圆锥曲线涉及切割三角形中线段斜率的一组性质
- 格式:pdf
- 大小:376.98 KB
- 文档页数:2
圆锥曲线八种解题方法、七种常规题型和性质(有相应例题详解) 总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法中的顺序8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题(4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。
2.曲线的形状未知-----求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
专题10 圆锥曲线的性质及其应用专题点拨1.熟练掌握椭圆、双曲线以及抛物线的标准方程中基本量的关系,能够准确应用三种曲线的轨迹定义来解决问题.2.弦长公式:斜率为k 的直线与圆锥曲线交于两点A (x 1,y 1),B (x 2,y 2),则截得的弦长: |AB |=2212121()4k x x x x ++- =1+k 2·|x 1-x 2|=1+1k2·|y 1-y 2|(k ≠0). 3. 涉及焦点弦问题:一般要联想圆锥曲线的轨迹定义加以分析求解. 涉及中点弦及直线的斜率问题:需要利用“根与系数的关系”求解.真题赏析1.(2018·上海)双曲线﹣y 2=1的渐近线方程为 .【答案】12y x =±【解析】由a=2,b=1,故渐近线方程为12y x =±.2. (2017·上海)设双曲线x 29-y 2b 2=1(b >0)的焦点为F 1、F 2,P 为该双曲线上的一点,若|PF 1|=5,则|PF 2|=__________. 【答案】3【解析】依题意,有⎩⎪⎨⎪⎧|PF →1|+|PF 2→|=2a |PF 1→|·|PF 2→|=18|PF 1→|2+|PF 2→|2=4c2,可得4c 2+36=4a 2,即a 2-c 2=9,故有b =3.例题剖析【例1】设AB 是椭圆Γ的长轴,点C 在Γ上,且∠CBA =π4,若AB =4,BC =2,则Γ的两个焦点之间的距离为________.【答案】436【解析】如图所示:设D 在AB 上,且CD ∠AB ,AB =4,BC =2,∠CBA =45°∠CD =1,DB =1,AD =3,以AB 所在直线为x 轴,AB 中垂线为y 轴建立平面直角坐标系得C (1,1),2a =4,把C (1,1)代入椭圆标准方程得1a 2+1b 2=1,a 2=b 2+c 2∠b 2=43,c 2=83∠2c =436.【变式训练1】 设P 是椭圆²5x + ²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( )A. 【答案】C【解析】由椭圆的定义可知两个焦点的距离之和为【例2】已知1F ,2F 分别为双曲线2222:1(,0)x y C a b a b-=>的左、右焦点,过2F 的直线l 与双曲线的右支分别交于A ,B 两点,△12AF F 的内切圆半径为1r ,△12BF F 的内切圆半径为2r ,若122r r =,则直线l 的斜率为 .【答案】±【解析】记△12AF F 的内切圆圆心为C ,边1AF 、2AF 、12F F 上的切点分别为M 、N 、E , 易见C 、E 横坐标相等, 则||||AM AN =, 11||||F M F E =, 22||||F N F E =,由12||||2AF AF a -=,即12||||(||||)2AM MF AN NF a +-+=, 得12||||2MF NF a -=,即12||||2F E F E a -=,记C 的横坐标为0x ,则0(E x ,0), 于是00()2x c c x a +--=,得0x a =,同样内心D 的横坐标也为a ,则有CD x ⊥轴,设直线的倾斜角为θ,则22OF D θ∠=,2902CF O θ∠=︒-,在2CEF ∆中,12tan tan(90)2||r CF O EF θ∠=︒-=,在2DEF ∆中,22tan tan 2||r DF O EF θ∠==, 由122r r =,可得2tan tan(90)cot 222θθθ=︒-=,解得tan22θ=则直线的斜率为22tan2tan 1122tan θθθ===-- 由对称性可得直线l的斜率为±故答案为:±【变式训练2】已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C .若1C的渐近线方程为y =,则2C 的渐近线方程为__________. 【答案】y =±32x 【解析】 设C 1的方程为x 2a 2-y 2b 2=1,则它的渐近线为y =±b a x ,即b =3a .有x 2a 2-y 23a 2=1,又∠P 的纵坐标是Q 的2倍,横坐标相同.∠C 2的方程为x 2a 2-()2y 23a 2=1,故渐近线方程为y =±32x .【例3】在平面直角坐标系xOy 中,已知抛物线24y x =上一点P 到焦点的距离为5,则点P 的横坐标是 . 【答案】4【解析】Q 抛物线242y x px ==, 2p ∴=,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,||15PF x ∴=+=, 4x ∴=,故答案为:4.【变式训练3】已知抛物线24y x =的焦点为F ,该抛物线上点P 的横坐标为2,则||PF = . 【答案】3【解析】抛物线24y x =的准线方程为:1x =-,P Q 到焦点F 的距离等于P 到准线的距离,P 的横坐标是2,||213PF ∴=+=.故答案为:3.【例4】椭圆C :22221x y a b+=(0a b >>)过点()2,0M ,且右焦点为()1,0F ,过F 的直线l 与椭圆C 相交于A 、B 两点,设点()4,3P ,记PA 、PB 的斜率分别为1k 和2k ; (1)求椭圆C 的方程;(2)如果直线l 的斜率等于1-,求出12k k ⋅的值;(3)探讨12k k +是否为定值?如果是,求出该定值,如果不是,求出12k k +的取值范围;【解析】(1)2,1a c ==Q ,b ∴=22143x y +=.(2)直线l :1y x =-+,设()11,A x y ,()22,B x y ,由221143y x x y =-+⎧⎪⎨+=⎪⎩,消y 得27880x x --=,有1287x x +=,1287x x =-,所以()()121212121212121212243322144444162x x x x y y x x k k x x x x x x x x +++------⋅=⋅=⋅==-----++.(3)当直线AB 的斜率不存在时,不妨设31,2A ⎛⎫ ⎪⎝⎭,31,2B ⎛⎫- ⎪⎝⎭,则13312412k -==-,23332412k +==-,故122k k +=.当直线AB 斜率存在时,设为k ,则直线AB :()1y k x =-.设()11,A x y ,()22,B x y ,由()221143y k x x y =-⎧⎪⎨+=⎪⎩,消y 得()()22224384120k x k x k +-+-=,有2122843k x x k +=+,212241243k x x k -⋅=+,则()()()()1212121212121212122538333334444416kx x k x x k y y kx k kx k k k x x x x x x x x -++++------+=+=+=-----++ ()()227212361k k +==+.巩固训练一、填空题1.已知双曲线221x y -=,则其两条渐近线的夹角为 . 