2018年高考数学(理)二轮复习精品课件:回扣5 数 列
- 格式:ppt
- 大小:2.08 MB
- 文档页数:31
环节一:记牢概念公式,避免临场卡壳 1.等差数列、等比数列2.判断等差数列的常用方法(1)定义法:a n +1-a n =d (常数)(n ∈N *)⇔{a n }是等差数列.(2)通项公式法:a n =pn +q (p ,q 为常数,n ∈N *)⇔{a n }是等差数列. (3)中项公式法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列.(4)前n 项和公式法:S n =An 2+Bn (A ,B 为常数,n ∈N *)⇔{a n }是等差数列. 3.判断等比数列的常用方法(1)定义法:a n +1a n=q (q 是不为0的常数,n ∈N *)⇔{a n }是等比数列.(2)通项公式法:a n =cq n (c ,q 均是不为0的常数,n ∈N *)⇔{a n }是等比数列. (3)中项公式法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列. 环节二:巧用解题结论,考场快速抢分 1.等差数列的重要规律与推论(1)a n =a 1+(n -1)d =a m +(n -m )d ,p +q =m +n ⇒a p +a q =a m +a n . (2)a p =q ,a q =p (p ≠q )⇒a p +q =0;S m +n =S m +S n +mnd . (3)S k ,S 2k -S k ,S 3k -S 2k ,…构成的数列是等差数列.(4)若等差数列{a n }的项数为偶数2m ,公差为d ,所有奇数项之和为S 奇,所有偶数项之和为S 偶,则所有项之和S 2m =m (a m +a m +1),S 偶-S 奇=md ,S 奇S 偶=a ma m +1.(5)若等差数列{a n }的项数为奇数2m -1,所有奇数项之和为S 奇,所有偶数项之和为S偶,则所有项之和S 2m -1=(2m -1)a m ,S 奇=ma m ,S 偶=(m -1)a m ,S 奇-S 偶=a m ,S 奇S 偶=m m -1. 2.等比数列的重要规律与推论(1)a n =a 1q n -1=a m q n -m ,p +q =m +n ⇒a p ·a q =a m ·a n .(2){a n },{b n }成等比数列⇒{a n b n }成等比数列.(3)连续m 项的和(如S m ,S 2m -S m ,S 3m -S 2m ,…)仍然成等比数列(注意:这连续m 项的和必须非零才能成立).(4)若等比数列有2n 项,公比为q ,奇数项之和为S 奇,偶数项之和为S 偶,则S 偶S 奇=q .(5)等比数列前n 项和有:①S m +n =S m +q m S n ;②S m S n =1-q m1-q n(q ≠±1). 环节三:明辨易错易混,不被迷雾遮眼1.已知数列的前n 项和求a n ,易忽视n =1的情形,直接用S n -S n -1表示.事实上,当n =1时,a 1=S 1;当n ≥2时,a n =S n -S n -1.2.易混淆几何平均数与等比中项,正数a ,b 的等比中项是±ab .3.易忽视等比数列中公比q ≠0,导致增解,易忽视等比数列的奇数项或偶数项符号相同造成增解.4.运用等比数列的前n 项和公式时,易忘记分类讨论.一定分q =1和q ≠1两种情况进行讨论.5.对于通项公式中含有(-1)n 的一类数列,在求S n 时,切莫忘记讨论n 的奇偶性;遇到已知a n +1-a n -1=d 或a n +1a n -1=q (n ≥2),求{a n }的通项公式,要注意分n 的奇偶性讨论.6.求等差数列{a n }前n 项和S n 的最值,易混淆取得最大或最小值的条件. 环节四:适当保温训练,树立必胜信念1.若等差数列{a n }的前n 项和为S n ,且a 2+a 3=6,则S 4的值为( ) A .12 B .11 C .10 D .9解析:选A 由题意得S 4=a 1+a 2+a 3+a 4=2(a 2+a 3)=12.2.若等比数列的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为( )A.32B.94C .1D .2 解析:选D 设等比数列的首项为a 1,公比为q ,则第2,3,4项分别为a 1q ,a 1q 2,a 1q 3,依题意得a 1+a 1q +a 1q 2+a 1q 3=9,a 1·a 1q ·a 1q 2·a 1q 3=814⇒a 21q 3=92,两式相除得a 1+a 1q +a 1q 2+a 1q 3a 21q 3=1a 1+1a 1q +1a 1q 2+1a 1q3=2. 3.设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( )A .2 B.73 C.310D .1或2解析:选B 设S 2=k ,则S 4=3k ,由数列{a n }为等比数列(易知数列{a n }的公比q ≠-1),得S 2,S 4-S 2,S 6-S 4为等比数列,又S 2=k ,S 4-S 2=2k ,∴S 6-S 4=4k ,∴S 6=7k ,∴S 6S 4=7k 3k =73,故选B. 4.正项等比数列{a n }满足:a 3=a 2+2a 1,若存在a m ,a n ,使得a m ·a n =16a 21,m ,n ∈N *,则1m +9n的最小值为( ) A .2 B .16 C.114 D.32解析:选C 设数列{a n }的公比为q ,由a 3=a 2+2a 1,得q 2=q +2,∴q =2,∴a n =a 1·2n-1,由a m ·a n =16a 21,得a 21·2m+n -2=16a 21,∴m +n =6,∵m ,n ∈N *,∴(m ,n )可取的数值组合为(1,5),(2,4),(3,3),(4,2),(5,1),计算可得,当m =2,n =4时,1m +9n 取最小值114. 5.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.