工程问题讲义
- 格式:pdf
- 大小:158.01 KB
- 文档页数:7
工程问题知识点1:工程问题:由两个或两个以上单位(或人),共同去完成一件工作或一项工程,计算需要完成任务的时间,这一类应用题叫做“工程问题”。
题目中没有给出具体的总工程量,通常用单位“1”表示(即整体思想),并用“1÷工作时间”推算工作效率,用一个分数单位1n⎛⎫⎪⎝⎭表示。
基本数量关系与一般工作问题完全相同,即总工程量÷工作效率=工作时间;总工程量÷工作时间=工作效率知识点2:工程问题中的“牛吃草”问题工程问题中的“牛吃草”问题是工程问题的特殊形式,即题目条件里面有变量。
所以解答此类问题首先应该将工程问题中的条件与“牛吃草”中的“原有草量”、“新生长的草量”和“牛吃草”一一对应,而关键是确定工程问题里面的两个不变量,仿照“牛吃草”问题即:原有量和增加率。
所以类似的基本数量关系式有:增加率=(台(人)数×时间-台(人)数×时间)÷时间差;原有量=(台(人)数-增加率×1)×时间台(人)数=原有量÷时间+增加率×1;时间=原有量÷(台(人)数-增加率×1)通常把“牛吃草”的速度即减少的速度设为“1”份。
知识点3:解题的思考方法:解答工程问题时一定要认真审题,弄明白是完成全部工程,还是该工程的部分(即它的几分之几)?有几个人或单位参加工作?他们完成这项工程各自需要多少时间?推得各自的工效是几分之一?他们是同时开始、同时结束工作的,还是有先有后的?具体要求什么等等。
因为工程问题的条件可用多种形式提出,有的不以“工程”命题,有的与其他类型的题目结合,这样,工程问题的题目就复杂起来。
但复杂是可以向简单转化的,通过一定的手段,使其变为若干个基本题,解题的基本思路与方法是不变的。
因此,只要抓住工作总量、工作效率、工作时间三者的关系,细心分析,就能找到解题的途径、步骤和方法。
例1(基础)原计划由一支工程队修建一座公园,预计需要1年零6个月;现在为了加紧完工,又调来了两支工程队,已知两只工程队的工作效率相同,那么需要多久才能完工?(提高、尖子)原计划一个工程队铺设一条水管需要18天,开工6天之后抽调走工程队中23的人数去做其他的工作,那么一共需要多少天才能建成这座大桥?(基础)批改一批考卷,李老师单独做需要12小时,王老师和李老师一起批改,需要8小时,那王老师单独批改这份考卷需要多少时间?(提高、尖子)有一批书,小明9天可装订34,小丽20天可装订56,现小明和小丽合作共装订了6天,余下的由小丽来装订,问:装订完这批书共用多少天?例3(基础、提高)满一个水池的水,同时开①、②、③号阀门需要15小时;同时开①、③、⑤号阀门需要10小时;同时开①、③、④号阀门需要12小时;同时开②、④、⑤号阀门需要8小时。
小升初工程问题讲义在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是:工作效率 × 工作时间 =工作总量工作总量 ÷ 工作效率 =工作时间工作总量 ÷ 工作时间 =工作效率在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题” 这类型的题目一般只有工作时间,这里我们一般把工作总量看是“单位1”;工作效率指的是干工作的快慢,其意义是单位时间里所干的工作量。
但在不引起误会的情况下,一般不写工作效率的单位。
具体的题目当中把时间的倒数看做的工作效率;比如,一项工程甲单独完成需要10天,则甲每天完成这项工程的110; 例题1:一项工程,由甲队做30天完成,由乙队做20天完成。
(1)两队合做5天可以完成工程的几分之几?(2)两队合做10天,还剩下工程的几分之几? (3)两队合做几天完成?练习 1.一项工程,乙队单独做要8天完成,甲队单独做要10天,现在两队合做,多少天能完成这项工程的34 ?2.一项工程,甲、乙合做6天可以完成。
甲独做18天可以完成,乙独做多少天可以完成?3.有一件工作,小华做需3天,小芳做需4天,小梅做需5天,如果三人合做,需几天完成?4.加工一批零件,单独1人做,甲要10天完成,乙要15天完成,丙要12天完成。