【答案】90︒【解析】双曲线2211x y -=的两条渐近线的方程为:y x =±, 所对应的直线的倾斜角分别为90︒,∴双曲线221x y -=的两条渐近线的夹角为90︒,故答案为:90︒.2.若直线l 经过抛物线2:4C y x =的焦点且其一个方向向量为(1,1)d =r,则直线l 的方程为 .【答案】10x y --=【解析】抛物线24y x =的焦点为(1,0),方向向量为(1,1)d =r 的直线l 的斜率为 1,故直线l 的方程是01(1)y x -=-g ,即1y x =-, 故答案为:10x y --=.3.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程是2y x =,它的一个焦点与抛物线220y x =的焦点相同,则此双曲线的方程是 .【答案】221520x y -=【解析】抛物线220y x =的焦点为(5,0), 则双曲线的焦点在x 轴上,双曲线22221(0,0)x y a b a b-=>>的一条渐近线为2y x =,可得2b a =,由题意双曲线22221(0,0)x y a b a b-=>>的一个焦点与抛物线220y x =5=,解得a =b =,则双曲线的方程为:221520x y -=.故答案为:221520x y -=.4.已知点O ,A ,B ,F 分别为椭圆2222:1(0)x y C a b a b+=>>的中心、左顶点、上顶点、右焦点,过点F 作OB 的平行线,它与椭圆C 在第一象限部分交于点P ,若AB OP λ=u u u r u u u r,则实数λ的值为 .【解析】如图,(,0)A a -,(0,)B b ,(,0)F c ,则2(,)b P c a,∴(,)AB a b =u u u r ,2(,)b OP c a=u u u r ,由AB OP λ=u u u r u u u r ,得2a c b b a λλ=⎧⎪⎨=⎪⎩,即b c =,22222a b c b ∴=+=,ab=则abλ=5.已知椭圆22194x y +=,直线2180x y ++=,则椭圆上点到这条直线的最短距离是 .【解析】由直线l 的方程与椭圆的方程可以知道,直线2180lx y ++=与椭圆不相交, 设直线m 平行于直线l ,则直线m 的方程可以写成20x y k ++= (1) 由方程组2219420x y x y k ⎧+=⎪⎨⎪++=⎩消去x ,得2225164360y ky k ++-= (2) 令方程(2)的根的判别式△0=,得22216425(436)0k k -⨯-= (3) 解方程(3)得15k =或25k =-,∴当15k =时,直线m 与椭圆交点到直线l 的距离最近,此时直线m 的方程为250x y ++=,直线m 与直线l间的距离d ==,. 二、选择题6.已知椭圆2212516x y +=的左右焦点分别为1F 、2F ,点P 在椭圆上,若P 、1F 、2F 是一个直角三角形的三个顶点,则点p 到x 轴的距离为( ) A .95B .4 CD .165【答案】D【解析】设椭圆短轴的一个端点为M . 由于5a =,4b =, 3c b ∴=<; 1290F MF ∴∠<︒,∴只能1290PF F ∠=︒或2190PF F ∠=︒.令3x =±,得2165b y a ==,故选:D .7.点A 为椭圆2222:1(0)x y C a b a b+=>>的右顶点,P 为椭圆C 上一点(不与A 重合),若0(PO PA O =u u u r u u u r g 是坐标原点),则(cc a 为半焦距)的取值范围是(( )A .1(,1)2B.(2C. D .以上说法都不对【答案】B【解析】Q 设(,)P x y ,Q 0(PO PA O =u u u r u u u rg 是坐标原点),∴22222322222222()024a a x y c x a x a b b x a y a b ⎧-+=⎪⇒-+=⎨⎪+=⎩, 22()()0c x ab x a ⇒--=.x a ⇒=,22ab x c =,220ab a c∴<<.22b c ∴<.∴c a >∴则ca的取值范围是(2,1)故选:B .8.已知M(00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF •<u u u u r u u u u r ,则0y 的取值范围是( )A.(B.(,3) D.(3-,3) 【答案】A【解析】由题意()1F,)2F ,220012x y -=,所以())120000,,MF MF x y x y ⋅=-⋅-u u u u r u u u u r2220003310x y y =+-=-<,解得0y <<. 9.已知点E 是抛物线2:2(0)C y px P =>的对称轴与准线的交点,点F 为抛物线C 的焦点,点P 在抛物线C 上,在EFP ∆中,若sin sin EFP FEP μ∠=∠g ,则μ的最大值为( )A .2B C D 【答案】C【解析】过(P x 轴上方)作准线的垂线,垂足为H ,则由抛物线的定义可得||||PF PH =,由sin sin EFP FEP μ∠=∠g , 则PFE ∆中由正弦定理可知:则||||PE PF μ=, ||||PE PH μ∴=,设PE 的倾斜角为α,则1cos PH PE αμ==, 当μ取得最大值时,cos α最小,此时直线PM 与抛物线相切, 设直线PM 的方程为2px ty =-,则, 即2220y pty p -+=,∴△222440p t p =-=,1k ∴=,即tan 1α=,则cos 2α=则μ, 故选:C . 三、解答题10.已知椭圆的两个焦点为1(1,0)F -,2(1,0)F,且椭圆过点. (1)求椭圆的方程.(2)已知斜率为(0)k k ≠的直线11过2F ,与椭圆分别交于P ,Q ;直线2l 过2F ,与直线11垂直,与椭圆分别交于M ,N ,求四边形PMQN 面积的函数解析式()f k .【解析】(1)设椭圆的方程为22221x y a b+=,0a b >>由题意可得2222211112c a b a b c=⎧⎪⎪+=⎨⎪=+⎪⎩,解得22a =,21b =(2)设直线1l 的方程为(1)y k x =-,则直线2l 的方程为1(1)y x k=--设1(P x ,1)y ,2(Q x ,2)y ,联立方程2212(1)x y y k x ⎧+=⎪⎨⎪=+⎩,化简得2222(21)4220k x k x k +-+-=.则2122412k x x k +=+,21222212k x x k -=+,12||||PQ x x ∴=-22112k k +==+g , 同理,得221||2k MN k+=+g , ()()222214(1)2122PMNQk S PQ MN k k +∴===++四边形, 22224(1)()(12)(2)k f k k k +∴=++,0k ≠. 11.已知抛物线2y x =上的A ,B 两点满足2OA OB =u u u r u u u rg ,点A 、B 在抛物线对称轴的左右两侧,且A 的横坐标小于零,抛物线顶点为O ,焦点为F . (1)当点B 的横坐标为2,求点A 的坐标;(2)抛物线上是否存在点M ,使得||||(0)MF MO λλ=>,若请说明理由;(3)设焦点F 关于直线OB 的对称点是C ,求当四边形OABC 面积最小值时点B 的坐标. 