠MNO=90°,∴四边形FONM 是矩形,∴MN=OF ,∴OE-MN=OE-OF=EF=OA=2.故答案为(1)C (-4,6);(2)存在一点P ,使△PAB 与△ABC 全等,符合条件的P 的坐标是(-6,2)或(2,-2)或(4,2)或(-4,6);(3)2.【点睛】本题考查全等三角形的性质和判定,三角形内角和定理,等腰三角形性质的应用,主要考查学生综合运用性质进行推理的能力,用了分类讨论思想.23. 如图,在ABC 中,90B ∠=︒,16cm AB =,12cm BC =,20cm AC =,P 、Q 是ABC 边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)BP = ______ cm .(用含t 的式子表示)(2)当点Q 在 BC 边上运动时,若PQB △是等腰三角形,则t 的值为多少? (3)当点Q 在AC 边上运动时,若BCQ △是以BC 或BQ 为底边的等腰三角形,则t 的值为多少?【答案】(1)()16cm t −;(2)163; (3)当t 为11秒或12秒时,BCQ △是以BC 或BQ 为底边的等腰三角形.【解析】【分析】(1)根据题意即可用t 可分别表示出BP ;(2)结合(1),根据题意再表示出BQ ,然后根据等腰三角形的性质可得到BP BQ =,可得到关于t 的方程,可求得t ;(3)用t 分别表示出BQ 和CQ ,利用等腰三角形的性质可分CQ BC =和BQ CQ =三种情况,分别得到关于t 的方程,可求得t 的值.【小问1详解】由题意可知AP t =,2BQ t =,16cm AB = ,()16cm BP AB AP t ∴=−=−,故答案为:()16cm t −;【小问2详解】当点Q 在边BC 上运动,PQB △为等腰三角形时,则有BP BQ =,即162t t −=, 解得163t =,∴当PQB △能形成等腰三角形,163t =; 【小问3详解】 ①当BCQ △是以BC 为底边的等腰三角形时:CQ BQ =,如图1所示,则C CBQ ∠=∠, 90ABC ∠=° ,90CBQ ABQ ∴∠+∠=°.90A C ∠+∠=°,A ABQ ∴∠=∠,BQ AQ ∴=,()10cm CQ AQ ∴==,()22cm BC CQ ∴+=,22211t ∴=÷=;②当BCQ △是以BQ 为底边的等腰三角形时:CQ BC =,如图2所示,则()24cm BC CQ +=, 24212t ∴=÷=,综上所述:当t 为11或12时,BCQ △是以BC 或BQ 为底边的等腰三角形.【点睛】本题考查了等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t 表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.。
辽宁省锦州市2024-2025学年八年级上学期数学10月月考试题一、单选题1.下列计算正确的是()A4=±B 5=-C 3=-D .3=2.下列各组长度的线段不能构成直角三角形的是()A .5,12,13B .7,24,25C,3,4D .2,3,43.如图,小方格都是边长为1的正方形,则ABC V 的面积是()A .1.5B .2.5C .3.5D .4.54.9的平方根是x ,64的立方根是y ,则x y +的值为()A .3B .7C .3或7D .1或75.如图,一架梯子AB 长度为2.5m ,斜靠在一面竖直的墙AO 上,测得2m AO =.若梯子的顶端沿墙下滑0.5m ,这时梯子的底端外移()A .0.5mB .1mC .1.5mD .0.8m6.如图,有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,则这个水池的深度是()尺.A .26B .24C .13D .1271的点可能是点()A .PB .QC .MD .N8.如图,已知3AB =,5BC =,6AF =,要在长方体上系一根绳子连接AG ,绳子与DE 交于点P ,当所用绳子最短时,AG 的长为()A .8BC .10D .2549.小明同学先向北行进4千米,然后向东进4千米,再向北行进2千米,最后又向东行进一定距离,此时小明离出发点的距离是10千米,小明最后向东行进了()A .3千米B .4千米C .5千米D .6千米10.如图,三角形纸片ABC 中,∠BAC =90°,AB =2,AC =3.沿过点A 的直线将纸片折叠,使点B 落在边BC 上的点D 处;再折叠纸片,使点C 与点D 重合,若折痕与AC 的交点为E ,则AE 的长是()A .136B .56C .76D .65二、填空题11的相反数是,绝对值是.12x 的取值范围为.13.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 到D ,则橡皮筋被拉长了cm .14.2459x -=,则x 值为;9是的算术平方根.15.在Rt ABC △中,90B Ð=°,3AB =,4BC =,点D 为ABC V 外一点,13AD =,12CD =,则AB 、BC 、CD 、DA 围成的四边形的面积为.三、解答题16.计算:(1)(1;+(3)2-⨯;17.(1)如图,在ABC V 中,CD AB ⊥于点D ,4AC =,3BC =,95DB =.①CD =____________,AD =____________;②判断ABC V 的形状,并说明理由.(2)小明想知道学校旗杆的高度,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度.18.琪琪是一个爱动脑筋的孩子,她学完勾股定理后,又进行了深入的探究:(1)如图,请观察图形找出22a b +与2c 的关系:图1中,22a b +______2c ;图2中,22a b +______2c .这样,我们就猜想出了钝角三角形和锐角形中三边之间的关系.(2)请你直接应用发现的结论:当ABC V 三边长分别为6,8,9时,ABC V 为____三角形;当ABC V 三边长分别为6,8,11时,ABC V 为______三角形.(3)请你根据琪琪的猜想完成下面的问题:当a=2,b=4时,最长边c 在什么范围内取值时,ABC V 是锐角三角形、钝角三角形?19.在ABC V 中,90C ∠=︒,6AC =,8BC =.回答下列问题:(1)如图1,用尺规作图的方法作直线m 交BC 边于P ,求线段PC 的长.(2)如图2,用尺规作图的方法作射线n 交BC 边于P ,求线段PC 的长.20.在进行二次根式化简时,我们有时会碰上如样的式子,这样的式子我们可以将其进一步化简:1=;==.以上这种化简的方法叫做分母有理化,通过观察请利用分母有理化解答下列问题:(1)利用你观察到的规律,化简(2)+L 21.综合与实践美丽的弦图中蕴含着四个全等的直角三角形.(1)如图1,弦图中包含了一大一小两个正方形,已知每个直角三角形较长的直角边为a ,较短的直角边为b ,斜边长为c ,结合图1,试验证勾股定理;(2)如图2,将这四个直角三角形紧密地拼接,形成飞镖状,已知外围轮廓(实线)的周长为24,3OC =,求该飞镖状图案的面积;(3)如图3,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为123,,S S S ,若12342S S S ++=,求2S 的值.22.已知:在Rt ABC △中,90ACB ∠=︒,BC AC =,点D 在直线AB 上,连接CD ,在CD 的右侧作CE CD ⊥,CD CE =.(1)如图1,①点D 在AB 边上,线段BE 和线段AD 的数量关系是____________,位置关系是____________;②直接写出线段AD ,BD ,DE 之间的数量关系____________.(2)如图2,点D 在B 右侧.若AC BC ==,1BD =.求线段DE 的长(写出必要的说明过程及计算步骤).(3)拓展延伸如图3,90DCE DBE ∠=∠=︒,CD CE =,BC =1BE =,请直接写出线段EC 的长为____________.。
人教版八年级(上)数学第三次月考试题(考试总分:150 分)一、单选题(本题共计10小题,总分40分)1.(4分)1.下列各式中,正确的是( )A.4=±2B.±9=3C.3-8=-2 D.-22=-22.(4分)2.计算(2xy)3÷(2xy2)的结果是( )A.2y B.3x2y C.4xy D.4x2y3.(4分)3.长方形的面积为4a2-6ab+2a,一边长为2a,则它的另一边长为( )A.2a-3b B.4a-6bC.2a-3b+1 D.4a-6b+24.(4分)4.等腰三角形底边长为5 cm,一腰上的中线把其周长分为两部分,差为2 cm,则腰长为( )A.7 cm B.7 cm或3 cmC.3 cm D.不确定5.(4分)5.如图,在△ABC中,AB=AC,D,E两点在BC上,且有AD=AE,BD=CE.若∠BAD=30°,∠DAE=50°,则∠BAC的度数为( )A.130°B.120°C.110°D.100°6.(4分)6.若n为大于0的整数,则(2n+1)2-(2n-1)2一定是( )A.6的倍数B.8的倍数C.12的倍数D.9的倍数7.(4分)7.下列各式能用完全平方公式分解因式的有( )①4x2-4xy-y2②x2+x+14③-1-a-14a2④m2n2+4-4mn ⑤a2-2ab+4b2⑥x2-8x+9A.1个B.2个C.3个D.4个8.(4分)8.如图,AB∥DE,AC∥DF,AC=DF,要使△ABC≌△DEF需再补充一个条件,下列条件中,不能选择的是( )A.AB=DE B.BC=EFC.EF∥BC D.∠B=∠E9.(4分)9.