线性规划模型
- 格式:ppt
- 大小:2.75 MB
- 文档页数:254
线性规划模型● 知道线性规划模型的一般形式● 知道什么是可行解、可行域、最优解、最优值 ● 会用图解法求解二个变量的线性规划问题● 会利用软件WINQSB 求线性规划问题的最优解、最优值 ● 会建立简单的线性规划问题● 知道什么是缩减成本、影子价格,会利用软件WINQSB 进行灵敏度分析一、基本概念1. 线性规划模型的一般形式可以表示为:目标函数 max (或min )=c l x 1+c 2x 2+ … + c n x n 。
约束条件: ⎪⎪⎩⎪⎪⎨⎧≥=≤+++≥=≤+++≥=≤+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ),(),(),(22112222212111212111或或或 非负条件: x 1≥0, x 2≥0, …, x n ≥0可简写为 max(或min)=∑=n j j j x c 1 约束条件: ∑=n j j ij x a1≤(或=,≥) b i ,i=1,2,…,m非负条件: x j ≥0,j=1,2,…,n目标函数中的系数c i , i=1,2, …,n , 常称为价值系数,它反映某种价值(如利润、收益或效益);约束条件中的右端项bj ,j=1,2, …,m ,右端系数,它反映某种资源的限制(如劳动力、原材料等);约束条件中的a ij 常称为技术系数。
一般,它们都是已知的常数。
2.一个线性规划问题有解,是指能找出一组x j(j=1,2,…,n),使其满足所有的约束条件和非负条件。
称任何一组这样的x j(j=1,2,…,n)是线性规划问题的一个可行解。
通常,线性规划问题含有多个可行解。
称全部可行解的集合为该线性规划问题的可行域。
使目标函数值达到最优的可行解称为该线性规划问题的最优解,最优目标函数值称为该线性规划问题的最优值。
对不存在可行解的线性规划问题,称该线性规划问题无解。
二、两个变量的线性规划问题的图解法图解法的步骤为:第1步:在平面上建立直角坐标系;第2步:图示约束条件和非负条件,找出可行域;第3步:图示目标函数,并寻找最优解。
线性规划的数学模型引言线性规划(Linear Programming, LP)是数学规划的一种方法,用于解决一类特殊的优化问题。
线性规划的数学模型可以表示为一个线性的目标函数和一系列线性约束条件。
本文将介绍线性规划的数学模型及其应用。
数学模型线性规划的数学模型可以用以下形式表示:最大化:$$ \\max_{x_1,x_2,...,x_n} Z=c_1x_1+c_2x_2+...+c_nx_n $$约束条件:$$ \\begin{align*} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n&\\leq b_1 \\\\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n &\\leq b_2 \\\\ &\\vdots \\\\ a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n&\\leq b_m \\\\ x_1,x_2,...,x_n &\\geq 0 \\end{align*} $$其中,Z为目标函数的值,Z1,Z2,...,Z Z为目标函数的系数,Z1,Z2,...,Z Z为决策变量,Z ZZ为约束条件的系数,Z1,Z2,...,Z Z为约束条件的右侧常数。
线性规划的应用线性规划在实际问题中有广泛的应用,其应用领域包括但不限于以下几个方面:生产计划线性规划在生产计划中的应用是最为常见的。
通过建立适当的数学模型,可以最大化生产线的产能,同时满足客户需求和资源限制。
例如,一个工厂需要决定每个月生产的产品数量,以最大化利润。
这个问题可以通过线性规划来解决。
运输问题线性规划在运输问题中的应用也非常广泛。
运输问题涉及到将特定产品从供应地点运送到需求地点,以满足需求并尽量降低运输成本。
线性规划可以用来决定每个供应地点到每个需求地点的运输量,以最小化总运输成本。
资源分配在资源有限的情况下,线性规划可以用于优化资源的分配。
线性规划模型线性规划的英文全称为:Linear Programming ,可简称为LP . 一、线性规划所属学科线性规划是“运筹学”中应用最广泛、理论最成熟的一个分支.0-1⎧⎧⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎩⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩线性规划非线性规划静态规划整数规划规划论规划多目标规划动态规划运筹学对策论决策论排队论图论存储论模型论 二、线性规划发展简史早在19世纪法国数学家傅里叶关于线性不等式的研究表明,他对线性规划已有所了解,还提出了单纯形法求解线性逼近中的线性规划20世纪三是年代末,苏联数学家康托洛维奇开始研究生产组织中的线性规划问题,并写出了线性规划应用于工业生产问题的经典著作《生产组织与计划中的数学方法》.1947年美国数学家丹奇格提出了单纯形(Simplex)方法及有关理论,为线性规划奠定了理论基础.五十年代,线性规划成为经济学家分析经济问题的重要工具.随着计算机的迅猛发展,线性规划现被广泛应用于工业、农业、商业等各个领域. 三、用线性规划方法解决实际问题的两大特点1、全局性——从全局出发,将全局目标作为追求目标;2、定量性——通过建立数学模型,对实际问题进行定量分析,而不是只做定性分析. 数学模型指:将实际问题用一系列数学表达式(函数、方程、不等式等)表示出来,称这一系列数学表达式为该实际问题的数学模型. 四、线性规划方法解决的两类问题1、任务一定,如何安排,可使人、财、物最省;2、人、财、物一定,如何安排,可使任务完成量最多. 五、线性规划可解决以下几方面的问题1、运输问题:某产品有若干个产地、若干个销地,如何运输,使总运费最省;2、生产组织问题:⎩⎨⎧产,使成本最低产值一定,如何安排生最高或利润产,使产值资源一定,如何安排生)(3、配料问题:如何搭配各种原料,既符合质量(营养)要求,又使成本最低;4、投资问题:资金一定,投向谁、投多少、期限多长,使若干年后本利和最高;5、库存问题:在仓库容量有限情况下,如何确定库存物资的品种、数量、期限,使库存效益最佳;6、合理播种问题:在土地资源有限的情况下,种什么、种多少,使效益最高;……第一节 线性规划模型的基本概念 一、建立模型的方法1 根据影响所要达到的目的的因素找到决策变量2 由决策变量和所要到的目的之间的函数关系确定的目标函数3 由决策变量所受到的限制条件确定决策变量所要满足的约束条件若模型满足:1 目标函数是线性函数 2 约束条件是线性等式或不等式; 则称为线性规划模型 二、常用模型 例1: 生产计划莫工厂生产I II 两种产品需要A 、B 两种原料,问怎样生产获利最大?1) 决策变量:设12,x x 分别生产I II 的数量 2) 目标函数:获利最大 12max 24x x + 3) 约束条件:1228x x +≤ 设备约束 12416,412x x ≤≤ 原料约束 12,0x x ≥ 基本约束 则我们可以建立模型12121212max 24.28416412,0z x x s tx x x x x x =++≤≤≤≥例2: 配料问题某养鸡场有一万只鸡,用动物饲料和谷物饲料混合喂养,每天每只鸡平均吃混合饲料一斤,其中动物饲料不少于1/5,动物饲料每斤0.25元,谷物饲料每斤0.2元,饲料公司每周至多能供应谷物饲料5万斤,问怎样混合饲料才能使每周成本最低? 解:1)决策变量 设动物饲料1x 斤,谷物饲料2x 斤。