如果先由甲、乙两人合做5天后,剩下的由丙1人做,还要几天完成?例题2:一件工程,甲、乙合作6天可以完成。
现在甲、乙合作2天后,余下的工程由乙独做又用8天正好做完。
这件工程如果由甲单独做,需要几天完成?练习1、一项工程,甲队独做60天完成,乙队独做40天完成,现先由甲队独做10天后,乙队也参加工作。
还需几天完成?2.某项工程,甲单独做需36天完成,乙单独做需45天完成。
如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。
第八讲工程问题(一)一.知识梳理1.计算有关工程问题的工作总量、工作时间、工作效率的问题叫工程问题。
工程问题中有整数应用题和分数应用题,它们讨论同样都是工作总量、工作时间、工作效率三者之间的关系。
2.工程问题的特点:一般没有具体的工作总量,工作总量通常用单位“1”表示,用 1 表示各单位工作时间的工作效率。
工作效率与完成工作总量所需时间互为倒数。
解工程问题应用题,一般都是围绕寻找工作效率的问题进行。
3.工程问题的基本数量关系式:工作效率⨯工作时间=工作总量工作总量÷工作效率=工作时间总做总量÷工作时间=工作效率工程问题主要是研究这三种数量关系,在解题中要注意三种数量关系的对应关系。
即求谁的工作时间,就要找它所对应的工作总量和它对应的工作效率。
4.工程问题有关注水和放水的问题,两开关齐开,研究的是工作效率的差。
工程问题往往关系复杂,题型多样,富于变化,所以要求我们认真审题,抓住关键,选择适合的方法。
二.方法归纳工程问题是分数应用题的一种,这类问题的特点是一般不给出具体的工作总量,解题时常把工作总量看作单位 1,工作问题作为一种典型应用题,具有特定的解题思路,实际生活中有许多题目可以用这种思考。
抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.基本思路:以每人每天的工作量计算工作效率。
关键问题:以工作效率为突破口,梳理工作的过程。
注意事项:要找准单位“1”三.课堂精讲例 1 一项工程,甲单独完成需要 3 小时,乙单独完成需 4 小时,甲乙合作几小时完成这项工程的1 ?2【解题规律】能把工作总量看成单位“1”,找出工作效率,考查工作时间、工作效率、工作总量三者之间的数量关系,解答时要注意从问题出发,找出已知条件与所求问题之间的关系,再已知条件回到问题即可解决问题。
【搭配课堂训练题】【难度分级】 A1.生产一批零件,甲单独做需要 15 天完成,乙单独做需要 12 天完成,丙单独做需要 10 天完成,如果甲、乙、丙三人合作,多少天完成?2.一项工程,甲单独做需要 20 小时,乙单独做要 30 小时,两队合作 10 小时完成了工程的几分之几?3.一件工作,甲单独完成需要 8 天,乙的工作效率是甲的 2 倍,两人同时合作,几天能完成这件工作?3 4.一件工作,甲单独做需要 12 天,乙的工作效率是甲的44,两个合做,几天能完成这件工作的?5例 2 有一份稿件,单独一个人打,甲要 10 小时完成,乙要 8 小时完成,两人合作 2 小时,打印了全稿的几分之几?剩下的由甲单独打,还要多少小时?【解题规律】理解工作时间、工作效率、工作总量三者之间的数量关系,解答时往往把工作总量看做单位“1”,再利用它们的数量关系解答。
工程问题讲义(一)教学目的:1、 掌握工程问题中工作总量、工作时间、工作效率的基本关系式。
2、 掌握复杂工程问题“分段”、“分对象”的解题思路、方法。
3、 掌握循环周期类工程问题的解题思路,注意最后不满一个周期部分的工作量要做单独分析。
教学重难点:1、分段2、分对象3、循环周期1、了解工程问题中:工作总量、工作时间、工作效率的概念,能熟练的进行三者之间的换算。
理解合作的含义,会进行总效率与个人效率之间的换算,能解决有合作的简单工程问题。
工程问题:完成一项总量固定的任务(三只小猪盖房子、唐僧师徒吃西瓜、老师批改作业)。
与行程问题的“路程”相比,工作总量大多是①未知,②不可求出 ,故一般先设工作总量为单位“1”。