【解析】(1)由题意知,(2,4)B ,设2(,)A t t ,由2OA OB =u u u r u u u r g ,得2242t t +=,解得:12t =(舍)或1t =-, (1,1)A ∴-;(2)由条件知222221()()4x x x y λ+-=+,把2y x =代入得22211(1)()0216y y λλ-+-+=,∴223()4λλ=-V ,当1λ=,M有两个点,当λ,M 点存在,1λ<<,M 点有四个,当1λ>,M 点有二个,当0λ<<,M 点不存在; (3)设211(,)B x x ,222(,)A x x ,由题意得:2212122x x x x +=,解得122x x =-. 设直线AB 的方程为y kx m =+, 联立2y kx m y x=+⎧⎨=⎩,得20x kx m --=, 得12x x m =-,又122x x =-,2m ∴=,则直线经过定点(0,2),OAB OBC OAB OBF OABC S S S S S ∆∆∆∆∴=+=+四边形12111111922()32248x x x x x =⨯⨯-+⨯⨯=+=…, 当且仅当143x =等号成立,四边形OABC 面积最小, 4(3B ∴,16)9.12.已知双曲线2222:1x y C a b-=经过点()2,3,两条渐近线的夹角为60o,直线l 交双曲线于A ,B 两点;(1)求双曲线C 的方程;(2)若l 过原点,P 为双曲线上异于A ,B 的一点,且直线PA 、PB 的斜率PA k 、PB k 均存在,求证:PA PB k k ⋅为定值;(3)若l 过双曲线的右焦点1F ,是否存在x 轴上的点(),0M m ,使得直线l 绕点1F 无论怎样转动,都有0MA MB ⋅=u u u r u u u r成立?若存在,求出M 的坐标;若不存在,请说明理由.【解析】(1)由题意得:224913a b b a⎧-=⎪⎪⎨⎪=⎪⎩,解得1,3a b ==,所以双曲线C 的方程为2213y x -=.(2)证明:设()00,A x y ,由双曲线的对称性可得()00,B x y --,设(),P x y ,则2202PA PBy y k k x x -⋅=-,因为220033y x =-,2233y x =-,所以220203PA PBy y k k x x -⋅==-.(3)由(1)得点()12,0F ,当直线l 的斜率存在时,设直线方程()2y k x =-,设()11,A x y ,()22,B x y ,将方程()2y k x =-与双曲线方程联立消去y 得:()222234430k x k x k --++=,所以22121222443,33k k x x x x k k ++=⋅=--,假设存在定点M ,使MA MB ⊥恒成立,设为(),M m m ,则()()()()1212220MA MB x m x m k x n k x n ⋅=--+----=⎡⎤⎡⎤⎣⎦⎣⎦u u u r u u u r,故得()()222224512310m n m k nk m n +----+-=,对任意的23k >恒成立,因此222245012010m n m n m n ⎧+--=⎪=⎨⎪+-=⎩,解得1,0m n =-=.所以当()1,0M -时,MA MB ⊥恒成立.当直线l 斜率不存在时,由()()2,3, 2.3A B -知点()1,0M -使得MA MB ⊥也成立.又因为点()1,0M -是双曲线C 的左顶点,所以存在定点()1,0M -,使得MA MB ⊥恒成立.新题速递1.(2020•闵行区一模)在正四面体A ﹣BCD 中,点P 为△BCD 所在平面上的动点,若AP 与AB 所成角为定值θ,θ∈(0,π2),则动点P 的轨迹不可能是( ) A .圆B .椭圆C .双曲线D .抛物线【分析】建立空间直角坐标系,根据题意,求出P 的轨迹方程,可得其轨迹.【解答】解:由题正四面体A ﹣BCD 中,顶点A 在底面BCD 的射影O 为下底面的中心,则以O 为坐标原点,OB 为x 轴,OA 为z 轴,如图所示的空间直角坐标系, 延长BO 交CD 与E ,设OB =1,据题意得:OB =23BE =23×√32BC =√33BC ⇒BC =√3⇒AO =√(√3)2−12=√2. 所以B (1,0,0),A (0,0,√2),设P (x ,y ,0) 则AB →=(1,0,−√2),AP →=(x ,y ,−√2), ∴|cos θ|=|AB →⋅AP→|AB →|×|AP →||=√3×√⇒3cos 2θ(x 2+y 2+2)=(x +2)2⇒(3cos 2θ﹣1)x 2+3cos 2θy 2﹣4x +6cos 2θ﹣4=0;∵θ∈(0,π2)⇒0<cos θ<1⇒﹣1<3cos 2θ﹣1<2,当3cos 2θ﹣1小于0时,表示双曲线, 当其等于0时,表示抛物线; 当其大于0时,表示椭圆. 故选:A .2.(2020•浦东新区一模)以抛物线y 2=4x 的焦点为右焦点,且长轴为4的椭圆的标准方程为( ) A .x 216+y 215=1 B .x 216+y 24=1C .x 24+y 23=1D .x 24+y 2=1【分析】由抛物线方程求得焦点坐标,可得椭圆半焦距c ,又长轴为4,得a =2,由隐含条件求得b ,则椭圆方程可求.【解答】解:抛物线y 2=4x 的焦点坐标为F (1,0), ∴所求椭圆的右焦点为(1,0),即c =1, 又2a =4,∴a =2,则b 2=a 2﹣c 2=4﹣1=3. ∴椭圆的标准方程为x 24+y 23=1.故选:C .3.(2020•徐汇区一模)若圆C 1:x 2+y 2=1和圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0没有公共点,则实数k 的取值范围是( ) A .(﹣9,11)B .(﹣25,﹣9)C .(﹣∞,﹣9)∪(11,+∞)D .(﹣25,﹣9)∪(11,+∞)【分析】求出两圆的圆心坐标与半径,再由圆心距与半径间的关系列式求解. 【解答】解:化圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0为(x ﹣3)2+(y ﹣4)2=25+k , 则k >﹣25,圆心坐标为(3,4),半径为√25+k , 圆C 1:x 2+y 2=1的圆心坐标为(0,0),半径为1.要使圆C 1:x 2+y 2=1和圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0没有公共点, 则|C 1C 2|>√25+k +1或|C 1C 2|<√25+k −1, 即5>√25+k +1或5<√25+k −1, 解得﹣25<k <﹣9或k >11.∴实数k 的取值范围是(﹣25,﹣9)∪(11,+∞). 故选:D .4.(2020•青浦区一模)过抛物线y 2=2px (p >0)的焦点作两条相互垂直的弦AB 和CD ,则1|AB|+1|CD|的值为( ) A .p2B .2pC .2pD .12p【分析】直接利用直线和曲线的位置关系式的应用建立方程组,进一步利用一元二次方程根和系数关系式的应用求出结果.【解答】解:抛物线y 2=2px (p >0)的焦点坐标为(p2,0),所以设经过焦点直线AB 的方程为y =k (x −p 2),所以{y =k(x −p2)y 2=2px,整理得k 2x 2−(k 2p +2p)x +k 2p 24=0,设点A (x 1,y 1),B (x 2,y 2),所以|AB|=x 1+x 2+p =(2k 2+2)pk2,所以1|AB|=k 2(2k +2)p,同理设经过焦点直线CD 的方程为y =−1k (x −p2), 所以{y =−1k (x −p2)y 2=2px,整理得x 2−(p +2k 2p)x +p 24=0,所以:|CD |=p +(p +2k 2p ),所以|CD|=12p+2k 2p,则则1|AB|+1|CD|=(1+k 2)2p(1+k )=12p.故选:D .5.