解析:由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9+9×(9-1)2×12=9+18=27.答案:276.已知数列{a n }满足a n +2=a n +1-a n ,且a 1=2,a 2=3,则a 2 016的值为________. 解析:由题意得,a 3=a 2-a 1=1,a 4=a 3-a 2=-2,a 5=a 4-a 3=-3,a 6=a 5-a 4=-1,a 7=a 6-a 5=2,a 8=a 7-a 6=3,…,∴数列{a n }是周期为6的周期数列,而2 016=6×336,∴a 2 016=a 6=-1.答案:-17.已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式;(2)若b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由已知得⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100, 解得⎩⎪⎨⎪⎧a 1=1,d =2,∴{a n }的通项公式为a n =1+2(n -1)=2n -1. (2)b n =1(2n -1)(2n +1)=12×⎝⎛⎭⎫12n -1-12n +1,∴数列{b n }的前n 项和T n =12×[⎝⎛⎭⎫11-13+(13-15)+…+⎝⎛⎭⎫12n -1-12n +1]=12×⎝⎛⎭⎫1-12n +1=n2n +1. 8.设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.解:(1)由题意得⎩⎪⎨⎪⎧a 1+a 2=4,a 2=2a 1+1,则⎩⎪⎨⎪⎧a 1=1,a 2=3. 又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n , 所以数列{a n }的通项公式为a n =3n -1,n ∈N *.(2)设b n =|3n -1-n -2|,n ∈N *,则b 1=2,b 2=1.当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,n ≥3.设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3,当n ≥3时,T n =3+9(1-3n -2)1-3-(n +7)(n -2)2=3n -n 2-5n +112,而当n =2时,32-22-5×2+112=3=T 2,所以T n =⎩⎪⎨⎪⎧2, n =1,3n -n 2-5n +112,n ≥2,n ∈N *.。
5概率与一、数原理1.分加法数原理和分步乘法数原理的区是什么?分加法数原理“分” ,此中各样方法互相独立 ,用此中任何一种方法都能够做完件事 ;分步乘法数原理“分步” ,各个步互相依存 ,只有各个步都达成了才算达成件事 .2.摆列数、合数的公式及性是什么?(1)=n(n-1)(n-2) ⋯(n-m+1)=公(2)= =式=(n,m∈N+ ,且 m≤n)特地 , =1性(1)0!= 1; =n!(2) =;=+3.二式系数的性是什么?性性描绘称与首末两头“等距离”的两个二式系数相等 ,即 =性增减二式系当 k<(n∈N+ ) ,二式系数是增的性数(n∈N+ ) ,二式系数是减的当 k>二式当 n 偶数 ,中的一获得最大系数的最大当 n 奇数 ,中的两与获得最大而且相等4.各二式系数的和是什么?(1)(a+b )n睁开式的各二式系数的和+ + + ⋯+= 2n.(2)偶数的二式系数的和等于奇数的二式系数的和,即+ + + ⋯= + ++ ⋯= 2n- 1.二、概率1.互斥事件与立事件有什么区与系?互斥与立都是两个事件的关系,互斥事件是不行能同生的两个事件,而立事件除要求两个事件不一样生外 ,要求两者之一必有一个生 .所以 ,立事件是互斥事件的特别状况 ,而互斥事件不必定是立事件 .2.基本领件的三个特色是什么?(1)每一个基本领件生的可能性都是相等的;(2)任何两个基本领件都是互斥的;(3)任何事件 (除不行能事件 )都能够表示成基本领件的和.3.古典概型、几何概型的概率公式分是什么?古典概型的概率公式 :P(A)=.几何概型的概率公式 :P(A)=.三、统计初步与统计事例1.分层抽样的合用范围是什么?当整体是由差别明显的几个部分构成时,常常采纳分层抽样的方法.2.怎样作频次分布直方图?(1)求极差 (即一组数据中最大值与最小值的差).(2)决定组距与组数 .(3)将数据分组 .(4)列频次分布表 .(5)画频次分布直方图 .3.频次分布直方图的特色是什么?(1)频次分布直方图中相邻两横坐标之差表示组距,纵坐标表示,频率=组距×.(2)在频次分布直方图中 ,各小长方形的面积总和等于 1.由于在频次分布直方图中组距是一个固定值 ,所以各小长方形高的比也就是频次比 .(3)频次分布表和频次分布直方图是一组数据频次分布的两种形式,前者正确 ,后者直观 .4.怎样进行回归剖析 ?(1)定义 :对拥有有关关系的两个变量进行统计剖析的一种常用方法.(2)本点的中心于一拥有性有关关系的数据 (x1,y1),(x2,y2), ⋯ ,(x n,y n),此中 ( , )称本点的中心 .(3)有关系数当r> 0 ,表示两个量正有关; 当r< 0 ,表示两个量有关 .r 的越靠近于 1,表示两个量的性有关性越 .r 的越靠近于 0,表示两个量之的性有关性越弱 .往常当 |r|大于 0.75 ,两个量有很的性有关性.5.独立性的一般步是什么?解决独立性的用,必定要依照独立性的步得出.独立性的一般步 :(1)依据本数据制成2×2 列表 ;(2)依据公式 K2=算K2的k;(3)比 k 与界的大小关系 ,做出推测 .四、随机量及其用1.失散型随机量的分布列及性是什么?(1)失散型随机量的分布列:若失散型随机量X 全部可能的取x1,x2, ⋯,x i⋯,x n,X 取每一个 x i(i= 1,2, ⋯,n)的概率 p1,p2, ⋯,p n,表X x1x2⋯x i⋯x nP p1p2⋯p i⋯p n称失散型随机量X 的概率分布列或称失散型随机量X 的分布列.