假设电视机屏幕为长方形,长BC=52 cm,“某个电视机屏幕大小是65 cm”的含义是长方形的对角线BD长为65 cm,如图所示,则该电视机屏幕的高CD为( )A.13 cm B.30 cmC.39 cm D.52 cm10.(4分)10.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC.若△ABC的周长为12,则PD+PE+PF=( )A.12 B.8 C.4 D.3二、 填空题 (本题共计6小题,总分24分)11.(4分)11.在“We like maths”这个句子的所有字母中,字母“e”出现的频率为____. 12.(4分)12.计算:3ab 2·⎝ ⎛⎭⎪⎫-13a 2b ·2abc=____. 13.(4分)13.若31-2x 与33x -5 互为相反数,则1-x =_.14.(4分)14.小红同学5月份各项消费情况的扇形统计图如图所示,其中小红在学习用品上支出100元,则在午餐上支出__元15.(4分)15.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中共有__对全等三角形.16.(4分)16.如图,折叠长方形纸片ABCD ,使点B 落在边AD 上,折痕EF 的两端分别在AB ,BC 上(含端点),且AB =6 cm ,BC =10 cm ,则折痕EF 的最大值是___ cm.三、 解答题 (本题共计9小题,总分86分)17.(8分)17.计算:(1)(-1)3+|3-2|-3125+16;(2)⎝ ⎛⎭⎪⎫13x +y ⎝ ⎛⎭⎪⎫13x -y ⎝ ⎛⎭⎪⎫19x 2+y 2. 18.(8分)18.先化简,再求值 :3(x -1)2-(3x +1)(3x -1)+6x(x -1).其中x =1319.(10分)19.如图,在△ABC 中,点D ,E 分别是AC ,AB 上的点,BD 与CE 相交于点O ,给出下列三个条件:①∠1=∠2;②∠3=∠4;③BE =CD.上述三个条件中,哪两个条件可以判定△ABC 是等腰三角形,写出其中的一种情况,并加以证明.20.(10分)20.如图,小明想把一长为60 cm 、宽为40 cm 的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形.(1)若设小正方形的边长为x cm ,求图中阴影部分的面积.(2)当x =5时,求这个盒子的体积.21.(10分)21.如图,∠AOB =60°,OC 平分∠AOB ,过点C 作CD ⊥OC ,垂足为点C ,交OB 于点D ,CE ∥OA 交OB 于点E.(1)判断△CED 的形状,并说明理由.(2)若CD =6,OD =10,直接写出OC 的长.22.(9分)22.随着科技的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图:请结合图中所给的信息解答下列问题:(1)这次统计共抽查了__名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为____.(2)将条形统计图补充完整.(3)该校共有2 500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?23.(9分)23.如图,长方形纸片ABCD的长AD=8 cm,宽AB=4 cm,将其折叠,使点D 与点B重合.(1)求证:BE=BF.(2)求折叠后DE的长.(3)求以折痕EF为边的正方形的面积.24.(10分)24.已知,如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=3,连接DE.(1)DE的长为.(2)动点P从点B出发,以每秒1个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P运动的时间为t秒,求当t为何值时,△ABP和△DCE全等?(3)若动点P从点B出发,以每秒1个单位的速度仅沿着BE向终点E运动,连接DP.设点P运动的时间为t秒,是否存在t,使△PDE为等腰三角形?若存在,请直接写出t的值;否则,说明理由.25.(12分)25.【问题情境】如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.(1)【问题解决】延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三边的关系即可判断出中线AD的取值范围是.【反思感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑构造以该中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同个三角形中,从而解决问题.(2)【尝试应用】如图②,△ABC中,∠BAC=90°,AD是BC边上的中线,试猜想线段AB,AC,AD之间的数量关系,并说明理由.(3)【拓展延伸】如图③,△ABC中,∠BAC=90°,D是BC的中点,DM⊥DN,DM 交AB于点M,DN交AC于点N,连接MN.当BM=4,MN=5,AC=6时,请直接写出中线AD的取值范围.(温馨提示:如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么可以用数学语言表达三边关系,a2+b2=c2)。
2022-2023学年八年级数学上册第三次月考测试题(附答案)一、选择题(共18分)1.我们生活在一个充满对称的世界中,生活中的轴对称图形随处可见.下面几幅图片是校园中运动场上代表体育项目的图标,其中可以看作是轴对称图形的是()A.B.C.D.2.在△ABC中,∠A=2∠B=75°,则∠C的度数是()A.30°B.67.5°C.105°D.133°3.如图,已知在Rt△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2的度数是()A.120°B.180°C.240°D.270°4.如图,在Rt△ABC中,∠ACB=90°,BC=4cm,在AC上取一点E,使EC=BC,过点E作EF⊥AC,连接CF,使CF=AB,若EF=10cm,则AE的长为()A.5cm B.6cm C.7cm D.无法计算5.下列运算及判断正确的是()A.﹣5×÷(﹣)×5=1B.方程(x2+x﹣1)x+3=1有四个整数解C.若a×5673=103,a÷103=b,则a×b=D.有序数对(m2+1,|m|)在平面直角坐标系中对应的点一定在第一象限6.如图,在△ABC中,∠BAC=90°,AB=AC=4,若点D为BC的中点,过点D作∠MDN=90°,分别交AB,AC于点M,N,连接MN,则下列结论中:①△DMN是等腰直角三角形;②△DMN的周长有最小值;③四边形AMDN的面积为定值8;④△DMN的面积有最小值;⑤△AMN的面积有最大值.正确的有()A.5个B.4个C.3个D.2个二、填空题(共18分)7.计算:(a+2b)(2b﹣a)=.8.如图,AC⊥BC,AD⊥BD,垂足分别为C、D,请你添加一个条件,使得△ABD ≌△BAC.9.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.10.要测量河岸相对两点A,B的距离,已知AB垂直于河岸BF,先在BF上取两点C,D,使CD=CB,再过点D作BF的垂线段DE,使点A,C,E在一条直线上,如图,测出DE=20米,则AB的长是米.11.如图,在正方形方格中,点A,B,C在格点上,则∠CAB+∠ABC的度数是.12.在平面直角坐标系中,点A(2,0),B(0,4),求点C,使以点B、O、C为顶点的三角形与△ABO全等,则点C的坐标为.三、解答题(共30分)13.先化简,再求值.x(2x2﹣4x)﹣x2(6x﹣3)+x(2x)2,其中x=﹣.14.如图,在△ABC中,BD是∠ABC的平分线,DE∥BC交AB于点E.∠A=55°,∠BDC =95°,求∠BED的度数.15.如图,格点△ABC在网格中的位置如图所示.(1)画出△ABC关于直线MN的对称△A'B'C';(2)若网格中每个小正方形的边长为1,则△A'B'C'的面积为;(3)在直线MN上找一点P,使P A+PC最小(不写作法,保留作图痕迹).16.如图,∠1=∠2,∠3=∠4,求证AC=AD.∵∠3=∠4,∴180°﹣=180°﹣,∴∠ABD=∠ABC.在△ABD和△ABC中,,∴△ABD≌△ABC().∴=.17.已知:如图,点B,F,C,E在同一条直线上,AB∥DE,AB=DE,∠A=∠D.求证:△ABC≌△DEF.四、解答题。
八年级上第一次数学月考命题人:聂晓岐 审题人:郁敏(满分:100分,时间:100分钟)1、 在3125,0,52.3,3,3,414.1,2,25 -中无理数有 ( ) A .1个 B .2个 C .3个 D 。
4个 2、16的算术平方根是( )A. 4B. 4±C. 2D. 2± 3、下列说法不正确的是 ( )A .51251±的平方根是; B .3273-=-C .()21.0-的平方根是±0.1 ; D.981的平方根是4、直角三角形的两直角边分别为5、12,则斜边上的高为 ( ) A .6 B .8 C .1380 D .13605、三角形各边长度的如下,其中不是直角三角形的是 ( )A . 3,4,5B . 6,8,10C .5,11,12D .15,8,176、ABC ∆的三边为,,a b c 且2()()a b a b c +-=,则该三角形是( )A .以a 为斜边的直角三角形B .以b 为斜边的直角三角形C .以c 为斜边的直角三角形D .锐角三角形 7、满足53<<-x 的整数x 是( )A.2,1,0,1,2-- B.3,2,1,0,1- C.3,2,1,0,1,2-- D.2,1,0,1-8、直角三角形的周长为24,斜边长为10,则其面积为( )A .96B .49C . 24D .48 9、 如图,一只蚂蚁从长、宽都是3cm ,高是8cm 的长方体纸盒的A 点沿纸盒面爬到B 点,那么它所行的最短路线的长是( )A. (32+8)cmB.10cmC. 14cmD.无法确定10、若m>0,且1m m -=3,则1m m+等于( ).C B二、填空题(每题3分,共24分)11. 81的平方根是 ;16的算术平方根是 ;-64的立方根是 。