(2020•奉贤区一模)若双曲线的渐近线方程为y =±3x ,它的焦距为2√10,则该双曲线的标准方程为 .【分析】利用双曲线的焦距求出c ,通过渐近线方程,求出a 、b 关系,然后求出a ,b ,即可得到双曲线方程.【解答】解:双曲线的焦距为2√10,可得c =√10,双曲线的焦点坐标在x 轴上时, 渐近线方程为y =±3x ,可得ba =3,a 2+b 2=10,所以a =1,b =3,当双曲线的焦点坐标在y 轴上时,可得ab=3,a 2+b 2=10,所以b =1,a =3,所以所求双曲线方程为:x 2−y 29=±1. 故答案为:x 2−y 29=±1. 6.(2020•静安区一模)设双曲线x 2a −y 2a+1=1的两个焦点为F 1,F 2,点P 在双曲线上,若PF 1⊥PF 2,则点P 到坐标原点O 的距离的最小值为 .【分析】利用已知条件PF 1⊥PF 2,点P 到坐标原点O 的距离为c ,转化求解c 的最小值即可. 【解答】解:双曲线x 2a −y 2a+1=1的两个焦点为F 1,F 2,点P 在双曲线上,若PF 1⊥PF 2,则点P 到坐标原点O 的距离为c , 所以c =√a 2+a +1=√(a +12)2+34≥√32,当且仅当a =−12时,取得最小值:√32. 故答案为:√32. 7.(2020•青浦区一模)已知点P 在双曲线x 29−y 216=1上,点A 满足PA →=(t ﹣1)OP →(t ∈R ),且OA →•OP →=60,OB →=(0,1),则|OB →⋅OA →|的最大值为 .【分析】由PA →=(t ﹣1)OP →,得到OA →=tOP →,则|OA →|=|t|⋅|OP →|,设A (x A ,y A ),P (x P ,y P ),可得{x P =xAt y P =y A t,将点(x A t,y At)代入双曲线中得x A 2=9y A216+9t 2,结合OA →•OP →=60,可得|y A |≤8,从而得到|OB →⋅OA →|=|y A |≤8.【解答】解:∵PA →=(t ﹣1)OP →=tOP →−OP →,∴OA →−OP →=tOP →−OP →, 则OA →=tOP →,∴|OA →|=|t|⋅|OP →|, 设A (x A ,y A ),P (x P ,y P ), ∴(x A ,y A )=t (x P ,y P ),则{x A =tx Py A =ty P ,即{x P =xA t y P =y At,将点(x A t ,y A t )代入双曲线中得: x A 29t 2−y A 216t 2=1,∴x A2=9y A 216+9t 2⋯①,∵OA →•OP →=60,∴|OA →|•|OP →|=|t|⋅|OP →|2=|t|⋅(x P 2+y P 2)=|t |•(x A 2t 2+y A 2t2)=60…②,由①②得60=|t |•(9y A 216t 2+y A 2t 2+9)=|t |•(25y A 216t 2+9)=25y A 216|t|+9|t|≥152|y A |,∴|y A |≤8,∴|OB →⋅OA →|=|y A |≤8. 则|OB →⋅OA →|的最大值为8. 故答案为:8. 8.(2020•杨浦区一模)椭圆x 29+y 24=1的焦点为F 1,F 2,P 为椭圆上一点,若|PF 1|=5,则cos ∠F 1PF 2= .【分析】利用椭圆的定义,结合余弦定理转化求解即可. 【解答】解:椭圆x 29+y 24=1的焦点为F 1,F 2,P 为椭圆上一点,若|PF 1|=5,可得|PF 2|=6﹣5=1,|F 2F 1|=2c =2√5,由余弦定理可得:cos θ=|PF 1|2+|PF 2|2−|F 1F 2|22|PF 1||PF 2|=25+1−202×5×1=35. 故答案为:35.9.(2020•松江区一模)已知椭圆x 29+y 24=1的左、右焦点分别为F 1、F 2,若椭圆上的点P 满足|PF 1|=2|PF 2|,则|PF 1|= .【分析】利用椭圆的定义,结合已知条件转化求解即可. 【解答】解:椭圆x 29+y 24=1的左、右焦点分别为F 1、F 2,椭圆上的点P 满足|PF 1|=2|PF 2|,因为|PF 1|+|PF 2|=2a =6,所以|PF 1|=4. 故答案为:4.10.(2020•奉贤区一模)平面内任意一点P 到两定点F 1(−√3,0)、F 2(√3,0)的距离之和为4. (1)若点P 是第二象限内的一点且满足PF 1→⋅PF 2→=0,求点P 的坐标;(2)设平面内有关于原点对称的两定点M 1、M 2,判别PM 1→⋅PM 2→是否有最大值和最小值,请说明理由? 【分析】由题意知曲线是焦点为F 1(−√3,0)与F 2(√3,0)、长轴长为4的椭圆,由此能求出曲线C 的方程.(1)结合数量积为0以及椭圆方程的运用即可求出点的坐标; (2)设出两点的坐标,结合椭圆中变量的取值范围即可求解.【解答】解:∵曲线C 上任意一点P 到两定点F 1(−√3,0)与F 2(√3,0)的距离之和为4, ∴曲线是焦点为F 1(−√3,0)与F 2(√3,0)、长轴长为4的椭圆, 设椭圆的方程:x 2a 2+y 2b 2=1(a >b >0),由2a =4,a =2,c =√3, b 2=a 2﹣c 2=1, ∴椭圆的标准方程:x 24+y 2=1;(1)设p (x ,y ),则PF 1→=(x +√3,y ),PF 2→=(x −√3,y )⇒PF 1→•PF 2→=x 2+y 2﹣3; ∵PF 1→⋅PF 2→=0, ∴x 2+y 2﹣3=0联立x 24+y 2=1⇒x 2=83,y 2=13;∵点P 是第二象限内的一点; ∴x =−2√63,y =√33, 所以点P (−2√63,√33);(2)设M 1(m ,n ),则M 2(﹣m ,﹣n );∴PM 1→⋅PM 2→=(m ﹣x ,n ﹣y )•(﹣m ﹣x ,﹣n ﹣y )=x 2+y 2﹣(m 2+n 2) ①; ∵x 24+y 2=1 ②;②代入①∴PM 1→⋅PM 2→=1+34x 2﹣(m 2+n 2); 又因为﹣2≤x ≤2;∴当x =±2时,PM 1→⋅PM 2→最大值4﹣(m 2+n 2), 当x =0时PM 1→⋅PM 2→是最小值1﹣(m 2+n 2).。
人教版高中数学精品资料重点列表: 重点 名称 重要指数 重点1 椭圆 ★★★★ 重点2 双曲线 ★★★ 重点3 抛物线★★★★椭圆的概念(1)文字形式:在平面内到两定点F 1、F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点 ,两焦点间的距离叫做焦距. (2)代数式形式:集合1212P={M||MF |+|MF |=2a |FF |=2c.} ①若a c >,则集合P 为椭圆; ②若a c =,则集合P 为线段; ③若a c <,则集合P 为空集.椭圆的标准方程:焦点在x 轴时,2222=1(a>b>0)x y a b +;焦点在y 轴时,2222=1(a>b>0)y x a b + 椭圆的标准方程:(1)焦点在x 轴,2222+=1(a>b>0)x y a b;(2)焦点在y 轴,2222y +=1(a>b>0)x a b.满足条件:22222000a c a b c a b c >,=+,>,>,> 条件22222000a c a b c a b c >,=+,>,>,>满足以下三个条件的点的轨迹是双曲线(1)在平面内;(2)动点到两定点的距离的差的绝对值为一定值;(3)这一定值一定要小于两定点的距离.双曲线的标准方程重点1:椭圆的定义及性质【要点解读】1.熟悉椭圆定义、标准方程,在熟练掌握常用基本方法的同时,要注意揣摩解题过程中所使用的数学思想方法.2.