(2)失散型随机量的分布列的性:①0≤p≤1(i= 1,2,3,⋯,i n);②p1+p2+ ⋯+p n= 1;③P(x i≤X≤x j)=p i+p i+ 1+ ⋯+p j .2.事件的互相独立性的观点及公式是什么?(1)互相独立的定 :事件 A 能否生事件 B 能否生的概率没有影响,即 P(B|A)=P (B). ,称事件 A 与事件 B 互相独立 ,并把两个事件叫作互相独立事件 .(2)概率公式条件事件 A,B 互相独立事件 A⋯,1,A2, A n互相独立公式P(A∩B)=P (A) ·P(B) P(A1∩A2∩⋯∩A n) =P (A1) ·P(A2) ·⋯·P(A n)3.独立重复与二分布的观点和公式是什么?(1)独立重复①定 :在同样条件下 ,重复地做n 次 ,各次互相独立 ,那么一般就称它 n 次独立重复 .②概率公式 :在一次中事件 A 生的概率p, n 次独立重复中,事件 A 恰巧生 k 次的概率 P k n-k⋯,n(k)=p (1-p)(k=0,1,2,n).(2)二分布 :在 n 次独立重复中 ,事件 A 生的次数 X,事件 A 不生的概率 q= 1-p, n 次独立重复中事件 A 恰巧生 k 次的概率是P(X=k)= p k q n-k,此中 k=0,1,2,⋯,n于是 X 的分布列 :X 0 1 ⋯k ⋯np0pq p k q n p n qP⋯⋯q n n-1-k0此称失散型随机量X 听从参数 n,p 的二分布 ,作 X~B(n,p).4.正分布的观点及性是什么?(1)正曲 :正量的概率密度函数的象叫作正曲,其函数表达式 f(x)=·,x∈R,此中μ,σ 参数 ,且σ>0,-∞<μ<+∞.(2)正曲的性①曲位于 x 上方 ,与 x 不订交 ,与 x 之的面1;②曲是峰的 ,它对于直 x=μ 称 ;③曲在 x=μ 达到峰;④当μ必定 ,曲的形状由σ确立 ,σ越小 ,曲越“瘦高”,表示体的分布越集中 ;σ越大 ,曲越“矮胖”,表示体的分布越分别 .(3)正体在三个特别区内取的概率①P(μ-σ<X≤μ+σ)= 0.6826;②P(μ-2σ<X≤μ+2σ)= 0.9544;③P(μ-3σ<X≤μ+3σ)= 0.9974.5.失散型随机量的数学希望(或均 )与方差的观点是什么 ?一个失散型随机量X 全部可能取的是x1,x2, ⋯,x n些的概率分是 p1,p2, ⋯,p n.(1)数学希望 :称 E(X)=x 1p1+x2p2+ ⋯+x n p n失散型随机量 X 的均或数学希望 (称希望 ),它刻画了个失散型随机量取的均匀水平 .(2)方差 :称 D(X)= (x1-E(X))2p1+ (x2-E(X))2p2+ ⋯+ (x n-E(X))2p n失散型随机量 X 的方差 ,它反应了失散型随机量取相于希望的均匀波大小(或失散程度 ),D(X)的算平方根叫作失散型随机量X 的准差 .6.均与方差的性有哪些?(1)E(aX+b)=aE (X)+b(a,b 常数 ).(2)D(aX+b )=a2D(X)(a,b 常数 ).(3)两点分布与二分布的均、方差的公式①若 X 听从两点分布 ,E(X)=p ,D(X)=p (1-p).②若 X~B(n,p), E(X)=np,D(X)=np(1-p).几何概型、古典概型、互相独立事件与互斥事件的概率、条件概率是高考的点 ,几何概型主要以客形式考,求解的关在于找准度(度或面 );互相独立事件、互斥事件常作解答的一部分考,也是一步求分布列、希望与方差的基础,求解该类问题要正确理解题意,正确判断概率模型,恰当选择概率公式 .近几年的高考数学试题对统计事例的考察一般不独自命题 ,而是与概率、随机变量的数学希望交汇命题 ,高考对此类题目的要求是能依据给出的或经过统计图表给出的有关数据求线性回归方程,认识独立性查验的思想方法 ,会判断两个分类变量能否有关.从近几年高考情况来看,该类专题在高考取占的比率大概为15%,以简单题、中档题为主,考察题型分选择题、填空题和解答题 .一、选择题、填空题的命题特色(一)考察摆列、组合的应用 ,以考察两个计数原理和摆列、组合的应用为主,难度中等 ,常常以选择题、填空题的形式出现.1.(2018 ·全国Ⅰ卷·理 T15 改编 )从 2 名女生 ,4 名男生中选 3 人参加科技竞赛 ,恰有 1 名女生当选 ,则不一样的选法共有种.(用数字填写答案)分析 ?由题意可得有1名女生,2名男生,则有 C = 12 种不一样的选法 .答案?122.(2018 ·浙江卷·T16 改编 )从 1,3,5,7,9 中任取 2 个数字 ,从 2,4,6 中任取 2 个数字,一共能够构成个没有重复数字的四位数.(用数字作答 )分析 ?一共能够构成 A = 720 个没有重复数字的四位数.答案 ?7203.(2017 ·全国Ⅱ卷·理 T6 改编 )安排 5 名志愿者达成 4 项工作 ,每项工作只需由1 人达成 ,则不一样的安排方式共有 ().A.120 种B.180 种C.240 种D.360 种分析 ?由题意可得 ,5 人中选出 4 人达成工作 ,剩下 1 人没有工作 ,故不同的安排方式有 A = 120(种).答案 ?A(二)考察二项式定理的应用,以考察运用二项式定理求特定项、求项数和二项式定理性质的应用为主,难度中等 ,常常以选择题、填空题的形式出现.4.(2018 ·全国Ⅲ卷·理 T5 改编 )的睁开式中x的系数为().A.10B.20C.40D.80分析 ?由题可得 Tr+ 1C25-rC·r ·10-3r, (x ) 2 x令 10-3r= 1,得 r= 3.所以·2r=·32 =80.答案 ?D5.(2017 ·全国Ⅰ卷·理 T6 改编 )(1+x )6的睁开式中 x4的系数为 ().A.15B.16C.30D.35分析 ?由于 (1+x)6睁开式的通项为 T r 所以(1+x)6的展r+ 1C x ,开式中含 x4的项为 1C x4和C x6.由于+= 16,所以(1+x)6的睁开式中x4的系数为16.