12.比较大小,(填 > 或 < 号) 23 32;21_____215- 13. 3的相反数为_______;倒数为__________;=-|3|π 。
八年级数学月考试题一、选择题:(3×10)1.如图;两只手的食指和拇指在同一个平面内;它们构成的一对角可看成是()A、同位角B、内错角C、对顶角D、同旁内角2.如图;直线a//b;∠1=400;∠2的度数为---------------------------------()A 1400B 500C 400D 10003.已知等腰三角形的两边长分别为4、9;则它的周长为()(A)17 (B)22 (C)17或22 (D)134.如果∠α和∠β是同位角;且∠α=55°则∠β等于()A.55° B。
125° C。
55°或125° D。
无法确定5.下列图形中;不一定...是轴对称图形的是()A.线段 B.角 C.直角三角形 D.等腰三角形6.3、以下列三个数为边长的三角形能组成直角三角形的是()A 1; 1 ;2B 5; 8 10C 6 ;7 ;8D 3 ;4 ;5 7.下列能断定△ABC为等腰三角形的是()(A)∠A=30º、∠B=60º(B)∠A=50º、∠B=80º(C)∠A=30º、∠B=80º(D)∠A=50º、∠B=70º8.等腰三角形的顶角等于70o;则它的底角是 ( )A、70oB、55oC、60oD、 70o或55o9.下列说法正确的是()A.同位角相等B.内错角相等C.对顶角相等 D.同旁内角互补10.已知等腰△ABC的底边BC=8cm;且│AC-BC│=2cm;那么腰AC的长为() A.10cm或6cm B、10cm C、6cm D、8cm或6cm二、填空题:(3×10)1.如图;直线a∥b;∠1=130°;则∠2=度.2.在等腰三角形ABC中;AB=AC;若∠B=40°;则∠A= ;∠C= 。
3.等边三角形有条对称轴。
2024-2025学年关店理想学校八上数学第一次月考测试卷一、选择题(每小题3分,共30分)1.如图,在△ABC 中,线段BE 表示ABC V 的边AC 上的高的图是( )A .B .C .D .2.AD 是ABC V 的高,若6040BAD CAD Ð=°Ð=°,,则BAC Ð的度数是( )A .100°B .20°C .50°或110°D .20°或100°3.在探究证明“三角形的内角和是180°”时,综合实践小组的同学作了如下四种辅助线,其中能证明“三角形的内角和是180°”的有( )①如图1,过点C 作EF AB ∥;②如图2,过AB 上一点D 分别作DE BC ∥,DF AC ∥;③如图3,延长AC 到点F ,过点C 作CE AB ∥;④如图4,过点C 作CD AB ^于点D .A .①②③B .①②④C .②③④D .①③④4.已知a ,b ,c 是ABC V 的三边长,a ,b 满足()2710a b -+-=,c 为奇数,则c 的值是( )A .7B .5C .3D .15.如图,AD ,CE 是ABC V 的两条中线,连接ED .若12ABC S =△,则S =阴影( )A .1B .2C .3D .66.若一个正多边形的每一个外角为30°,则这个多边形的内角和为( )A .1440°B .1620°C .1800°D .1980°7.已知直线AB CD ∥,将一个含有30°角的三角尺按如图所示的方式摆放,若46MEF а=,则CFM Ð的大小为( )A .104°B .107°C .114°D .134°8.如图,A B C D E F Ð+Ð+Ð+Ð+Ð+Ð等于( )A .240°B .300°C .360°D .540°9.在一个凸边形内角和为1080°的纸板上切下一个三角形后,剩下一个边长为n 的多边形,则n 的值不可能是( )A .6B .7C .8D .910.如图,在ABC V 中,BAC а90=,6AB =,AC 8=,BC 10=,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面结论:ABE V ① 的面积=BCE △ 的面积;AFG AGF ÐÐ=②;FAG ACF ÐÐ2=③;.AD 24=④.其中结论正确的是( )A .①②B .①②④C .①②③D .①②③④二、填空题(每小题3分,共15分)11.如图所示的手机支架.把手机放在上面就可以方便地使用手机,这是利用了三角形的 .12.一个多边形的内角和等于外角和的3倍,那么这个多边形为 边形.13.如图,AD ,CE 是ABC V 的两条高,4cm AB =,8cm BC =,6CE cm =,则AD 的长为 .14.如图,小明从A 点出发,向前走30m 后向右转36°,继续向前走30m ,再向右转36°,他回到A 点时共走了 米.15.如图,AC BD ^,AF 平分 BAC Ð,DF 平分EDB Ð,100BED Ð=°,则F Ð的度数为 .三、解答题(共75分)16.已知a ,b ,c 是ABC V 的三边长.(1)若 8a =,2b =,c 为偶数,求c 的长;(2)化简∶a b c a b c --++-.17.(1)若多边形的内角和为1620°,求此多边形的边数;(2)已知一个正多边形的一个内角等于一个外角的32倍,求这个正多边形是几边形?18.如图,ABC V 中,已知CD 为ACB Ð的平分线,AM CD ^于M ,45B Ð=°,8BAM Ð=°,求ACB Ð的度数.19.如图,在ABC V 中,AD BC ^,AE 平分BAC Ð.(1)若72B Ð=°,30C Ð=°,求BAE Ð和DAE Ð的度数;(2)若42B C Ð=Ð+°,求DAE Ð的度数.20.如图,在ABC V 中,AD 平分BAC Ð交BC 于点D ,BE 平分ABC Ð交AD 于点E .(1)若50C Ð=°,60BAC Ð=°,求ADB Ð的度数;(2)若45BED Ð=°,求C Ð的度数.21.如图,在ABC V 中,ABC Ð与外角ACD Ð的角平分线相交于点O .(1)当60ABC Ð=°,130ACD Ð=°时,求BOC Ð的度数;(2)求证:12O A Ð=∠.22.在△ABC 中,AD 是角平分线,∠B <∠C ,(1)如图(1),AE 是高,∠B =50°,∠C =70°,求∠DAE 的度数;(2)如图(2),点E 在AD 上.EF ⊥BC 于F ,试探究∠DEF 与∠B 、∠C 的大小关系,并证明你的结论;(3)如图(3),点E 在AD 的延长线上.EF ⊥BC 于F ,试探究∠DEF 与∠B 、∠C 的大小关系是 (直接写出结论,不需证明).23.操作:如图1,将ABC V 沿射线BF 平移到DCE △,使原B 点与C 点重合,这时CD AB ∥,所以1A Ð=Ð,2B Ð=Ð,请回答:(1)A B ACB Ð+Ð+Ð的值为 °;(2)若56A Ð=°,40B Ð=°,则ACF Ð= °;若A x Ð=°,B y Ð=°,则ACF Ð= ;(3)我们把A Ð、B Ð、ACB Ð称为ABC V 的内角;把ACF Ð称为ABC V 的外角,DEF Ð为DCE △的外角,每个三角形都有六个外角.运用(1)(2)结论,解决问题:如图2,已知ABC V 中,56A Ð=°,BP 、CP 分别平分ABC Ð、BCA Ð,CQ 平分外角ACF Ð交BP 与点Q ,求BPC Ð,BQC Ð.1.D【分析】本题主要考查了三角形高线的定义,熟练掌握从三角形的一个顶点向对边所在直线作垂线,顶点与垂足间的线段叫做三角形的高是解题的关键.根据三角形高线的定义,即可求解.【详解】解:过点B 作AC 的垂线,且垂足在直线AC 上,所以正确画出AC 边上的高的是D 选项,故选:D .2.D【分析】本题考查了三角形的高线,难点在于要分情况讨论.分高AD 在ABC V 内部和外部两种情况讨论求解即可.【详解】①如图1,当高AD 在ABC V 的内部时,6040100BAC BAD CAD Ð=Ð+Ð=°+°=°;②如图2,当高AD 在ABC V 的外部时,604020BAC BAD CAD Ð=Ð-Ð=°-°=°,综上所述,BAC Ð的度数为20°或100°.故选:D .3.A【分析】本题主要考查三角形内角和的定理的证明,平行线的性质,熟练掌握转化的思想以及平角的定义是解决本题的关键.运用转化的思想作出相应的平行线,把三角形的内角进行转化,再根据平角的定义逐一判断即可得答案.【详解】①∵EF AB ∥,∴,ECA A FCB B Ð=ÐÐ=Ð,∵180ECA ACB FCB Ð+Ð+Ð=°,∴180A B ACB Ð+Ð+Ð=°,故①符合题意,②∵DE BC ∥,DF AC ∥,∴,ADE B BDF A Ð=ÐÐ=Ð,,C AED AED EDF Ð=ÐÐ=Ð,∴C EDF Ð=Ð,∵180ADE EDF BDF Ð+Ð+Ð=°,∴180A B C Ð+Ð+Ð=°,故②符合题意,③∵CE AB ∥,∴,FCE A ECB B Ð=ÐÐ=Ð,∵180FCE ECB ACB Ð+Ð+Ð=°,∴180A B ACB Ð+Ð+Ð=°,故③符合题意,④Q CD AB ^,90CDB CDA \Ð=Ð=°,不能证明“三角形的内角和等于180°”故④不符合题意,故选:A .4.A【分析】本题考查三角形三边关系,非负数的应用,先根据绝对值和平方的非负性求出a ,b ,再利用三角形三边关系求出c 的取值范围,结合c 为奇数确定c 的值.