2、在掌握简单工程问题的基础上,对于工作过程的变化(例如总效率)有明显界限的复杂工程问题,能够进行合理的分段与组合,从而转化成简单的工程问题进行求解。
生活中实际工作比较复杂,有人会中途过来帮忙,有人会中途开溜跑掉,所以把工程按时间分段,每段都是简单的工程问题。
分段要分在效率有变化的地方,简单说就是:“效率变化,就分段!”3、在掌握简单工程问题的基础上,对于工作过程的变化没明显界限的复杂工程问题,能够分别对各工作对象进行计算,从而转化成简单工程问题进行求解。
4、在掌握简单工程问题的基础上,对于工作过程为周期性的复杂工程问题,理解完整周期的意义,能够对完成情况进行讨论和判断,从而转化成简单工程问题进行求解。
先算出完整周期,再计算完整周期后剩下的工作需要多少时间(千万注意表示周期数量的带分数,只有整数部分是有用的)如果工作对象交换工作顺序,完整周期部分不受影响,余下的部分需重新计算一、简单工程问题例题1汤姆和杰瑞打扫房间,汤姆单独打扫要6小时,杰瑞单独打扫要12小时,那么他们一起打扫要多少小时? 汤姆效率 1/6 杰瑞效率 1/12 合作的工作效率 1/6+1/12=1/4工作时间 1÷1/4=4(小时)训练1功夫熊猫7小时完成1项任务,他的工作效率是多少?灰太狼1天可以盖1座城堡的8分之1,他需要多少天完成?加菲猫1分钟可以吃1块蛋糕的7分之1,3分钟可以吃多少蛋糕?二、分段工程问题例题2灰太狼盖城堡单独需30天,红太狼单独盖需20天,“一个好汉三个帮”,灰太狼单独盖10天后,红太狼过来帮忙,他们还要一起盖多久才能完成?灰太狼效率 1/30 红太狼效率 1/20 灰太狼盖10天 1/30×10 = 1/3剩余工程 1 – 1/3= 2/3 合作效率 1/30+1/20=1/12 还要一起盖 2/3÷1/12=8(天)训练2一块蛋糕喜羊羊单独吃要40分钟,懒羊羊单独吃要20分钟,一起吃10分钟后,懒羊羊开始偷懒了,效率变的和喜羊羊一样了,还要多久才能吃完?例题3一项工程,甲单干则工作30天完成,乙单干则工作45天完成,丙单干则工作20天完成。
18.工程问题知识要点梳理一、根本概念1.工程问题:做某件事,制造某种产品,完成某项任务或工程等,都叫做工程问题。
2.工程问题的三个根本量是工作效率、工作时间和工作总量。
〔1〕工作效率:单位时间内完成的工作量,它是衡量一个人工作快慢的量。
〔2〕工作时间:完成工作总量所需的时间。
〔3〕工作总量:完成一项工作的总量。
一般都是把工作总量看做单位“1〞。
二、根本数量关系1.一般公式:工作总量=工作效率×工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率甲工效+乙工效=甲乙合作工效之和特别注意:工作量和工作效率都可以直接相加求和,但工作时间不能。
2.巧解工程问题:一般不知道工作总量的时候,我们常常用假设法求解。
我们把工作总量假设为单位“1〞,这个巧解方法的公式有:〔1〕一般给出工作时间,工作效率=1工作时间。
〔2〕一般给出工作效率1a,就可以知道工作时间为a。
三、根本方法算术方法、比例方法、方程方法。
考点精讲分析典例精讲考点1 简单的工程问题【例1】 一件工作,甲单独10天完成,乙单独15天完成,甲乙合做〔 〕天完成。
【精析】 根据题意,把这件工作总量看作单位“1〞,甲的工作效率是110,乙的工作效率是115,甲、乙的工作效率和是110+115,再用工作总量除以工作效率和就等于合作的工作时间。
【答案】 把这件工作总量看作单位“1〞, 1÷(110+115)=1÷3+230=1÷16=6〔天〕 【归纳总结】 此题主要考查工作时间、工作效率、工作总量三者之间的数量关系,要求甲乙合做需要多少天可以完成,应求出甲乙工作效率和。
考点2 合作工程问题【例2】 一件工作,甲、乙合作需4小时完成,甲、丙合作需5小时完成,乙、丙合作需6小时完成,乙单独做这件工作需多少个小时完成?【精析】 首先把这件工作看作单位“1〞,根据工作效率=工作量÷工作时间,分别求出甲乙、甲丙、乙丙的工作效率,再把它们求和,即可求出三人的工作效率之和的2倍,进而求出三人的工作效率之和是多少;然后用三人的工作效率之和减去甲丙的工作效率,求出乙的工作效率;最后根据工作时间=工作量÷工作效率,用1除以乙的工作效率,求出乙单独做这件工作需多少个小时完成即可。