答案 ?B(三)考察随机事件的概率 ,以考察随机事件、互斥事件与对峙事件的概率为主 ,难度中等 ,常与事件的频次交汇考察.本节内容在高考取三种题型都有可能出现 ,随机事件的频次与概率题目常常以解答题的形式出现,互斥事件、对峙事件的观点及概率题目常常以选择、填空题的形式出现.6.(2018 ·全国Ⅲ卷·文 T5 改编 )若某集体中的成员只用现金支付的概率为0.25,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为().分析 ? 设事件 A 为“不用现金支付”,事件 B 为“既用现金支付也用非现金支付”,事件 C 为“只用现金支付”,则 P(A)= 1-P(B)-P(C)= 1-0.15-0.25= 0.6,故选 C.答案?C(四)考察古典概型 ,全国卷对古典概型每年都会考察 ,难度中等 ,主要考察实质背景的可能事件 ,往常与互斥事件、对峙事件一同考察 .在高考取独自命题时 ,往常以选择题、填空题形式出现 ,属于中低档题 .7.(2018 ·全国Ⅱ卷·理 T8 改编 )我国数学家陈景润在哥德巴赫猜想的研究中获得了世界当先的成就 .哥德巴赫猜想是“每个大于 2 的偶数能够表示为两个素数的和”,如30= 7+ 23.在不超出 30 的素数中 ,随机选用 2 个不一样的数 ,其和等于26 的概率是 ().A. B. C. D.分析 ?不超出30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中随机选用 2 个不一样的数 ,共有 C= 45 种取法 .由于 3+ 23= 7+ 19= 26,所以随机选用2 个不一样的数 ,其和等于 26 的有 2 种取法 ,故所求概率为.答案?D8.(2018 ·江苏卷·T6 改编 )某兴趣小组有 2 名男生和 3 名女生 ,现从中任选 2 名学生去参加活动 ,则恰巧选中 1 名男生和 1 名女生的概率为.分析 ?从5名学生中任选2 名学生 ,共有 C = 10 种选法 ,此中恰巧选中1 名男生和 1 名女生的选法有 C C= 6 种,所以所求概率为= .答案 ?(五)考察几何概型 ,难度较大 ,以理解几何概型的观点、概率公式为主,会求一些简单的几何概型的概率 ,常与平面几何、线性规划、不等式的解集等知识交汇考察 ,在高考取多以选择题、填空题的形式考察 ,难度中等 .9.(2018 ·全国Ⅰ卷·理 T10 改编 )折纸艺术是我国古代留下来可贵的民间艺术,拥有很高的审美价值和应用价值.以下图的是一个折纸图案,由一个正方形内切一个圆形 ,而后在四个极点处罚别嵌入半径为正方形边长一半的扇形 .向图中随机投入一个质点 ,则质点落在暗影部分的概率 P1与质点落在正方形内圆形地区外面的概率P2的大小关系是 ().A.P1>P 2B.P1<P 2C.P1=P 2D.不可以确立分析 ?将正方形内圆形地区外面的四个角进行沿直角边重合组合,恰好获得的图形就是暗影部分图形,所以暗影部分地区的面积等于正方形内圆形地区外面的面积 ,故 P1=P 2.答案?C10.(2016 ·全国Ⅱ卷·文 T8 改编 )某路口人行横道的信号灯为红灯和绿灯交替出现 ,红灯连续时间为40 秒.若一名行人到达该路口碰到红灯,则起码需要等待 10 秒才出现绿灯的概率为().A. B. C. D.分析 ?起码需要等候10秒才出现绿灯的概率为= ,应选 A .答案?A(六)考察随机抽样 ,在抽样方法的考察中,系统抽样、分层抽样是考察的要点 ,题型主要以选择题和填空题为主,属于中低档题 .11.(2017 ·江苏卷·T3 改编 )某工厂生产甲、乙、丙、丁四种不一样型号的产品,产量分别为 200、400、300、100 件,为查验产品的质量 ,现用分层抽样的方法从以上全部的产品中抽取60 件进行查验 ,则应从甲种型号的产品中抽取件.分析 ?∵==,∴应从甲种型号的产品中抽取×200= 12(件 ).答案?12(七)用样本预计整体 ,主要考察均匀数、方差等的计算以及茎叶图、频次分布直方图的简单应用 .题型以选择题和填空题为主 ,出现解答题时常常与概率相联合 ,属于中档题 .12.(2018 ·全国Ⅰ卷·理 T3 改编 )某地域经过一年的新乡村建设,乡村的经济收入增添了一倍 ,实现翻番 .为更好地认识该地域乡村的经济收入变化状况,统计了该地域新乡村建设前后乡村的经济收入构成比率,获得以下饼图 :则以下选项中不正确的选项是().A.新乡村建设后 ,栽种收入增添B.新乡村建设后 ,其余收入增添了一倍以上C.新乡村建设后 ,养殖收入没有增添D.新乡村建设后 ,养殖收入与第三家产收入的总和超出了经济收入的一半分析 ? 由题干可知 ,乡村的经济收入增添了一倍 ,实现翻番 .为方即可设建设前后的经济收入分别为 100,200(单位省去 ).A 中,栽种收入前后分别为60,74,收入增添了 ,A 正确 ;B 中,其余收入前后分别为 4,10,增添了一倍以上 ,B 正确 ;C 中,养殖收入前后分别为 30,60,收入增添了一倍 ,C 错误 ;D 中,建设后 ,养殖收入与第三家产收入的总和为(30+ 28)×2= 116> 100,D 正确 .应选 C.答案?C13.(2017 ·全国Ⅲ卷·理 T3)某城市为认识旅客人数的变化规律 ,提升旅行服务质量 ,采集并整理了 2014 年 1 月至 2016 年 12 月时期月招待旅客量 (单位 :万人)的数据 ,绘制了下边的折线图 .依据该折线图 ,以下结论错误的选项是 ().A.月招待旅客量逐月增添B.年招待旅客量逐年增添C.各年的月招待旅客量顶峰期大概在7,8 月D.各年 1 月至 6 月的月招待旅客量相对于7 月至 12 月,颠簸性更小 ,变化比较安稳分析 ? 对于选项 A, 由图易知 ,月招待旅客量每年 7,8 月份明显高于 12 月份 ,故 A 错误 ;对于选项 B,察看折线图的变化趋向可知 ,年招待旅客量逐年增添 ,故 B 正确 ;对于选项 C,D,由图可知明显正确 .答案?A(八)考察失散型随机变量分布列、超几何分布、条件概率、正态分布、数学希望与方差 ,求失散型随机变量的数学希望是全国卷高考要点考察的内容,在选择题、填空题中有时会出现.