【详解】解:Q ()2710a b -+-=,\70-=a ,10b -=,\7a =,1b =,Q a ,b ,c 是ABC V 的三边长,\a b c a b -<<+,即68c <<,∵c 为奇数,∴7c =.故选A .5.C 【分析】本题主要考查了三角形中线的性质,根据三角形中线平分三角形面积先求出162BCE ABC S S ==V V ,进而可得132BCE S S ==△阴影.【详解】解:∵CE 是ABC V 的中线,12ABC S =△,∴162BCE ABC S S ==V V ,∵AD 是ABC V 的中线,即D 为BC 的中点,∴DE 是BCE V 的中线,∴132BCE S S ==△阴影,故选C .6.C【分析】本题考查了多边形的内角与外角,求正多边形的边数通常用外角和360°除以每一个外角的度数.根据正多边形的边数等于外角和除以每一个外角的度数先求出边数,然后再根据多边形的内角和公式列式计算即可得解.【详解】解:Q 多边形的每一个外角等于30°,3603012°¸°=,\这个多边形是12边形;其内角和()1221801800=-´°=°.故选:C .7.A【分析】本题考查平行线的性质,由平行线的性质推出180AMF CFM Ð+Ð=°,由三角形外角的性质求出76AMF MFE MEF Ð=Ð+Ð=°,即可得到104CFM Ð=°.【详解】解:∵AB CD ∥,∴180AMF CFM Ð+Ð=°,∵304676AMF MFE MEF Ð=Ð+Ð=°+°=°,∴104CFM Ð=°.故选:A .8.C【分析】连接BD ,根据四边形内角和可得360A ABO OBD BDO CDO C Ð+Ð++Ð+Ð+Ð=°,再由“8”字三角形可得OBD ODB E F Ð+Ð=Ð+Ð,进而可得答案.【详解】解:连接BD ,如图,∵360A ABO OBD BDO CDO C Ð+Ð+Ð+Ð+Ð+Ð=°,OBD ODB E F Ð+Ð=Ð+Ð,∴360A ABO E F CDO C Ð+Ð+Ð+Ð+Ð+Ð=°,故选C .【点睛】本题考查了多边形的内角和,以及“8”字三角形的特点,正确作出辅助线是解答本题的关键.9.A【分析】本题主要考查了多边形的内角和.在一个凸n边形的纸板上切下一个三角形,则所得新的多边形的边可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解.【详解】解:设一个内角和为1080°的多边形的边数为x,则x-´°=°,解得8(2)1801080x=.在一个凸n边形的纸板上切下一个三角形,分三种情况:①若新多边形的边增加一条,则n的值为9;②若新多边形的边不变,则n的值为8;③若新多边形的边减少一条,则n的值为7.故选:A.10.C【分析】根据三角形角平分线和高的性质可确定角之间的数量关系;根据三角形的中线和面△的面积关系以及求出AD的长度.积公式可确定ABE△和BCEV的中线【详解】解:BEQ是ABC\=AE EC△的面积\V的面积等于BCEABE故①正确;V的高BAC90Q,AD是ABCÐ=°9090,DCG DGCÐ+Ð=°\Ð+Ð=°AFG ACGQ是ABCCFV的角平分线ACG DCGÐ=Ð\Ð=ÐAFG DGC又DGC AGF Ð=ÐQAFG AGF \Ð=Ð故②正确;FAG DAC DAC ACD Ð+Ð=Ð+Ð=°90QFAG ACD \Ð=ÐACD ACF DCF ACF Ð=Ð+Ð=Ð2QFAG ACF \Ð=Ð2故③正确;ABC S AB AC BC AD ==2V Q g g.AB AC AD BC ´\===684810g 故④错误;故选:C【点睛】本题考查了三角形的中线、高、角平分线,灵活运用三角形的中线、高、角平分线的性质是解决本题的关键.11.稳定性【分析】利用三角形的稳定性的性质直接回答即可.【详解】解:把手机放在上面就可以方便地使用手机,这是利用了三角形的稳定性,故答案为:稳定性.【点睛】本题考查了三角形的稳定性,解题的关键是掌握三角形具有稳定性.12.八##8【分析】本题主要考查了多边形内角和公式、多边形外角和,根据多边形内角和公式()2180n -´°和多边形的外角和是360°,由一个多边形的内角和等于外角和的3倍,列出方程求解即可.【详解】解:设这个多边形有n 条边.由题意得:()21803603n -´°=°´,解得8n =.则这个多边形是八边形.故答案为:八.13.3cm【分析】此题解题的关键是掌握三角形的面积公式,利用等面积法求解即可,即1122ABC S BC AD AB CE =×=×V .【详解】解:AD BC Q ^,CE BA ^1122ABC S BC AD AB CE D =×=×BC AD AB CE\×=×846AD \=´3AD \=故答案为:3cm .14.300【分析】根据多边形的外角和等于360°求出所走过的边数,然后根据多边形的周长列式计算即可得解.本题考查了多边形的内角与外角,读懂题目信息,求出所走过的边数是解题的关键.【详解】解:3603610°¸°=,所以他走回到A 点时共走了:3010300´=(米).故答案为:300.15.85°##85度【分析】本题主要考查了三角形外角.熟练掌握三角形外角性质,角平分线性质,是解决问题的关键.设AF 与DE 相交于点G ,DF 与AC 相交于点H ,根据AC BD ^,100BED Ð=°,得到=90ACD а,80AED Ð=°,根据角平分线定义得到1122BAC Ð=Ð=Ð,1342BDE Ð=Ð=∠,则根据三角形外角性质得到31AGD F AED Ð=Ð+Ð=Ð+Ð,24AHD F ACD Ð=Ð+Ð=Ð+Ð,得到32801904F F Ð+Ð+Ð+Ð=°+Ð+°+Ð,即得85F Ð=°.【详解】如图,设AF 与DE 相交于点G ,DF 与AC 相交于点H ,∵AC BD ^,∴=90ACD а,∵100BED Ð=°,∴18080AED BED Ð=°-Ð=°,∵AF 平分 BAC Ð,DF 平分EDB Ð,∴1122BAC Ð=Ð=Ð,1342BDE Ð=Ð=,∵31801AGD F AED Ð=Ð+Ð=Ð+Ð=°+Ð①,24904AHD F ACD Ð=Ð+Ð=Ð+Ð=°+Ð②,+①②,得,32801904F F Ð+Ð+Ð+Ð=°+Ð+°+Ð,∴2170F Ð=°,∴85F Ð=°.故答案为:85°.16.(1)8c =(2)2b【分析】本题考查了三角形三边关系,(1)根据三角形的三边关系可得610c <<,进而根据c 为偶数,即可求解;(2)根据三角形的三边关系得出0a b c --<,0a b c +->,进而化简绝对值,即可求解.【详解】(1)解:8a =Q ,2b =a bc a b\-<<+610c \<<c Q 为偶数8c \=(2)a b c <+Q ,a b c+>0a b c \--<,0a b c +->a b c a b c\--++-a b c a b c=-++++-2b=17.(1)11(2)5【分析】本题考查了多边形的内角和与外角和.关键是记住内角和的公式与外角和的公式.(1)根据多边形的内角和计算公式作答;(2)设多边形的边数为n ,则多边形的内角和可以表示成(2)180n -×°,外角和是固定的360°,从而可根据一个正多边形的一个内角等于一个外角的32列方程求解可得.【详解】解:(1)设此多边形的边数为n ,则(2)1801620n -×°=,解得11n =.∴此多边形的边数为11;(2)设此正多边形为正n 边形.Q 正多边形的一个内角等于一个外角的32,\此正多边形的内角和等于其外角和的32,\3360(2)1802n ´°=-×°,解得:5n =.答:正多边形的边数为5.18.74ACB Ð=°【分析】本题考查三角形内角和定理,三角形的外角的性质等知识.求出ADC Ð,再利用三角形的外角的性质求出DCB Ð即可解决问题.【详解】解:AM CD ^Q ,90AMD \Ð=°,8DAM Ð=°Q ,82ADM \Ð=°,ADM B DCB Ð=Ð+ÐQ ,45B Ð=°,37DCB \Ð=°,DC Q 平分ACB Ð,23774ACB \Ð=´°=°.19.(1)39BAE Ð=°,21DAE =°∠(2)21°【分析】本题主要考查了三角形内角和定理,角平分线的定义,(1)先利用三角形内角和定理求出BAC Ð的度数,进而利用角平分线的定义求出BAE CAE Ð∠、的度数,再根据三角形内角和定理求出CAD Ð的度数即可得到答案;(2)同(1)求解即可.【详解】(1)解:∵72B Ð=°,30C Ð=°,∴18078BAC B C =°--=°∠∠∠,∵AE 平分BAC Ð,∴1392BAE CAE BAC ===°∠∠∠,∵AD BC ^,即90ADC Ð=°,∴18060CAD C ADC =°--=°∠∠∠,∴21DAE CAD CAE =-=°∠∠∠;(2)解:∵42B C Ð=Ð+°,∴1801382BAC B C C =°--=°-∠∠∠∠,∵AE 平分BAC Ð,∴1692BAE CAE BAC C ===°-∠∠∠∠,∵AD BC ^,即90ADC Ð=°,∴18090CAD C ADC C =°--=°-∠∠∠∠,∴21DAE CAD CAE =-=°∠∠∠.20.(1)80°(2)90°【分析】(1)由角平分线的定义求出DAC Ð.再根据三角形外角的性质即可得到ADB Ð的度数;(2)由角平分线的定义得到22BAC BAD ABC ABE Ð=ÐÐ=Ð,.再根据三角形外角的性质得到45BAD ABE BED Ð+Ð=Ð=°.