工程问题工程问题是将一般的工作问题分数化,换句话说从分率的角度研究工作总量、工作时间(完成丁作总量所需的时间)、工作效率(,单位时间内完成的工作於)三者之间关系的问题•它的特点是将工作总量看成单位“1”,用分率表示工作效率,对做工的问题进行分析解答.T•程问题的三个基本数址关系式是:工作效率X工作时间=工作总量. 工作总就十工作时间=工作效率. 工作总量一工作效率=丁作时间.V —件工程,甲、乙合做需6天完成,乙.丙合做需9天完成•甲、丙合做需15天完成•现在甲.乙、丙三人合做需要多少天完成?分析先求出三人合做一天完成这件工程的几分之几•再求三人合做需要多少天完成.解1+ [(¥ + + +需)十2]= 5 天).答甲、乙.丙三人合做需要5器天完成.冷<2卩一项工作,甲、乙合做要12天完成•若甲先做3天后,再由乙工作8天,共完成这件工作的卷如果这件工作由甲、乙单独做•甲需要多少天?乙需要多少天?分析把甲先做3天后再由乙工作8天共完成这件工作的立•看作甲、乙合作3天再由乙单砂做5天“完成这件T作的寻•又这件工作甲、乙台做要12夭完成"则甲、乙合做1天完成这件工作的越3天完成这件工作的备x 3 =与前述进行比较知•乙5 天完成这件工作的5 1 1———■12 4 6-解乙单独完成这件工作的天数「壬(辛*5)=30(天儿甲单独完成这件匸作的天数士 1 -=-(吉一点)=20(天).答这件工作由甲、乙单独做•甲需要20夭,乙需宴30天.亠(】)做一件工程•甲独做需要12小时完成,乙独做需要]8小时兀成■甲、乙合做1小时肩,然后由甲工作1小时,再由乙工作]小时两人如此交替工作'完成任务还需多少时间?<2)加工一批零件'甲、乙两人合做]小时势完成了这批零件的器乙、丙两人接着生产1小时•又完成了為甲、丙又合做2小时,完成了剩下的任务.甲•乙、丙三人合做■还妄多少小时完成?'?晅»有—水池,装有甲、乙两个注水管.下面装有丙管放水■池空时•单开卬管5分钟可注满.单开乙管10分钟可注满;水池装潢水肩.单开丙管15分钟可将水放完.如果在池空时•将甲、乙、丙三管齐开分钟启关闭乙管*还要多少分钟可注满水池?分析三管齐开2分钟肩的T作量是1 —(辛+吉一吉)x2.*[1_(言+壽_養餐2]斗(吉一吉)="分九答2分钟后关闭乙管.还妄4分钟可注满水池.密一份穡件.甲单独打字需6小时完成•乙单独打字需K)小时完成.现在甲单独打若干小时后•因有事由乙接着打完,共用了7小时.那么甲打字用了多少小时?分析乙7小时共打字盖幻=岳送样就差—磊=磊的稿件.因此甲每小时比乙多打全部稿件的吉一霁=磊*磊*点=4号(小时人*答甲打字用了4寺小时2再单独做4夭•还剩下这项工程的着没有完成,求甲、乙两队工作效卒之比.(2)甲、乙两项工程分别由一*二队来完成.在晴天•一队完成甲工程需要12天,二队完成乙工程需姜15天卡在雨天”一队的工作效率要下降40%•二队的工作效率耍下降10%.结果两队同时完成这两项工程•那么•在施工的日子卑•雨天有多少天?g;有卬、乙两项工程•张师傅单独完成甲丁程需寰9天,单独完成乙1 [程需要12天;王师傅单独完成甲工程需要3天. E独完成乙H 程需要15天.如果两人合作完成这两项丁程.最少需要多少天?分折由题目条件知,王师傅擅长做甲工程,所以让王师傅先做甲丁程,张师傅先做乙工程.等王师傅做完甲工程再和张师傅做乙工程.解3+(】_誇)+(吉+養)=3十5 = 8(天》.答两人合作完成这两项工程,堆少需要8天.0 <34某地要修筑-条公路,甲丁•程队单独干需要io天完成,乙工程队单独干需要15天完成*如果两队合作*他们的工作效率就要降低■甲队只能完成原来的壬,乙队只能完成原来的壽.现在if划8天完成这项工程,且要求两队合作天数尽可能少*那么两队要合作多少天?分析根据题意•甲、乙及甲.