主要考察失散型随机变量的分布列、数学希望、正态分布等 .14.(2018 ·全国Ⅲ卷·理 T8 改编 )某集体中的每位成员使用挪动支付的概率都为 p,各成员的支付方式互相独立,设 X 为该集体的 10 位成员中使用挪动支付的人数 ,D(X)= 2.1,P(X= 4)<P (X= 6),则 p= ().分析 ? 由于 X~B(n,p),所以 D(X)=np(1-p)= 2.1,所以 p= 0.3 或 p=0.7.由于 P(X= 4)=p4(1-p)6<P (X= 6)=p6(1-p)4,所以 (1-p)2 2可得p> 0.5.故p=0.7.<p ,答案?A15.(2017 ·全国Ⅱ卷·理 T13 改编 )一批产品的二等品率为 0.08,从这批产品中每次随机取一件,有放回地抽取 100 次,X 表示抽到的二等品件数,则D(X)=.分析 ?有放回地抽取,是一个二项分布模型, 此中p=0.08,n=100,则D(X)=np(1-p)= 100×0.08×0.92= 7.36.答案 ?7.36二、解答题的命题特色概率与统计综合试题的题干阅读量大,简单造成考生在数学模型转变过程中失误,得分率不高 .这些试题主要考察古典概型,用样本预计整体,利用回归方程进行展望 ,独立性查验的应用 ,失散型随机变量的分布列和数学希望 ,正分布等 .概率、随机量的数学希望交命,高考此目的要求是能依据出的或通表出的有关数据求性回方程.1.(2018 ·全国Ⅱ卷·理 T18)下是某地域 2000 年至 2016 年境基施投y(位 :元)的折.了地域 2018 年的境基施投 ,成立了 y 与量 t 的两个性回模型 .依据2000 年至 2016 年的数据 (量 t 的挨次1,2, ⋯ ,17)成立模型①: =- 30.4+ 13.5t;依据 2010年至 2016 年的数据 (量t 的挨次 1,2, ⋯,7)成立模型②: = 99+ 17.5t.(1)分利用两个模型 ,求地域 2018 年的境基施投的.(2)你用哪个模型获得的更靠谱?并明原因 .分析 ? (1)利用模型①,从 2000 年开始算起 ,2018 年即 t= 19,所以地域2018 年的境基施投的=- 30.4+ 13.5×19= 226.1(元).利用模型②,从 2010 年开始算起 ,2018 年即 t= 9,所以地域 2018 年的境基施投的= 99+ 17.5×9= 256.5(元).(2)利用模型②获得的更靠谱 .原因以下 :(i) 从折能够看出 ,2000年至 2016 年的数据的点没有随机分布在直线 y=- 30.4+ 13.5t 上下 ,这说明利用 2000 年至 2016 年的数据成立的线性模型①不可以很好地描绘环境基础设备投资额的变化趋向.2010 年相对 2009 年的环境基础设备投资额有明显增添,2010 年至 2016 年的数据对应的点位于一条直线的邻近 ,这说明从 2010 年开始环境基础设备投资额的变化规律呈线性增添趋向,利用2010年至2016年的数据成立的线性模型= 99+ 17.5t能够,所以利用模型②较好地描绘2010年此后的环境基础设备投资额的变化趋向获得的展望值更靠谱.(ii)从计算结果看 ,相对于 2016 年的环境基础设备投资额 220 亿元 ,由模型①获得的展望值 226.1 亿元的增幅明显偏低 ,而利用模型②获得的展望值的增幅比较合理 ,说明利用模型②获得的展望值更靠谱 .2.(2018 ·全国Ⅰ卷,理 T20)某工厂的某种产品成箱包装 ,每箱 200 件,每一箱产品在交托用户以前要对产品作查验,如查验出不合格品,则改换为合格品 .查验时 ,先从这箱产品中任取 20 件作查验 ,再依据查验结果断定能否对余下的全部产品作查验 .设每件产品为不合格品的概率都为p(0<p< 1),且各件产品能否为不合格品互相独立.(1)记 20 件产品中恰有 2 件不合格品的概率为f(p),求 f(p)的最大值点 p0.(2)现对一箱产品查验了20 件,结果恰有 2 件不合格品 ,以(1)中确立的 p0作为p 的值 .已知每件产品的查验花费为 2 元,如有不合格品进入用户手中,则工厂要对每件不合格品支付25 元的补偿花费 .(i)若不对该箱余下的产品作查验 ,这一箱产品的查验花费与补偿花费的和记为 X,求 E(X).(ii)以查验花费与补偿花费和的希望值为决议依照 ,能否该对这箱余下的全部产品作查验 ?分析 ? (1)由题意可知 ,独立重复试验切合二项分布 ,20 件产品中恰有 2 件不合格品的概率为f(p)C p2(1-p)18= 190p2(1-p)18,对上式求导得 f'(p)= [190p2(1-p)18]'=190[2p(1-p)18-18p2(1-p)17]=190p(1-p)17[2(1-p)-18p]=380p(1-p)17(1-10p).当 f'(p)= 0 时,有 p(1-p)17由适当∈时(1-10p)= 0,0<p< 1,p,f'(p)> 0,f(p)单一递加 ;当 p∈时,f'(p)< 0,f(p)单一递减.故 f(p)max=f (p0)=f,即 p0= .(2)(i) 由题意 ,节余未作查验的产品有180件,此中 Y表示不合格品的件数 ,其听从二项分布Y~B.故 E(Y)= 180× = 18.又 X= 40+ 25Y,故 E(X)=E (40+ 25Y)= 40+ 25×18= 490(元).(ii)若对这箱余下的全部产品作查验 ,则需要的查验费为 200×2= 400(元).由于 E(X)= 490> 400,所以需要对这箱余下的全部产品作查验.3.(2018 ·全国Ⅲ卷·理 T18)某工厂为提升生产效率 ,睁开技术创新活动 ,提出了达成某项生产任务的两种新的生产方式 .为比较两种生产方式的效率,选用40 名工人 ,将他们随机分红两组 ,每组 20 人,第一组工人用第一种生产方式 , 第二组工人用第二种生产方式 .依据工人达成生产任务的工作时间 (单位 :min) 绘制了以下茎叶图 :(1)依据茎叶图判断哪一种生产方式的效率更高?并说明原因 .