即可得到90BAC ABC Ð+Ð=°,再根据三角形内角和定理求出答案即可;本题考查了三角形外角的性质、三角形内角和定理、角平分线的相关计算等知识,熟练掌握三角形外角的性质、三角形内角和定理是解题的关键.【详解】(1)解:∵AD 平分BAC Ð交BC 于点D ,60BAC Ð=°,∴1302DAC BAC Ð=Ð=°.∵ADB Ð是ADC △的外角,50C Ð=°,∴80ADB C DAC Ð=Ð+Ð=°;(2)∵AD 平分BAC Ð交BC 于点D ,BE 平分ABC Ð交AD 于点E ,∴22BAC BAD ABC ABE Ð=ÐÐ=Ð,.∵BED Ð是ABE V 的外角,45BED Ð=°,∴45BAD ABE BED Ð+Ð=Ð=°.∴()290BAC ABC BAD ABE Ð+Ð=Ð+Ð=°∵180BAC ABC C Ð+Ð+Ð=°,∴()18090C BAC ABC Ð=°-Ð+Ð=°.21.(1)35°(2)见解析【分析】(1)根据角平分线的定义分别求出OBC Ð和OCD Ð的度数,再利用三角形外角性质求出BOC Ð的度数;(2)由三角形外角的性质可得A ACD ABC Ð=Ð-Ð,再由角平分线的定义可得12DCO ACD Ð=Ð,12CBO ABC Ð=Ð,则可求得O DCO CBO Ð=Ð-Ð,从而可得到12O A Ð=的关系.【详解】(1)解:BO Q 平分ABC Ð,CO 平分ACD Ð,1230OBC ABC \Ð=Ð=°,1652OCD ACD Ð=Ð=°,OCD OBC BOC Ð=Ð+ÐQ ,653035BOC OCD OBC \Ð=Ð-Ð=°-°=°;(2)证明:ACD ÐQ 为ABC V 的外角,A ACD ABC \Ð=Ð-Ð,BO Q 平分ABC Ð,CO 平分ACD Ð,12DCO ACD \Ð=Ð,12CBO ABC Ð=Ð,DCO ÐQ 是BCO V 的外角,()1122O DCO CBO ACD ABC A \Ð=Ð-Ð=Ð-Ð=Ð.【点睛】本题主要考查三角形的外角性质,角平分线的定义,解答的关键是结合图形分析清楚各角之间的关系.22.(1)∠DAE =10°;(2)∠DEF 12=(∠C ﹣∠B ).证明见解析;(3)∠DEF 12=(∠C ﹣∠B ).【分析】(1)依据角平分线的定义以及垂线的定义,即可得到1,902CAD BAC CAE C °Ð=ÐÐ=-Ð,进而得出1()2DAE C B Ð=Ð-Ð,由此即可解决问题.(2)过A 作AG ⊥BC 于G ,依据平行线的性质可得∠DAG=∠DEF ,依据(1)中结论即可得到1()2DEF C B Ð=Ð-Ð(3)过A 作AG ⊥BC 于G ,依据平行线的性质可得∠DAG=∠DEF ,依据(1)中结论即可得到1()2DEF C B Ð=Ð-Ð【详解】(1)如图1,∵AD 平分∠BAC ,∴∠CAD 12=∠BAC ,∵AE ⊥BC ,∴∠CAE =90°﹣∠C ,∴∠DAE =∠CAD ﹣∠CAE 12=∠BAC ﹣(90°﹣∠C )12=(180°﹣∠B ﹣∠C )﹣(90°﹣∠C )12=∠C 12-∠B 12=(∠C ﹣∠B ),∵∠B =50°,∠C =70°,∴∠DAE 12=(70°﹣50°)=10°.(2)结论:∠DEF 12=(∠C ﹣∠B ).理由:如图2,过A 作AG ⊥BC 于G ,∵EF ⊥BC ,∴AG ∥EF ,∴∠DAG =∠DEF ,由(1)可得,∠DAG 12=(∠C ﹣∠B ),∴∠DEF 12=(∠C ﹣∠B ).(3)仍成立.如图3,过A 作AG ⊥BC 于G ,∵EF ⊥BC ,∴AG ∥EF ,∴∠DAG =∠DEF ,由(1)可得,∠DAG 12=(∠C ﹣∠B ),∴∠DEF 12=(∠C ﹣∠B ),故答案为∠DEF 12=(∠C ﹣∠B ).【点睛】此题主要考查了角平分线的性质、三角形内角和定理和直角三角形的性质,解题时注意:三角形内角和是180°.23.(1)180(2)96,()x y +°;(3)118BPC Ð=°;28BQC Ð=°【分析】本题主要考查了平移的性质,三角形内角和定理,三角形外角的性质,角平分线的定义等等:(1)根据平角的定义,可得12180ACB Ð+Ð+Ð=°,求解即可;(2)先求出12ÐÐ,的度数,再根据12ACF Ð=Ð+Ð代入求解即可;(3)根据(1)的结论可知124ACB ABC Ð+Ð=°,根据角平分线的定义以及(1)的结论即可求出BPC Ð,根据角平分线的定义以及(2)的结论即可求出BQC Ð.【详解】(1)解:∵12180ACB Ð+Ð+Ð=°,1A Ð=Ð,2B Ð=Ð,∴180A B ACB Ð+Ð+Ð=°,故答案为:180;(2)∵56A Ð=°,40B Ð=°,∴156A Ð==°∠,240B Ð=Ð=°,∴1296ACF Ð=Ð+Ð=°,当A x Ð=°,B y Ð=°,则1A x Ð==°∠,2B y Ð==°∠,∴()12ACF x y Ð=+=+°∠∠,故答案为:96,()x y +°;(3)解:∵56A Ð=°,180A ACB ABC Ð+Ð+Ð=°,∴18056124ABC ACB Ð+Ð=°-°=°,∵BP 、CP 分别平分ABC Ð、BCA Ð,∴12PBC ABC Ð=Ð,12PCB ACB Ð=Ð,∴116222PBC PCB ABC ACB Ð+Ð=Ð+Ð=°∵180PBC PCB BPC Ð+Ð+Ð=°,∴18062118BPC Ð=°-°=°;∵BP 平分ABC Ð,∴12QBC ABC Ð=Ð,∵CQ 平分外角ACF Ð,∴12QCF ACF Ð=Ð,∵ACF BAC ABC Ð=Ð+Ð,∴1()2QCF ABC BAC Ð=Ð+Ð,∴1282BQC QCF QBC BAC Ð=Ð-Ð=Ð=°,∴BPC Ð的度数为118°,BQC Ð的度数为28°.。
A.带①去B.带②去C.带③去D.带①17.等腰三角形是轴对称图形,它的对称轴是和②去5.下面4个汽车标志图案中,不是轴对称图形的是()I L pj-J 声八年级上册数学第一次月考试题、选择题(3' X 10=30')1、下列命题中正确的是() A .全等三角形的高相等 B .全等三角形的中线相等C.全等三角形周长相等 D .全等三角形的角平分线相等 2、如图2,直线a 、b 、c 表示三条公路,现要建一个货物中 转站,要求它到三条公路的距离相等,则可供选择的地址有 A. 一处 B.两处 C.三处D.四处 3、如图 3, ZXABC 中,AB= AC ADLBC,点 E 、F 分别是 BR DC 的中点,则图中全等三角形共有( A. 3对 B. 4对 C. 5对 4、如图4,某同学把一块三角形的玻璃不小心打碎成了三块, 现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法 (第8题)(第9题) 9、如图9,在△ ABC 中,AB= AC= 20cm, DE 垂直平分 AR 垂足为 E,AC 于D,若△ DBC 的周长为35cm,则BC 的长为( )A 、5cmB 、10cmC 、15cmD 、17.5cm10、在直角坐标系中,A (1, 2)点的纵坐标乘以一1,横坐标不变,得到B 点,则A 与B 的关系是()A 关于x 轴对称B 关于y 轴对称C 关于原点轴对称D 不确定 二.填空题(2' X 12=24')11、已知:△ABC^^A' B' C' ,/A=/A' ,/B=/B' , Z C=70 ° , AB=15cm ,则/ C' =, A ' B' =。
12等腰三角形的一个角是 80。
,则它的底角是 . 13.如图13所示,五角星的五个角都是顶角为36。
的等腰三角形,则 /AMB的度数为 A. 144°OC.14.如图14,已知AC=DB,要使△ABC^zXDCB,则需要 补充的条件为 (填一个即可)15、已知等腰三角形的两边长分别为2cm, 4cm 则其周长为A B 6.已知等腰三角形的一个外角等于 是( ). A 80 ° B 20 ° C 80 或 定 CD100° ,则它的顶角 20° D 不能确 7.小明从镜子中看到对面电子钟示数如图所示,这时的时刻 应是() A. 21: 10 C. 10: 51 B. 10: 21 D. 12: 01 8、如图(8) AB ±BC, D 为BC 的中点,以下结论正确的有 ()个。
八年级(上)第一次月考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个2.点P与点Q关于直线m成轴对称,则PQ与m的位置关系()A.平行 B.垂直 C.平行或垂直D.不确定3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有()A.5个B.3个C.4个D.6个4.在下列给出的条件中,不能判定两个三角形全等的是()A.两边一角分别相等 B.两角一边分别相等C.直角边和一锐角分别相等D.三边分别相等5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF6.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC7.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为()A.5 B.10 C.15 D.208.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.二、填空题(本大题共有10小题,每小题2分,共20分.)9.已知△ABC与△A′B′C′关于直线L对称,∠A=40°,∠B′=50°,则∠C= .10.△ABC≌△DEF,且△ABC的周长为12,若AB=5,EF=4,AC= .11.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=24°,∠2=36°,则∠3= .12.