乙合做的工作效率分别为霁、1 tJL 1 4 1 9 7运及10X J +l5X l0 =50*此3种情况中乙的效率最低,甲、乙合做的效率最高,要使甲、乙合作天数尽可能的少.则必须甲尽可能地多做.如果全是甲做怡天可完成磊X8 =磊=£的工作虽尚有*的匚作没有完成■这部分工作要由甲、乙合做比甲多做的部分来完成.* (1~]^x8h(io x f+n x w~^)1 2=1■十韵=5(天〉.答两队要合作5天.(1) 一项工程•甲、乙合做全工程的晋^剩下的由甲单独完成. 甲一共做了10.5天”这项工程由甲单独做需要15天,如果由乙单独做•需要多少天?(2) 师徒三人合作承包一项工程显天能够全部完成.已知师傅单•独做所需的夭数与两个徒弟合作做所需的天数相等宇而师傅与乙徒第合作做所需的天数的2倍与甲徒弟单独做完所需的天数相等•那么甲徒弟单独做,完成这项丁程需要多少天?乙徒弟单独做,完成这项工程需要多少天?练习题1 完成一项工作"噩耍甲队干5天,乙队干6天•或者甲队干7 天•乙臥干2天.如果甲.乙两队独立完成该工程各需多少天?O 一个水池•甲.乙两个水管同时打开击小时可以灌满水池:若甲管打开8小时后关闭+然后打幵乙管,再工作3小时也可以灌满水池.问:甲管先工作2小时后关闭,乙管再工作儿小时可以港满全水池?3 一件工作甲5小时完成了吉”乙£小时完成了剩下的一半,余T的部分由甲、乙合作,还需要多少小时?O 甲、乙合作完战一项工作,由于配合得好舟甲的工作效率比单独做时提高壽■乙的工作效率比单独做时提高+•甲.乙合作6小时完成了这项任务.如果甲单独做需羹H小时,那么乙单独做需要多少小时?5某工程如果由第一、二、三小队合干,需12天才能完成;由第一.三、五小队合干,需7天才能完成*由第二、四.五小队合干•需圧天才能完成*曲第一、三、四小队合干•需42天才能完成■那么这五个小队一起合干,需要多少天才能完成这项工程?0 一批工人到甲、乙两个工地进行清理工作•甲T:地的「作绘是乙工地工作址的L5倍.上午去甲工地的人数是去乙匚地人数的3倍■下午这批工人中有召的人去甲工地•其他工人到乙工地.到傍晚时•甲工地的工作已做完农乙工地的工作还需4名工人再做1天・那么,这批工人有多少人?。
工程问题初步工作总量、工作效率、工作时间有以下关系:工作总量=工作效率×工作时间在工程问题中,经常无法从题目中找到工作总量,此时可以把工作总量设为单位“1”;所谓工作效率,就是单位时间内完成的工作量。
工程问题中工作效率、工作时间和工作效率这三个量中最为关键的量是工作效率,因此,如何求出每一个工作者的工作效率,是同学们分析问题时的重点。
例1:填空题(1)一项工程,用4天完成,平均每天完成它的 。
(2)一项工程,平均每天完成它的121, 天可以完成。
(3)妈妈给小高盛了一碗米饭,小高用了5分钟就吃掉了半碗,小高吃饭的效率是 。
练习:张师傅修一个花园需要12天,那么他完成这个花园32的工作量需要多少天?例2:一项工程,甲单独作6天能完成,甲完成31与乙完成21所需要的时间相同,那么乙单独完成需要多少天?练习:一项工程,甲单独做10天完成了一半,甲两天的工作量乙要三天完成,那么乙单独完成需要多少天?当多人合作的时候,完成的工作总量就是这些人工作量的总和,“总工效”就是他们每个人的工作效率之和。
例3:(1)一项工程,甲独做30天完成,乙独做24天完成,两人合作6天可以完成多少?(2)一项工程,甲独做24天完成,乙独做36天完成,两人合作多少天可以完成这项工程?练习:(1)一项工程,甲独做15天完成,乙独做18天完成,两人合作3天可以完成多少?(2)一项工程,甲独做8天完成,乙独做10天完成,两人合作多少天可以完成这项工程的21?例4:甲、乙合作完成一项工作,由于配合得好,甲的工作效率比单独做时提高51,乙的工作效率比单独做时提高81,甲、乙合作8小时完成这项工作。
如果甲单独完成需要12小时,那么乙单独做需要几小时?练习:阿呆和阿瓜合作拼一幅拼图,由于配合得好,两人的效率比各自单独做时均提高81,已知阿呆和阿瓜合作8小时完成这幅拼图,如果阿呆单独完成需要12小时,那么阿瓜单独完成需要几小时?挑战极限:共同完成一件工作,甲、乙合作需要10天,乙、丙合作需要12天,甲、丙合作需要15天。