在运用椭圆的定义时,要注意“|F1F2|<2a”这个条件,若|F1F2|=2a,则动点的轨迹不是椭圆,而是连结两定点的线段(包括端点);若|F1F2|>2a,则轨迹不存在.3.椭圆的标准方程有两种形式,两种形式可以统一为x 2m +y 2n =1(m >0,n >0,且m ≠n ),具体是哪种形式,由m 与n 的大小而定.4.求椭圆的标准方程常用的方法是待定系数法和定义法,即(1)先设出椭圆标准方程,根据已知条件列出a ,b 的两个方程,求参数a ,b 的值;(2)由椭圆的定义及几何性质直接求出参数a ,b 的值.5.充分利用图形的几何性质可以减少计算量,椭圆中可以用来减少计算量的几何性质主要体现在椭圆的定义中.6.直线与椭圆的位置关系,可通过讨论椭圆方程与直线方程组成的方程组的实数解的个数来确定.通常用消元后的关于x (或y )的一元二次方程的判别式Δ与零的大小关系来判定.7.直线和椭圆相交时,弦的中点坐标或弦中点轨迹方程可由韦达定理来解决.设而不求(设点而不求点)的方法是解析几何中最重要的解题方法之一.【考向1】利用定义求椭圆的方程【例题】如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12.过F 1的直线交椭圆于A ,B 两点,且△ABF 2的周长为8,求椭圆E 的方程.解:由题意得||AB +||AF 2+||BF 2=||AF 1+||BF 1+||AF 2+||BF 2=(||AF 1+||AF 2)+(||BF 1+||BF 2)=4a =8,得a =2.又e =c a =12,∴c =1.∴b 2=a 2-c 2=22-12=3.∴椭圆E 的方程为x 24+y 23=1.【评析】椭圆的定义是高考的常考点,应掌握椭圆的定义以及参数a ,b ,c ,e 的几何意义和相互关系. 【考向2】椭圆定义的应用【例题】如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形.求该椭圆的离心率和标准方程.解:设所求的椭圆方程为x 2a 2+y 2b 2=1(a >b >0),F 1(-c ,0),F 2(c ,0).易知||OB 1=||OB 2=12||OF 1=c2,||AB 1=||AB 2,又∵△AB 1B 2为直角三角形,∴∠B 1AB 2=90°.∴||OA =||OB 1,即b =c 2,有b 2=a 2-c 2=c 24,得e 2=45,e =255.∵S △AB 1B 2=12||B 1B 2·||AO =12bc =12·c 2·c =c 24=4,∴c 2=16,b 2=4,a 2=20.∴椭圆方程为x 220+y 24=1. 【考向3】椭圆的离心率【例题】设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c 上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( ) A.⎝ ⎛⎦⎥⎤0,22B.⎝ ⎛⎦⎥⎤0,33C.⎣⎢⎡⎭⎪⎫22,1D.⎣⎢⎡⎭⎪⎫33,1解法二:设直线x =a 2c 与x 轴交于M 点,则|F 1F 2|=|F 2P |≥|MF 2|,即2c ≥a 2c -c ,整理得13≤e 2<1,33≤e <1.∴椭圆离心率的取值范围是⎣⎢⎡⎭⎪⎫33,1.故选D.【评析】(1)对于参数的取值范围问题,要能从几何特征的角度去分析参数变化引起的图形的变化.在学习中,要能主动的研究几何特征变化的根本性原因.(2)对几何对象的本质属性的把握越准确,代数化就越容易.(3)整个图形都随着P 点的变化而变化,P 点的变化使得线段||PF 2的长度也在变化,进而||PF 2与||MF 2的长度关系也在变化.正确的描述这一变化中量与量之间的数量关系是解题的关键所在.重点2:双曲线的定义及性质【要点解读】1.双曲线的定义满足以下三个条件的点的轨迹是双曲线 (1)在平面内;(2)动点到两定点的距离的差的绝对值为一定值; (3)这一定值一定要小于两定点的距离. 2.双曲线的标准方程(1)与双曲线x 2a 2-y 2b 2=1共渐近线的可设为x 2a 2-y 2b 2=λ(λ≠0);(2)若渐近线方程为y =±b a x ,则可设为x 2a 2-y 2b 2=λ(λ≠0);(3)若过两个已知点则设为x 2m +y 2n =1(mn <0).4.应用双曲线的定义需注意的问题:在双曲线的定义中要注意双曲线上的点(动点)具备的几何条件,即“到两定点(焦点)的距离之差的绝对值为一常数,且该常数必须小于两定点的距离”.若定义中的“绝对值”去掉,点的轨迹是双曲线的一支.同时注意定义的转化应用. 5.求双曲线方程时一是标准形式判断;二是注意a 、b 、c 的关系易错易混.【考向1】双曲线的定义【例题】求适合下列条件的双曲线的标准方程: (1)经过点(-5,2),焦点为(6,0); (2)实半轴长为23,且与双曲线x 216-y 24=1有公共焦点. 解:(1)∵焦点坐标为(6,0),焦点在x 轴上,∴可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).∵双曲线过点(-5,2), ∴25a 2-4b 2=1,得a 2=25b 2b 2+4. 联立⎩⎨⎧a 2=25b 2b 2+4,a 2+b 2=c 2=6,解得a 2=5,b 2=1,故所求双曲线方程为x 25-y 2=1.(2)由双曲线x 216-y 24=1得其焦点坐标为F 1(-25,0)和F 2(25,0),由题意知,可设所求双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).易知a =23,c =25,∴b 2=c 2-a 2=8.∴所求双曲线方程为x 212-y 28=1. 【评析】(1)求双曲线的标准方程一般用待定系数法;(2)当双曲线焦点的位置不确定时,为了避免讨论焦点的位置,常设双曲线方程为Ax 2+By 2=1(A ·B <0),这样可以简化运算.【考向2】双曲线的离心率【例题】(1)设双曲线x 2a 2-y 2b 2=1(b >a >0)的半焦距为c ,直线l 经过(a ,0),(0,b )两点,已知原点到直线l 的距离为34c ,则双曲线的离心率为________.(2)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,过F 且斜率为3的直线交C 于A ,B 两点,若AF →=4FB →,则C 的离心率为________.解:设双曲线C :x 2a 2-y 2b 2=1的右准线为l ,过A ,B 分别作AM ⊥l 于M ,BN ⊥l 于N ,作BD ⊥AM 于点D ,由直线AB 的斜率为3知直线AB 的倾斜角为60°,∴∠BAD =60°,|AD |=12|AB |.又|AM |-|BN |=|AD |=1e (|AF →|-|FB →|)=12|AB |=12(|AF →|+|FB →|).又AF →=4FB →, ∴1e ·3|FB →|=52|FB →|,得e =65.故填65. (亦可联立直线与双曲线的方程求解,但计算较繁)【评析】(1)要解决双曲线中有关求离心率或求离心率范围的问题,应找好题中的等量关系或不等关系,构造出关于a ,c 的齐次式,进而求解.(2)要注意对题目中隐含条件的挖掘,如对双曲线上点的几何特征||PF 1+||PF 2≥2c 的运用,对于变式2(2),还可利用双曲线的另一种定义(见人教A 版教材选修2-1P59例5)||PF 1=e ⎝⎛⎭⎪⎫x P +a 2c =4a ,x P =3a 2c ≥a ,得1<e ≤3.