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第块.13.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=20cm,则△DEB 的周长为cm.14.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有个.15.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3= °.16.如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,若AE=12cm,则DE的长为cm.17.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 度.18.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP= 时,△ABC和△PQA全等.三、解答题(本大题共10小题,共76分.)19.作图题:画出△ABC关于直线AC对称的△A′B′C′.20.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.22.如图,AD是△ABC一边上的高,AD=BD,BE=AC,∠C=75°,求∠ABE的度数.23.已知:AB=AD,BC=DE,AC=AE,(1)试说明:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.24.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线(如图1),方法如下:作法:①在OA和OB上分别截取OD、OE,使OD=OE.②分别以DE为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C③作射线OC,则OC就是∠AOB的平分线小聪只带了直角三角板,他发现利用三角板也可以做角平分线(如图2),方法如下:步骤:①用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是.②小聪的作法正确吗?请说明理由.25.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.26.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.27.如图1,在△ABC中,∠BAC为直角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如图1,则∠(2)若AB=AC,①当点D在线段BC上时(与点B不重合),如图2,问CF、BD有怎样的关系?并说明理由.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,直接写出结论.28.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:第1,2个图形沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故轴对称图形一共有2个.故选:B.【点评】此题主要考查了轴对称图形,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.点P与点Q关于直线m成轴对称,则PQ与m的位置关系()A.平行 B.垂直 C.平行或垂直D.不确定【考点】轴对称的性质.【分析】点P与点Q关于直线m成轴对称,即线段PQ关于直线m成轴对称;根据轴对称的性质,有直线m垂直平分PQ.【解答】解:点P和点Q关于直线m成轴对称,则直线m和线段QP的位置关系是:直线m垂直平分PQ.故选:B.【点评】此题考查了对称轴的定义,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有()A.5个B.3个C.4个D.6个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形的概念可知:①两个点;②线段;③角;④长方形;⑤两条相交直线一定是轴对称图形;⑥三角形不一定是轴对称图形.故选A.【点评】本题考查轴对称图形的知识,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.在下列给出的条件中,不能判定两个三角形全等的是()A.两边一角分别相等 B.两角一边分别相等C.直角边和一锐角分别相等D.三边分别相等【考点】全等三角形的判定.【分析】根据判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL分别进行分析.【解答】解:A、两边一角分别相等的两个三角形不一定全等,故此选项符合题意;B、两角一边分别相等可用AAS、ASA定理判定全等,故此选项不合题意;C、两角一边对应相等,可用SAS或AAS定理判定全等,故此选项不合题意;D、三边分别相等可用SSS定理判定全等,故此选项不合题意;故选:A.【点评】本题考查三角形全等的判定方法,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC=CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.【解答】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,EB=DE,∴∠BCE=∠DCE,在Rt△BCE和Rt△DCE中,,∴Rt△BCE≌Rt△DCE(HL),故选:C.【点评】此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.7.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为()A.5 B.10 C.15 D.20【考点】轴对称的性质.【分析】根据题意,观察可得:△ABC关于AD轴对称,且图中阴影部分的面积为△ABC面积的一半,先求出△ABC的面积,阴影部分的面积就可以得到.【解答】解:根据题意,阴影部分的面积为三角形面积的一半,∵S=×BC•AD=×4×5=10,△ABC∴阴影部分面积=×10=5.故选A.【点评】考查了轴对称的性质,根据轴对称得到阴影部分面积是解题的关键.8.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.【考点】剪纸问题.【专题】压轴题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右对折,向上对折,从正方形的上面那个边剪去一个长方形,左下角剪去一个正方形,展开后实际是从大的正方形的中心处剪去一个较小的正方形,从相对的两条边上各剪去两个小正方形得到结论.故选:B.【点评】本题主要考查学生的动手能力及空间想象能力.二、填空题(本大题共有10小题,每小题2分,共20分.)9.已知△ABC与△A′B′C′关于直线L对称,∠A=40°,∠B′=50°,则∠C= 90°.【考点】轴对称的性质.【分析】根据成轴对称的两个图形全等求得未知角即可.【解答】解:∵△ABC与△A′B′C′关于直线L对称,∴△ABC≌△A′B′C′,∴∠B=∠B′=50°,∵∠A=40°,∴∠C=180°﹣∠B﹣∠A=180°﹣50°﹣40°=90°,故答案为:90°.【点评】本题考查轴对称的性质,属于基础题,注意掌握如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.10.△ABC≌△DEF,且△ABC的周长为12,若AB=5,EF=4,AC= 3 .【考点】全等三角形的性质.【分析】根据全等三角形对应边相等可得BC=EF,再根据三角形的周长的定义列式计算即可得解.【解答】解:∵△ABC≌△DEF,∴BC=EF=4,∵△ABC的周长为12,AB=5,∴AC=12﹣5﹣4=3.故答案为:3.【点评】本题考查了全等三角形的性质,三角形的周长的定义,熟记性质是解题的关键.11.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=24°,∠2=36°,则∠3= 60°.【考点】全等三角形的判定与性质.【专题】常规题型.【分析】易证△AEC≌△ADB,可得∠ABD=∠2,根据外角等于不相邻内角和即可求解.【解答】解:∵∠BAC=∠DAE,∠BAC=∠BAD+∠DAC,∠DAE=∠DAC+∠CAE,∴∠CAE=∠1,∵在△AEC和△ADB中,,∴AEC≌△ADB,(SAS)∴∠ABD=∠2,∵∠3=∠ABD+∠1,∴∠3=∠2+∠1=60°.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证AEC≌△ADB是解题的关键.12.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第 2 块.【考点】全等三角形的应用.【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故答案为:2.【点评】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.13.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=20cm,则△DEB 的周长为20 cm.