(2)求 40 名工人达成生产任务所需时间的中位数 m,并将达成生产任务所需时间超出 m 和不超出 m 的工人数填入下边的列联表 :不超出超出 mm第一种生产方式第二种生产方式(3)依据 (2)中的列联表 ,可否有 99%的掌握以为两种生产方式的效率有差别?附:K2=,P(K2≥k0)0.0500.0100.001k0 3.841 6.63510.828分析 ? (1)第二种生产方式的效率更高.原因以下 :(i)由茎叶图可知 ,用第一种生产方式的工人中 ,有 75%的工人达成生产任务所需时间起码 80 分钟 ,用第二种生产方式的工人中 ,有 75%的工人达成生产任务所需时间至多 79 分钟 ,所以第二种生产方式的效率更高 .(ii)由茎叶图可知,用第一种生产方式的工人达成生产任务所需时间的中位数为 85.5 分钟 ,用第二种生产方式的工人达成生产任务所需时间的中位数为 73.5 分钟 ,所以第二种生产方式的效率更高 .(iii)由茎叶图可知,用第一种生产方式的工人达成生产任务均匀所需时间高于 80 分钟 ,用第二种生产方式的工人达成生产任务均匀所需时间低于80 分钟 ,所以第二种生产方式的效率更高.(iv)由茎叶图可知 ,用第一种生产方式的工人达成生产任务所需时间分布在茎 8 上的最多 ,对于茎 8 大概呈对称分布 ;用第二种生产方式的工人达成生产任务所需时间分布在茎 7 上的最多 ,对于茎 7 大概呈对称分布 .又用两种生产方式的工人达成生产任务所需时间分布的区间同样 ,故能够以为用第二种生产方式达成生产任务所需的时间比用第一种生产方式达成生产任务所需的时间更少 ,所以第二种生产方式的效率更高 .(2)由茎叶图知 m== 80.列联表以下 :超出 m不超出第一种生产方m 155式第二种生产方515式(3)因 K2的 k== 10> 6.635,所以有 99%的掌握两种生方式的效率有差别.4.(2017 ·全国Ⅰ卷·理 T19)了控某种部件的一条生的生程,每日从生上随机抽取16 个部件 ,并量其尺寸 (位 :cm).依据期生 ,能够条生正常状下生的部件的尺寸听从正分布2N(μ,σ).(1) 假生状正常,X 表示一天内抽取的16 个部件中其尺寸在(μ-3σ,μ+3σ)以外的部件数,求P(X≥1)及X 的数学希望.(2)一天内抽部件中 ,假如出了尺寸在 (μ-3σ,μ+3σ)以外的部件 ,就条生在一天的生程可能出了异样状况 ,需当日的生程行 .(i)明上述控生程方法的合理性 .(ii)下边是在一天内抽取的 16 个部件的尺寸 :9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95算得 =xi= 9.97,s==≈0 .212,此中 x i抽取的第 i 个部件的尺寸 ,i= 1,2,⋯,16.用本均匀数作μ的估 ,用本准差 s 作σ的估 ,利用估判断能否需当日的生程行?剔除 ( -3, + 3 )以外的数据 ,用剩下的数据估μ和σ(精准到 0.01).2附:若随机量Z服从正分布N(μ,σ),P(μ-3σ<Z<μ+3σ)= 0.9974,0.997416≈0.9592,≈0.09.分析 ? (1)由题可知抽取的一个部件的尺寸落在(μ-3σ,μ+3σ)以内的概率为 0.9974,进而部件的尺寸落在 (μ-3σ,μ+3σ)以外的概率为0.0026,故 X~B(16,0.0026).所以 P(X≥1)= 1-P(X= 0)= 1-0.997416≈1-0.9592=0.0408, X 的数学希望 E(X)= 16×0.0026= 0.0416.(2)(i) 假如生产状态正常 ,一个部件尺寸在 (μ-3σ,μ+3σ)以外的概率只有0.0026,一天内抽取的16 个部件中,出现尺寸在(μ-3σ,μ+3σ)以外的部件的概率只有0.0408,发生的概率很小,所以一旦发生这种状况,就有原因以为这条生产线在这天的生产过程可能出现了异样状况,需对当日的生产过程进行检查,可见上述监控生产过程的方法是合理的 .(ii) 由 = 9.97,s≈0.212,得μ的预计值为 = 9.97,σ的预计值为 = 0.212,由样本数据能够看出有一个部件的尺寸在 ( -3 , + 3 )以外 ,所以需对当日的生产过程进行检查 .剔除( -3 , +3 )以外的数据9.22,剩下数据的均匀数为×(16×9.97-9.22)= 10.02,所以μ的预计值为 10.02.= 16×0.2122+ 16×9.972≈ 1591.134,剔除( -3 , +3 )以外的数据9.22,剩下数据的样本方差为×2-15×10.022) ≈0.008,所以σ的预计值为≈0.09.1.样本数据(1)众数、中位数及均匀数都是描绘一组数据集中趋向的量 ,均匀数是最重要的量 ,与每个样本数占有关 ,这是中位数、众数所不拥有的性质 .(2)标准差、方差描绘了一组数据环绕均匀数颠簸的大小.标准差、方差越大 ,数据的失散程度就越大.(3)茎叶图、频次分布表和频次分布直方图都是用图表直观描绘样本数据的分布规律的 .2.频次分布直方图(1)用样本预计整体是统计的基本思想,而利用频次分布表和频次分布直方图来预计整体则是用样本的频次分布去预计整体分布的两种主要方法 .频次分布表在数目表示上比较正确 ,频次分布直方图比较直观 .(2)频次分布表中的频数之和等于样本容量,各组中的频次之和等于1;在频次分布直方图中,各小长方形的面积表示相应各组的频次,所以全部小长方形的面积的和等于 1;均匀数是频次分布直方图各个小矩形的面积×底边中点的横坐标之和 .3.摆列与组合(1)①解决“在”与“不在”的有限制条件的摆列问题 ,既能够从元素下手 ,也能够从地点下手 ,原则是谁“特别”谁优先 .不论是从元素考虑仍是从地点考虑 , 都要贯彻究竟 ,不可以既考虑元素又考虑地点 .②解决相邻问题的方法是“捆绑法”,即把相邻元素看作一个整体和其余元素一同摆列,同时要注意捆绑元素的内部摆列 .③解决不相邻问题的方法是“插空法”,即先考虑不受限制的元素的摆列,再将不相邻的元素插在前方元素摆列的空中间.④对于定序问题,可先不考虑次序限制,摆列后 ,再除以定序元素的全摆列.⑤若某些问题从正面考虑比较复杂 ,可从其反面下手 ,即采纳“间接法”.