(3)过焦点的弦被焦点所分成的线段成比例,一般可以寻找相似三角形,使用相似比【考向3】双曲线的渐近线【例题】已知双曲线C :x 2a 2-y 2b 2=1()a >0,b >0的离心率为52,则C 的渐近线方程为( ) A .y =±14xB .y =±13xC . y =±12xD . y =±x【评析】本题考查双曲线的离心率,a ,b ,c 的关系,以及双曲线的渐近线等知识.渐近线方程可以看作是把双曲线方程中的“1”用“0”替换而得到的两条直线方程.1.对双曲线的学习可类比椭圆进行,应着重注意两者的不同点,对双曲线的渐近线的概念要注意理解.2.双曲线的定义中,当||MF 1>||MF 2时,动点M 的轨迹是双曲线的一支,当||MF 1<||MF 2时,轨迹为双曲线的另一支,而双曲线是由两个分支组成的,故在定义中强调“差的绝对值”.3.定义中|F 1F 2|>2a 这个条件不可忽视,若|F 1F 2|=2a ,则轨迹是以F 1,F 2为端点的两条射线,若|F 1F 2|<2a ,则轨迹不存在.4.在椭圆的两种标准方程中,焦点对应“大分母”,即标准方程中,x 2,y 2谁的分母较大,则焦点就在哪个轴上;而在双曲线的两种标准方程中,焦点的位置对应“正系数”,即标准方程中,x 2,y 2谁的系数为正(右边的常数总为正),则焦点就在哪个轴上.5.在椭圆中,a ,b ,c 满足a 2=b 2+c 2,即a 最大;在双曲线中,a ,b ,c 满足c 2=a 2+b 2,即c 最大.6.在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容,对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.7.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为Ax 2+By 2=1的形式,当A >0,B >0,A ≠B 时为椭圆,当A ·B <0时为双曲线.重点3:抛物线的定义及性质【要点解读】1.涉及抛物线几何性质的问题常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性. 2.求抛物线方程应注意的问题(1)当坐标系已建立时,应根据条件确定抛物线方程属于四种类型中的哪一种; (2)要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系; (3)要注意参数p 的几何意义是焦点到准线的距离,利用它的几何意义来解决问题. 【考向1】抛物线的定义及标准方程【例题】(1)已知抛物线的顶点在原点,焦点在坐标轴上,又知抛物线上一点A (m ,-3)到焦点F 的距离为5,求m 的值,并写出抛物线的方程.②当抛物线开口向右或向左时,设抛物线的方程为y 2=2ax (a ≠0),准线方程可统一为x =-a2.由题意可得⎩⎨⎧⎪⎪⎪⎪⎪⎪a 2+m =5,2am =9, 解得⎩⎨⎧a =1,m =92, 或⎩⎨⎧a =-1,m =-92, 或⎩⎨⎧a =9,m =12, 或⎩⎨⎧a =-9,m =-12.∴当m =92时,抛物线的方程为y 2=2x ;当m =-92时,抛物线的方程为y 2=-2x ;当m =12时,抛物线的方程为y 2=18x ;当m =-12时,抛物线的方程为y 2=-18x .(2)已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( ) A .2B .3C .115D .3716解:易知直线l2:x=-1为抛物线y2=4x的准线,由抛物线的定义知,点P到l2的距离等于点P到抛物线的焦点F(1,0)的距离,因此原问题可转化为在抛物线y2=4x上找一个点P使得P到点F(1,0)和直线l1的距离之和最小.因此最小值为F(1,0)到直线l1:4x-3y+6=0的距离,即d min=|4-0+6|42+(-3)2=2.故选A.【评析】(1)用数形结合的方法判断抛物线的开口方向,以便选择抛物线方程的具体形式.注意利用代数的观点,把抛物线向右或向左的情形统一起来,提高解题效率;(2)把“数”、“方程”向“形”的方向转化,运用运动变化的观点和几何的方法进行研究比直接代数化更简洁.1.抛物线的定义、标准方程和性质是解决有关抛物线问题的基础,应当熟练掌握.2.求抛物线的标准方程的常用方法是待定系数法或轨迹法.若抛物线的开口不确定,为避免多种情况分类求解的麻烦,可以设抛物线方程为y2=mx或x2=ny(m≠0,n≠0).若m>0,开口向右;若m<0,开口向左.m有两解时,则抛物线的标准方程有两个.对n>0与n<0,有类似的讨论.3.抛物线的离心率e=1,体现了抛物线上的点到焦点的距离等于该点到准线的距离.因此,涉及抛物线的焦半径、焦点弦问题时,可以优先考虑利用抛物线的定义,将其转化为点到准线的距离,这样往往可以使问题简单化.4.提倡作出合理的草图,图形合理,才能观察出图形的几何性质,并加以研究,为准确的代数化打下基础.难点列表:椭圆中有两条对称轴,“六点”(两个焦点、四个顶点),要注意它们之间的位置关系(如焦点在长轴上等)以及相互间的距离(如焦点到相应顶点的距离为a-c),过焦点垂直于长轴的通径长为2222e?b b c a=等.设椭圆2222+=1(a>b>0)x y a b上任意一点P (x ,y ),则当x =0时,|OP |有最小值b ,这时,P 在短轴端点处;当x =a 时,|OP |有最大值a ,这时P 在长轴端点处. 椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2.重视向量在解析几何中的应用,注意合理运用中点、对称、弦长、垂直等几何特征.已知过抛物线22(0)y px p =>的焦点F 的直线交抛物线于A 、B 两点。
圆锥曲线圆锥曲线部分历来是高考的重点,也是学生心中的难点,很多学生对圆锥曲线都有畏惧心理.从高考成绩分析上来看,圆锥曲线也是高考得分较低的部分;从考纲上来看,一般会"考查学生对解析几何基本概念的掌握情况,考查学生对解析几何基本方法的一般应用情况,适当地考查学生对几何学知识的综合应用能力,重视对数学思想方法的渗透".通过近几年的高考可以看到浙江高考题在圆锥曲线这一块考抛物线较多。
圆锥曲线是平面解析几何的核心内容,每年高考必有一道解答题,常以求圆锥曲线的标准方程,研究直线与圆锥曲线的位置关系为主,涉及题型有定点、定值、最值、范围、探索性问题等,此类命题第(1)问起点较低,但在第(2)问中一般都有较为复杂的运算,对考生解决问题的能力要求较高,通常以压轴题的形式呈现.解决此类问题的关键是找到已知条件和代求问题之间的联系,实现代求问题代数化,与已知条件得到的结论有效对接,难点在于代求问题的转化问题方法总结1.圆锥曲线中最值问题的求解方法(1)几何法:通过利用圆锥曲线的定义和几何性质进行求解(2)代数法:把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.函数主要是二次函数、对勾函数或者导数求解,不等式主要是运用基本不等式求解2.圆锥曲线中取值范围问题的五种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.3定点、定值模板1.寻找适合运动变化的量或者参数,如点坐标,直线的斜率,截距等,把相关问题用参数表示备用,或者找寻带有参数的直线与曲线联立方程组,得到关于x 或y 的一元二次方程,利用韦达定理列出x1x2,x1+x2(或y1y2,y1+y2的关系式备用2.根据已知条件把定点、定值问题转化为与参数有关的方程问题,与第一步的结论对接3,确定与参数无关点、值,即为所求.1.