【考点】角平分线的性质;等腰直角三角形.【分析】先根据ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再将其代入△DEB的周长中,通过边长之间的转换得到,周长=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以为20cm.【解答】解:∵CD平分∠ACB∴∠ACD=∠ECD∵DE⊥BC于E,∴∠DEC=∠A=90°在△ACD与△ECD中,∵,∴△ACD≌△ECD(ASA),∴AC=EC,AD=ED,∵∠A=90°,AB=AC,∴∠B=45°∴BE=DE∴△DEB的周长为:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=20cm.故答案为:20.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有 4 个.【考点】全等三角形的判定;角平分线的性质.【分析】根据题目所给条件可得∠ODF=∠OEF=90°,再加上添加条件结合全等三角形的判定定理分别进行分析即可.【解答】解:∵FD⊥AO于D,FE⊥BO于E,∴∠ODF=∠OEF=90°,①加上条件OF是∠AOB的平分线可利用AAS判定△DOF≌△EOF;②加上条件DF=EF可利用HL判定△DOF≌△EOF;③加上条件DO=EO可利用HL判定△DOF≌△EOF;④加上条件∠OFD=∠OFE可利用AAS判定△DOF≌△EOF;因此其中能够证明△DOF≌△EOF的条件的个数有4个,故答案为:4.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3= 135 °.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.【点评】此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.16.如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,若AE=12cm,则DE的长为12 cm.【考点】直角三角形全等的判定;全等三角形的性质.【分析】根据已知条件,先证明△DBE≌△ABE,再根据全等三角形的性质(全等三角形的对应边相等)来求DE的长度.【解答】解:连接BE.∵D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,∴∠A=∠BDE=90°,∴在Rt△DBE和Rt△ABE中,BD=AB(已知),BE=EB(公共边),∴Rt△DBE≌Rt△ABE(HL),∴AE=ED,又∵AE=12cm,∴ED=12cm.故填12.【点评】本题主要考查了直角三角形全等的判定(HL)以及全等三角形的性质(全等三角形的对应边相等).连接BE是解决本题的关键.17.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 45 度.【考点】直角三角形全等的判定;全等三角形的性质.【分析】根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=45°.【解答】解:∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=45°.故答案为:45.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.18.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP= 5或10 时,△ABC和△PQA全等.【考点】直角三角形全等的判定.【分析】当AP=5或10时,△ABC和△PQA全等,根据HL定理推出即可.【解答】解:当AP=5或10时,△ABC和△PQA全等,理由是:∵∠C=90°,AO⊥AC,∴∠C=∠QAP=90°,①当AP=5=BC时,在Rt△ACB和Rt△QAP中∴Rt△ACB≌Rt△QAP(HL),②当AP=10=AC时,在Rt△ACB和Rt△PAQ中∴Rt△ACB≌Rt△PAQ(HL),故答案为:5或10.【点评】本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,AAS,SAS,SSS,HL.三、解答题(本大题共10小题,共76分.)19.作图题:画出△ABC关于直线AC对称的△A′B′C′.【考点】作图-轴对称变换.【分析】过点B作BD⊥AC于点D,延长BD至点B′,使DB′=DB,连接AB′,CB′即可.【解答】解:如图,△A′B′C′即为所求.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.20.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)【考点】作图—应用与设计作图.【分析】根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.【解答】解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.都是所求的点.P和P1【点评】此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】求出BC=EF,根据平行线性质求出∠B=∠E,∠ACB=∠DFE,根据ASA推出△ABC≌△DEF即可.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.【点评】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力.22.如图,AD是△ABC一边上的高,AD=BD,BE=AC,∠C=75°,求∠ABE的度数.【考点】全等三角形的判定与性质.【分析】根据HL推出Rt△BDE≌Rt△ADC,推出∠C=∠BED=75°,根据等腰三角形的性质和三角形的内角和定理求出∠ABD=∠BAD=45°,∠EBD=15°,即可求出答案.【解答】解:∵AD是△ABC一边上的高,∴∠BDE=∠ADC=90°,在Rt△BDE和Rt△ADC中,,∴Rt△BDE≌Rt△ADC(HL),∴∠C=∠BED=75°,∵∠BDE=90°,AD=BD,∴∠ABD=∠BAD=45°,∠EBD=15°,∴∠ABE=∠ABD﹣∠EBD=45°﹣15°=30°.【点评】本题考查了全等三角形的性质和判定,三角形内角和定理,等腰三角形的性质的应用,解此题的关键是推出△BDE≌△ADC,注意:全等三角形的对应边相等,对应角相等.23.已知:AB=AD,BC=DE,AC=AE,(1)试说明:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】(1)利用“边边边”求出△ABC和△ADE全等,根据全等三角形对应角相等可得∠BAC=∠DAE,然后都减去∠CAD即可得证;(2)根据全等三角形对应角相等可得∠B=∠ADE,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠EDC=∠BAD,从而得解.【解答】(1)证明:在△ABC和△ADE中,,∴△ABC≌△ADE(SSS),∴∠BAC=∠DAE,∴∠DAE﹣∠CAD=∠BAC﹣∠CAD,即:∠EAC=∠BAD;(2)解:∵△ABC≌△ADE,∴∠B=∠ADE,由三角形的外角性质得,∠ADE+∠EDC=∠BAD+∠B,∴∠EDC=∠BAD,∵∠BAD=42°,∴∠EDC=42°.【点评】本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.24.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线(如图1),方法如下:作法:①在OA和OB上分别截取OD、OE,使OD=OE.②分别以DE为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C③作射线OC,则OC就是∠AOB的平分线小聪只带了直角三角板,他发现利用三角板也可以做角平分线(如图2),方法如下:步骤:①用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是SSS .②小聪的作法正确吗?请说明理由.【考点】作图—基本作图;全等三角形的判定.【分析】①根据全等三角形的判定即可求解;②根据HL可证Rt△OMP≌Rt△ONP,再根据全等三角形的性质即可作出判断.【解答】解:①李老师用尺规作角平分线时,用到的三角形全等的判定方法SSS.故答案为SSS;②小聪的作法正确.理由:∵PM⊥OM,PN⊥ON,∴∠OMP=∠ONP=90°,在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP平分∠AOB.【点评】本题考查了用刻度尺作角平分线的方法,全等三角形的判定与性质,难度不大.25.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【考点】全等三角形的判定与性质.【分析】(1)在△CBF和△DBG中,利用SAS即可证得两个三角形全等,利用全等三角形的对应边相等即可证得;(2)根据全等三角形的对应角相等,以及三角形的内角和定理,即可证得∠DHF=∠CBF=60°,从而求解.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.【点评】本题考查了全等三角形的判定与性质,正确证明三角形全等是关键.26.