(2)组合问题的限制条件主要表此刻拿出元素中“含”或“不含”某些元素,或许“起码”或“最多”含有几个元素 :①“含有”或“不含有”某些元素的组合题型.“含”,则先将这些元素拿出 ,再由此外元素补足 ; “不含”,则先将这些元素剔除,再从剩下的元素中去选用 .②“起码”或“最多”含有几个元素的题型 .考虑逆向思想 ,用间接法办理 .(3)分组分派问题是摆列、组合问题的综合运用,解决这种问题的一个基本指导思想就是先分组后分派 .对于分组问题,有整体均分、部分均分和不平分三种 ,不论分红几组 ,都应注意只需有一些组中元素的个数相等 ,就存在均分现象 .4.随机变量的均值与方差一般计算步骤 :(1)理解 X 的意义 ,写出 X 的全部可能取的值 .(2)求 X 取各个值的概率 ,写出分布列 .(3)依据分布列,由均值的定义求出均值 E(X),进一步由公式D(X)=(x i -E(X))2p i=E(X2)-(E(X))2求出 D(X).(4)以特别分布 (两点分布、二项分布、超几何分布 )为背景的均值与方差。
高考数学二轮复习 专题3 数列 第一讲 等差数列与等比数列 理第一讲 等差数列与等比数列1.等差数列的定义.数列{a n }满足a n +1-a n =d (其中n∈N *,d 为与n 值无关的常数)⇔{a n }是等差数列. 2.等差数列的通项公式.若等差数列的首项为a 1,公差为d ,则a n =a 1+(n -1)d =a m +(n -m )d (n ,m ∈N *). 3.等差中项.若x ,A ,y 成等差数列,则A =x +y2,其中A 为x ,y 的等差中项.4.等差数列的前n 项和公式.若等差数列首项为a 1,公差为d ,则其前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d2.1.等比数列的定义. 数列{a n }满足a n +1a n=q (其中a n ≠0,q 是与n 值无关且不为零的常数,n ∈N *)⇔{a n }为等比数列.2.等比数列的通项公式.若等比数列的首项为a 1,公比为q ,则a n =a 1·q n -1=a m ·qn -m(n ,m ∈N *).3.等比中项.若x ,G ,y 成等比数列,则G 2=xy ,其中G 为x ,y 的等比中项,G 值有两个. 4.等比数列的前n 项和公式.设等比数列的首项为a 1,公比为q ,则S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.判断下面结论是否正确(请在括号中打“√”或“×”).(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(×)(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.(√) (3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.(×) (4)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.(×) (5)G 为a ,b 的等比中项⇔G 2=ab .(×) (6)1+b +b 2+b 3+b 4+b 5=1-b51-b.(×)1.在等差数列{a n }中,a 2=1,a 4=5,则数列{a n }的前5项和S 5=(B ) A .7 B .15 C .20 D .25解析:2d =a 4-a 2=5-1=4⇒d =2,a 1=a 2-d =1-2=-1,a 5=a 2+3d =1+6=7,故S 5=(a 1+a 5)×52=6×52=15.2. (2015·北京卷)设{a n }是等差数列,下列结论中正确的是(C ) A .若a 1+a 2>0,则a 2+a 3>0 B .若a 1+a 3<0,则a 1+a 2<0 C .若0<a 1<a 2,则a 2>a 1a 3 D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0解析:设等差数列{a n}的公差为d,若a1+a2>0,a2+a3=a1+d+a2+d=(a1+a2)+2d,由于d正负不确定,因而a2+a3符号不确定,故选项A错;若a1+a3<0,a1+a2=a1+a3-d=(a1+a3)-d,由于d正负不确定,因而a1+a2符号不确定,故选项B错;若0<a1<a2,可知a1>0,d>0,a2>0,a3>0,∴a22-a1a3=(a1+d)2-a1(a1+2d)=d2>0,∴a2>a1a3,故选项C正确;若a1<0,则(a2-a1)(a2-a3)=d·(-d)=-d2≤0,故选项D错.3.(2015·新课标Ⅱ卷)已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=(B)A.21 B.42C.63 D.84解析:∵ a1=3,a1+a3+a5=21,∴ 3+3q2+3q4=21.∴ 1+q2+q4=7.解得q2=2或q2=-3(舍去).∴a3+a5+a7=q2(a1+a3+a5)=2×21=42.故选B.4.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是(B)A.90 B.100C.145 D.190解析:设公差为d,则(1+d)2=1·(1+4d).∵d≠0,解得d=2,∴S10=100.一、选择题1.已知等差数列{a n}中,前n项和为S n,若a3+a9=6,则S11=(B)A.12 B.33 C.66 D.99解析:∵{a n}为等差数列且a3+a9=6,∴a 6+a 6=a 3+a 9=6. ∴a 6=3. ∴S 11=a 1+a 112×11=a 6+a 62×11=11a 6=11×3=33.2.在等比数列{a n }中,若a 1+a 2=20,a 3+a 4=40,则数列{a n }的前6项和S 6=(B ) A .120 B .140 C .160 D .180 解析:∵{a n }为等比数列,∴a 1+a 2,a 3+a 4,a 5+a 6为等比数列. ∴(a 3+a 4)2=(a 1+a 2)(a 5+a 6). 