温馨提示:图片放大更清晰修一段路,如果由甲单独修需要用9小时能修完,甲每小时能修这段路的( )。
答案:1 9解析:根据“工作效率=工作总量÷工作时间”即可求得甲每小时修这段路的分率。
假设工作总量为11÷9=19小升初数学通用版《工程问题》精准讲练所以,甲每小时能修这段路的19。
为了喜迎新年,赶制一批彩旗,张师傅单独制作需要15小时完成,刘师傅单独制作需要10小时完成,两人合作制作需要6小时完成。
( )答案:√解析:根据题意可知,一批彩旗是单位“1”,根据工程问题的公式:工作效率=工作总量÷工作时间,据此即可求出张师傅和刘师傅的工作效率,再根据工作时间=工作总量÷工作效率,用1除以张师傅和刘师傅的效率和即可求出合作需要多长时间,再判断。
1÷15=1 151÷10=1 101÷(115+110)=1÷1 6=6(小时)两人合作制作需要6小时完成,原题说法正确。
故答案为:√每年3月12日是植树节,今年甲乙两队计划种100棵树,甲队独种需要2天,乙队独种需要5天,两队合种共要几天?列式错误的是()。
A.10011()25÷+B.100÷(100÷2+100÷5)C.111()25÷+D.100÷[100×(1125+)]答案:A解析:若把这项工作看作单位“1”,则甲队工作效率和乙队工作效率已知,据此进行逐项分析,即可得出结论。
A.把这项工作看作是单位“1”,甲队工作效率为12,乙队工作效率为15;根据“工作时间=工作量÷工作效率”,即可求出两队合种几天能种完,可知A错误,C正确;B.用计划种树的总棵数分别除以甲、乙两队独种的天数,得出两队每天种的棵数,再用100除以两队每天种的棵数之和,即可得两队合种共要几天,可知B正确;D.把这项工作看作是单位“1”,甲队工作效率为12,乙队工作效率为15,用计划种树的总棵数乘两队的效率和,得出两队每天种的棵数和,再用除法计算,即可得两队合种共要几天,可知D正确。
工程问题应用题◎工程问题分为独干和合干两类:第一类:必须具备工作总量、工作时间和工作效率这三个量,已知三个量中的两个求第三个量的问题。
解答工程问题时,一般要把全部工程看作“1”,然后根据下面的数量关系进行解答:工作效率×工作时间=工作总量第二类:必须具备工作总量、合作工作时间和工作效率和这三个量,已知三个量中的两个求第三个量的问题。
解答工程问题时,一般要把全部工程看作“1”,然后根据下面的数量关系进行解答:工作效率和×合作工作时间=工作总量◎基础训练一项工作,甲独做12天完成,乙独做20天完成,?① 甲乙合做1天完成全工程的几分之几?② 甲乙合做3天完成全工程的几分之几?还剩几分之几没完成?③ 甲乙合做几天可完成全工程?④ 甲乙合做几天完成全工程的一半?⑤ 甲乙合做5天后,余下的再由乙单独完成,还需几天?⑥ 甲先做2天后,余下的乙也参加同做,还需几天完成?◎综合训练①甲乙两根进水管,单开甲管10小时注满水池,单开乙管15小时注满水池,若两管齐开,几小时可注满水池?②甲乙两根水管,单开甲进水管10小时可把水池注满,单开乙出水管15小时可把满池水放完,若两管齐开,几小时可注满水池?③甲、乙两队共同修一条长60千米的路,甲队单独修20天可完工,乙队单独修15天可完工,两队共同修几天完工?◎拓展一项工程,甲做4小时后,乙又接着做了5小时共同完成了工程的5/6,甲独做全工程12小时可完工,乙独做要几小时可完工?◎例题讲解两个人的问题---标题上说的“两个人”,也可以是两个组、两个队等等的两个集体。
例1:一件工作,甲做9天可以完成,乙做6天可以完成。
现在甲先做了3天,余下的工作由乙继续完成。
乙需要做几天可以完成全部工作?例2:一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成。
如果这件工作由甲或乙单独完成各需要多少天?例3:某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成。