(2021·湖南·高考真题)已知椭圆()2222:10x y C a b a b +=>>经过点()20A ,3(1)求椭圆C 的方程;(2)设直线1y x =-与椭圆C 相交于P Q ,两点,求AP AQ ⋅的值. 【详解】(1)椭圆()2222:10x y C a b a b+=>>经过点()20A ,,所以2a =, 32c ca ==,所以3c =222431b ac =-=-=, 所以椭圆C 的方程为2214x y +=.(2)由22141x y y x ⎧+=⎪⎨⎪=-⎩得2580x x ,解得128,05x x ==,所以118583155x y ⎧=⎪⎪⎨⎪=-=⎪⎩,或110011x y =⎧⎨=-=-⎩,可得83,55P ⎛⎫ ⎪⎝⎭,()0,1Q -,或者83,55Q ⎛⎫⎪⎝⎭,()0,1P -,所以()834312,02,155555AP AQ ⎛⎫⋅=-⋅--=-= ⎪⎝⎭.2.(2021·江苏·高考真题)已知函数()f x 是定义在()(),00,-∞⋃+∞上的偶函数,当0x <时,()()log 2a f x x x =-+(0a >,且1a ≠).又直线():250l mx y m m R +++=∈恒过定点A ,且点A 在函数()f x 的图像上.(1) 求实数a 的值; (2) 求()()48f f -+的值; (3) 求函数()f x 的解析式. 【详解】(1) 由直线l 过定点可得:(2)5m x y +=--,由2050x y +=⎧⎨--=⎩,解得25x y =-⎧⎨=-⎩,所以直线l 过定点()2,5A --.又因为0x <时,()log ()2a f x x x =-+, 所以(2)log 245a f -=-=-, 有log 21a =-,12a =. (2) 12(4)log 4810f -=-=-, 因为()f x 为偶函数,所以12(8)(8)log 81619f f =-=-=-, 所以(4)(8)29f f -+=-.(3) 由(1)知,当0x <时,12()log ()2f x x x =-+. 当0x >时,0x -<,1122()log 2()log 2f x x x x x-=+⋅-=-,又()f x 为偶函数,所以12()()log 2f x f x x x =-=-,综上可知,1212log ()20()log 20x xx f x x x x -+<⎧⎪=⎨->⎪⎩.3.(2021·全国·高考真题)已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为(2,0)F 6(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||3MN = 【详解】(1)由题意,椭圆半焦距2c =6c e a =,所以3a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y ,必要性:若M ,N ,F 三点共线,可设直线(:2MN y k x =即20kx y k --=,由直线MN 与曲线221(0)x y x +=>2211k k =+,解得1k =±,联立(22213y x x y ⎧=±⎪⎨⎪+=⎩可得246230x x -+=,所以12122343x x x x +=⋅=,所以()212121143MN x x x x =++-⋅所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>211b k =+,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++, 所以()2222212122263314141313kb b MN k x x x x kk k -⎛⎫=++-⋅=+--⋅ ⎪++⎝⎭22241k k =+3 化简得()22310k -=,所以1k =±,所以12k b =⎧⎪⎨=-⎪⎩或12k b =-⎧⎪⎨=⎪⎩:2MN y x =或2y x =-+所以直线MN 过点(2,0)F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||3MN =4.(2021·浙江·高考真题)如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,R ,N ,且2RN PN QN =⋅,求直线l 在x 轴上截距的范围. 【详解】(1)因为2MF =,故2p =,故抛物线的方程为:24y x =. (2)[方法一]:通式通法设:1AB x ty =+,()()1122,,,A x y B x y ,(),0N n , 所以直线:2y l x n =+,由题设可得1n ≠且12t ≠.由214x ty y x=+⎧⎨=⎩可得2440y ty --=,故12124,4y y y y t =-+=, 因为2RN PN QN =⋅,故21111+1+1+444R P Q ⎫=⎪⎪⎭,故2R P Q y y y =⋅. 又()11:11y MA y x x =++,由()11112y y x x y x n⎧=+⎪+⎪⎨⎪=+⎪⎩可得()1112122P n y y x y +=+-, 同理()2222122Q n y y x y +=+-,由12x ty yx n =+⎧⎪⎨=+⎪⎩可得()2121R n y t -=-,所以()()()2212211212121=212222n n y n y t x y x y -++⎡⎤⨯⎢⎥-+-+-⎣⎦, 整理得到()()()2212221112112222y y n t n x y x y -⎛⎫=- ⎪++-+-⎝⎭, ()22221214212222t y y y y -=⎛⎫⎛⎫+-+- ⎪⎪⎝⎭⎝⎭()()()()2222222121212112214212134+++2+442t t t y y y y y y y y y y y y --==+--⨯-+故()222134121n t n t ++⎛⎫= ⎪-⎝⎭-, 令21s t =-,则12s t +=且0s ≠, 故()22222234242411331+444421t s s s s s s t +++⎛⎫==+=++≥ ⎪⎝⎭-,故213141n n n ⎧+⎛⎫≥⎪ ⎪-⎨⎝⎭⎪≠⎩即214101n n n ⎧++≥⎨≠⎩, 解得73n ≤--7431n -+≤<或1n >.故直线l 在x 轴上的截距的范围为743n ≤--731n -+<或1n >. [方法二]:利用焦点弦性质设直线AB 的方程为11x k y =+,直线MA 的方程为21x k y =-,直线MB 的方程为31x k y =-,直线l 的方程为221212,,,,,(,0)244y y y x m A y B y N m ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,由题设可得1m ≠且112k ≠.由121,4x k y y x=+⎧⎨=⎩得21440y k y --=,所以121124,4y y k y y +==-. 因为2112231121114,44y y y k k y y y +==+=+, 12121223111212110444y y y y y y k k k k y y y y ++∴+=+++=+=-=,()21221212231121212111111441642y y y y y y k k k y y y y y y +⎛⎫⎛⎫=++=+⋅+-=-- ⎪⎪⎝⎭⎝⎭.由21,2x k y y x m =-⎧⎪⎨=+⎪⎩得2112p m y k +=-. 同理3112Q m y k +=-. 由11,2x k y y x m =+⎧⎪⎨=+⎪⎩得1112R m y k -=-. 