即a 5+a 6=(a 3+a 4)2a 1+a 2=40220=80.∴S 6=a 1+a 2+a 3+a 4+a 5+a 6=20+40+80=140.3.已知数列{a n }的前n 项和S n =n 2-2n -1,则a 3+a 17=(C ) A .15 B .17 C .34 D .398 解析:∵S n =n 2-2n -1, ∴a 1=S 1=12-2-1=-2. 当n ≥2时,a n =S n -S n -1=n 2-2n -1-[(n -1)2-2(n -1)-1] =n 2-(n -1)2+2(n -1)-2n -1+1 =n 2-n 2+2n -1+2n -2-2n =2n -3.∴a n =⎩⎪⎨⎪⎧-2,n =1,2n -3,n ≥2.∴a 3+a 17=(2×3-3)+(2×17-3)=3+31=34. 4.(2014·陕西卷)原命题为“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(A )A .真,真,真B .假,假,真C .真,真,假D .假,假,假 解析:由a n +a n +12<a n ⇒a n +1<a n ⇒{a n }为递减数列,所以原命题为真命题;逆命题:若{a n }为递减数列,则a n +a n +12<a n ,n ∈N +;若{a n }为递减数列,则a n +1<a n ,即a n +a n +12<a n ,所以逆命题为真;否命题:若a n +a n +12≥a n ,n ∈N +,则{a n }不为递减数列;由a n +a n +12≥a n ⇒a n ≤a n +1⇒{a n }不为递减数列,所以否命题为真;因为逆否命题的真假为原命题的真假相同,所以逆否命题也为真命题. 故选A.5.某棵果树前n 年的总产量S n 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为(C )A .5B .7C .9D .11解析:由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入m =9,因此选C.二、填空题6.(2015·安徽卷)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于27.解析:由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+9×(9-1)2×12=9+18=27.7.设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =32. 解析:将S 2=3a 2+2,S 4=3a 4+2两个式子全部转化成用a 1,q 表示的式子,即⎩⎪⎨⎪⎧a 1+a 1q =3a 1q +2,a 1+a 1q +a 1q 2+a 1q 3=3a 1q 3+2,两式作差得:a 1q 2+a 1q 3=3a 1q (q 2-1),即:2q 2-q -3=0,解得q =32或q =-1(舍去).8.(2014·广东卷)等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=5.解析:由题意知a 1a 5=a 23=4,且数列{a n }的各项均为正数,所以a 3=2, ∴a 1a 2a 3a 4a 5=(a 1a 5)·(a 2a 4)·a 3=(a 23)2·a 3=a 53=25,∴log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=log 2(a 1a 2a 3a 4a 5)=log 225=5. 三、解答题9.已知数列{a n }满足,a 1=1,a 2=2,a n +2 =a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式. 解析:(1)b 1=a 2-a 1=1, 当n ≥2时,b n =a n +1-a n =a n -1+a n2-a n =-12(a n -a n -1)=-12b n -1,所以{b n }是以1为首项,-12为公比的等比数列.(2)由(1)知b n =a n +1-a n =⎝ ⎛⎭⎪⎫-12n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+⎝ ⎛⎭⎪⎫-12+…+⎝ ⎛⎭⎪⎫-12n -2=1+1-⎝ ⎛⎭⎪⎫-12n -11-⎝ ⎛⎭⎪⎫-12=1+23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n -1=53-23⎝ ⎛⎭⎪⎫-12n -1, 当n =1时,53-23⎝ ⎛⎭⎪⎫-121-1=1=a 1.所以a n =53-23⎝ ⎛⎭⎪⎫-12n -1(n ∈N *).10.(2015·安徽卷)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8. (1)求数列{a n }的通项公式; (2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n . 解析:(1)由题设知a 1·a 4=a 2·a 3=8,又a 1+a 4=9,可解得⎩⎪⎨⎪⎧a 1=1,a 4=8或⎩⎪⎨⎪⎧a 1=8,a 4=1(舍去). 由a 4=a 1q 3得公比q =2,故a n =a 1qn -1=2n -1.(2)S n =a 1(1-q n )1-q=2n-1.又b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1, 所以T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1S 1-1S 2+⎝ ⎛⎭⎪⎫1S 2-1S 3+…+⎝ ⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=1-12n +1-1.。