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得∠HFB=∠HEC,由得对顶角相等得∠BHF=∠CHE,所以∠ABD=∠ACG.再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,∴△ABD≌△GCA(SAS),∴AD=GA(全等三角形的对应边相等);(2)位置关系是AD⊥GA,理由为:∵△ABD≌△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.【点评】此题考查了全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.27.如图1,在△ABC中,∠BAC为直角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如图1,则∠CAF(2)若AB=AC,①当点D在线段BC上时(与点B不重合),如图2,问CF、BD有怎样的关系?并说明理由.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,直接写出结论.【考点】全等三角形的判定与性质;正方形的性质.【分析】(1)根据∠BAD+∠DAC=90°,∠CAF+∠DAC=90°,即可解题;(2)易证∠BAD=∠CAF,即可证明△BAD≌△CAF,可得CF=BD,即可解题;(3)易证∠BAD=∠CAF,即可证明△BAD≌△CAF,可得CF=BD,即可解题.【解答】证明:(1)∵∠BAD+∠DAC=90°,∠CAF+∠DAC=90°,∴∠BAD=∠CAF;(2)①∵∠BAD+∠DAC=90°,∠CAF+∠DAC=90°,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF,(SAS)∴CF=BD;②∵∠BAD=∠BAC+∠CAD=90°+∠CAD,∠CAF=∠CAD+∠DAF=90°+∠CAD,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF,(SAS)∴CF=BD.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BAD ≌△CAF是解题的关键.28.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为10﹣4t cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?【考点】四边形综合题.【分析】(1)①根据正方形边长为10cm和点P在线段BC上的速度为4cm/秒即可求出CP的长;②分△BPE≌△CPQ和△BPE≌△CQP两种情况进行解答;(2)根据题意列出方程,解方程即可得到答案.【解答】解:(1)①PC=BC﹣BP=10﹣4t;②当△BPE≌△CPQ时,BP=PC,BE=CQ,即4t=10﹣4t,at=6,解得a=4.8;当△BPE≌△CQP时,BP=CQ,BE=PC,即4t=at,10﹣4t=6,解得a=4;(2)当a=4.8时,由题意得,4.8t﹣4t=30,解得t=37.5,∴点P共运动了37.5×4=150cm,∴点P与点Q在点A相遇,当a=4时,点P与点Q的速度相等,∴点P与点Q不会相遇.∴经过37.5秒点P与点Q第一次在点A相遇.【点评】本题考查的是正方形的性质和全等三角形的判定和性质,正确运用数形结合思想和分类讨论思想是解题的关键.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是()A.130°B.40°C.90°D.140°。
第11题
E
P
C
B
A
2013年12月北片联考八年级数学月考试题
一、选择题(共12小题,每小题3分,共36分) 1.下列函数中,属于一次函数的个数是( ).
①y = x ; ②y =-2+5x ; ③y = - ;④y =2x 2+2;⑤ y =x -2;⑥y =2πx A 、5个 B 、4个 C 、3个 D 、2个 2.下列命题中正确的是( ).
A .全等三角形的高相等
B .全等三角形的中线相等
C .全等三角形的角平分线相等
D .全等三角形对应角的平分线相等 3.下列说法错误的是( ).
A. 1的平方根是±1
B. –1的立方根是–1
C. –3是2
)3(-的平方根 D. 2是2的算术平方根 4.下列图案是轴对称图形的有( ).
A .1个
B .2个
C .3个
D .4个
5.如图,Rt △ABC 中,∠ACB =︒90,∠A =︒50,将其折叠,使点A 落在边CB 上A '处,折痕为CD ,则∠A 'DB =( ).
A. ︒20
B. ︒15
C. ︒10
D. ︒5
6
x 的取值范围是( ).
A .x . 2>x 7.若2a =a ,则a 的取值范围是( ).
A. a
>0 B. a <0 C. 0≤a D. 0≥a
8.如图,为等边△ABC 的边AC 上一点,且BD =CE ,∠ABD =∠ACE ,那么△ADE 是( ). A .直角三角形 B .钝角三角形 C .等边三角形 D .腰与底不相等的三角形
9.已知等腰三角形的底边长15cm ,一腰上的中线把其周长分成两部分的差为8cm ,则腰长
为( ).
A. 7cm
B. 23cm
C. 7cm 或23cm
D. 11cm 或19cm 10.如果一次函数)0(≠+=k b kx y 的图象经过第四象限,且不与x 轴负半轴相交,那么( ). A .0,0>>b k B .0,0<>b k C . 0,0><b k D .0,0<<b k 11.如图,P 为等腰Rt △ABC 外一点,∠BAC =︒90,连PB 、PC 、PA ,PA 交BC 于E 点,且∠APC =︒45,下列结论:①∠BPA =︒45;②
;PC
PB
S S ACE ABE =∆∆③PB =PC =PA ;④PA =PB +PC .其中正确的结论有( )个.
A.1
B. 2
C.3
D.4
12.已知在直线)0(≠+=k b kx y 上有两点A (11,y x )、B (22,y x )(21x x ≠),且
32,321221-=--=-x y x y ,则=k ( ). A .-2 B .-3 C .3 D .2 二、填空题(共4小题,每小题3分,共12分) 13.9的算术平方根是 .
14.已知点A (b ,3)与点B (3,-a )关于x 轴对称,则=+b a .
15.甲、乙两人在一条笔直的公路上,沿同一方向骑自行车同时出发前往A 地,他们距A 地
的路程y (千米)与行驶时间x (小时)之间的关系如图所示,则出发 小时后甲、乙相距5千米.
A'
第8题
E
D
C
B
A
第16题
E
D C
B
A
16.如图,Rt △ABC 中,∠C =︒90,∠B =︒30,AB =8,点E 在边AB 上,点D 在边BC 上(不与点B 、C 重合),且ED =AE ,则线段AE 的取值范围是 . 三、解答题(共9小题,72分)
17.(共2小题,每小题3分,共6分)计算:(1)3125
16 (2)
2
97⎪⎭
⎫ ⎝⎛-
18.(本题满分6分)计算:4
1
2
3122703-+--
- 19.(本题满分6分)已知Rt △ABC 中,∠C =︒90,AB=2BC ,求证:∠A =︒30. 20. (本题满分7分)已知一次函数)0(≠+=k b kx y 的图象经过点(-2,3),且与正比例函数x y 3-=的图象交于点(a ,-3),求该函数的解析式. 21.(本题满分7分)如图,在平面直角坐标系中建立正方形网格,每个小正方形的边长为1,其中△ABC 的三个顶点的坐标分别为:A (-1,1),B (-4,-3),C (-1,-3). (1)将△ABC 沿直线1=y 翻折得111C B A ∆,请画出图形,
并写出111,,C B A 的坐标.
(2)将111C B A ∆沿射线11A B 方向平移5个单位得222C B A ∆,
请画出图形,并写出2C 的坐标.
22.(本题满分8分)如图,D 、E 分别为等边△ABC 的边AC 、BC 上的点,且AD =CE ,BD 、AE 交于点P ,BQ ⊥AE 于Q . (1)求证:BD =AE . (2)BP =4,求PQ . 23.(本题满分10分)某工厂需要添置某种设备,有两种解决方案. 方案一:到其他工厂购买,15元/件;方案二:工厂自行制作,每件9元,另需租用工具费210元. 设需此种设备x 件,两种方案所需费用为1y 、2y 元.
(1)分别写出1y 、2y 的函数关系式;
(2)试比较哪种方案更省钱? 24.(本题满分10分)如图,在△ABC 中,分别以AB 、AC 向外侧作等腰Rt △ABM 和Rt △ACN ,使AB =AM ,AC =AN ,连接MN .
(1)若AD 为△ABC 的高,并反向延长AD 交MN 于E ,求证:ME =NE . (2)若AD 为△ABC 的中线,并反向延长AD 交MN 于E ,求证:AE ⊥MN .
25.(本题满分12分)如图,直线)0(3≠+=k kx y 交x 轴于A ,交y 轴于B ,C 为线段AB 上
一点,它的纵坐标为1,点D 的坐标为(0,-2),且10=∆BCD S .
(1)求直线AB 的解析式.
(2)若在坐标系中有一点P ,使得︒=∠45PCD ,求直线PC 的解析式.
(3)取BC 的中点E ,延长DE 至F ,使EF =DE ,连接AD 、AF ,试判断△ADE 是什么三角形,并证明你的结论
.
第21题
第22题
Q P
E D C
B
A
第24题(2)
N
M
E
D
C
B
A
N
第24题(1)
A
B
C
D
E
M
图1
第19题
C
B
A。