因为2||||||RN PN QN =⋅,所以2R P Q y y y -⋅=即222211231(1)(1)13112422m m m k k k k ⎛⎫ ⎪-++== ⎪⎛⎫⎛⎫ ⎪-+--- ⎪⎪⎝⎭⎝⎭⎝⎭. 故22121314112k m m k ++⎛⎫=⎪-⎝⎭⎛⎫- ⎪⎝⎭. 令112t k =-,则222221111113311244m t t m t t t t +++⎛⎫⎛⎫==++=++≥ ⎪ ⎪-⎝⎭⎝⎭. 所以210,1410,m m m -≠⎧⎨++≥⎩,解得73m ≤--731m -+≤<或1m.故直线l 在x 轴上的截距的范围为(,743)[743,1)(1,)-∞---++∞. [方法三]【最优解】:设()()22,2(0),,2A a a a B b b >,由,,A F B 三点共线得22222221b a ab a a b a -==-+-,即1ab =-. 所以直线MA 的方程为22(1)1a y x a =++,直线MB 的方程为2222(1)(1)11b ay x x b a -=+=+++,直线AB 的方程为22(1)1ay x a =--. 设直线l 的方程为2(2)y x m m =+≠-, 则222(2)(2)(2),,,1112P Q R N m a m a m a my y y x a a a a a a ----====--+++--.所以()()2222222222(2)(2)||||||11m a m a RN PN QN aa aa +-=⋅⇔=--+-.故()()2222222222221112(1)2140,2133111a a a m t t t a m t t a a a a ⎛⎫-- ⎪--+--+⎛⎫⎡⎤⎝⎭====∈ ⎪⎢⎥-++⎝⎭⎣⎦⎛⎫+-+- ⎪⎝⎭(其中1t a a =-∈R ). 所以(,1483][1483,)m ∈-∞-++∞. 因此直线l 在x 轴上的截距为(,743][743,1)(1,)2m-∈-∞---++∞.5.(2021·北京·高考真题)已知椭圆2222:1(0)x y E a b a b+=>>一个顶 点(0,2)A -,以椭圆E 的四个顶点为顶点的四边形面积为45. (1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围. 【详解】(1)因为椭圆过()0,2A -,故2b =,因为四个顶点围成的四边形的面积为45,故122452a b ⨯⨯=,即5a =,故椭圆的标准方程为:22154x y +=. (2)设()()1122,,,B x y C x y ,因为直线BC 的斜率存在,故120x x ≠, 故直线112:2y AB y x x +=-,令3y =-,则112M x x y =-+,同理222N xx y =-+. 直线:3BC y kx =-,由2234520y kx x y =-⎧⎨+=⎩可得()224530250k x kx +-+=, 故()22900100450k k ∆=-+>,解得1k <-或1k >.又1212223025,4545k x x x x k k +==++,故120x x >,所以0M N x x > 又1212=22M N x xPM PN x x y y +=++++ ()()2212121222212121222503024545=5253011114545k kkx x x x x x k k k k k kx kx k x x k x x k k --++++===---++-+++故515k ≤即3k ≤, 综上,31k -≤<-或13k <≤.1.(2022·天津·一模)已知椭圆()222210x y a b a b +=>>的右顶点为A ,上顶点为B ,离心率为2且6AB (1)求椭圆的方程;(2)过点A 的直线与椭圆相交于点24,33⎛⎫- ⎪⎝⎭H ,与y 轴相交于点S ,过点S 的另一条直线l 与椭圆相交于M ,N 两点,且△ASM 的面积是△HSN 面积的32倍,求直线l 的方程.【解析】(1)根据题目列方程2222226a b c c a a b ⎧=+⎪⎪=⎨⎪+=⎪⎩ 解得24a =,22b =, 所以椭圆的方程为22142x y +=. (2)由已知得12=-AH k ,所以,直线AH 的方程为()122y x =--,所以,S 点的坐标为()0,1.当直线l 的斜率不存在时,21=-ASM S △,213+=HSN S △, 或21=+ASM S △,213-=HSN S △都与已知不符; 当直线的斜率存在时,设直线l 的方程为1y kx =+,()11,M x y ,()22,N x y ,由221421x y y kx ⎧+=⎪⎨⎪=+⎩,得()2212420k x kx ++-=, 122412k x x k -+=+,122212x x k -=+, 1sin 2=⋅∠ASM S AS MS ASM △,1sin 2=⋅∠HSN S HS NS HSN △, 由△ASM 的面积是△HSN 面积的32可得23=ASM HSN S S △△化简23⋅=⋅AS MS HS NS ,即23=AS NSHS MS, 又3==-A HAS xHS x ,所以,2=NS MS ,即212=-x x ,也就是212x x =-, 所以,12412--=+k x k ,12412=+k x k ,22812-=+k x k ,()2122223221212k x x k k --==++, 解得,2114k =,所以,直线方程为14114=±+y x .2.(2022·福建·模拟预测)在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b+=>>的左、右焦点为12,F F ,22.过点()2,0P 作直线l 与椭圆C 相交于,A B 两点.若A 是椭圆C 的短轴端点时,23AF AP ⋅=.(1)求椭圆C 的标准方程;(2)试判断是否存在直线l ,使得21F A ,2112F P ,21F B 成等差数列?若存在,求出直线l 的方程;若不存在,说明理由. 【解析】(1) 由题意知:2c e a ==,即2a c =; 当A 为椭圆的短轴端点时,不妨设()0,A b ,则()2,AF b c =-,(),2AP b =-,2223AF AP b c ∴⋅=+=,又22222a b c c =+=,22∴=b c ,即223c c +=,解得:1c =,2a ∴1b =, ∴椭圆C 的标准方程为2212x y +=;(2)设():2l y k x =-,由()22212y k x x y ⎧=-⎪⎨+=⎪⎩得:()2222218820k x k x k +-+-=, ()()42264421820k k k ∆=-+->,22k ⎛∴∈ ⎝⎭, 设()11,A x y ,()22,B x y ,则2122821k x x k +=+,21228221k x x k -=+,()()()42222121212224821221k k x x x x x x k -+∴+=+-=+,()11,0F -,()()2222221111111111112222F A x y x x x x ∴=++=++-=++,同理可得:221221222F B x x =++, ()()2242221211122248122244221x x k k F A F B x x k +++∴+=+++=++, 又219F P =,()4222481224921k k k++∴+=+,整理得:4228830k k --=,即()()22211430k k -+=,解得:2k =,222k ⎛∈- ⎝⎭,∴不存在直线l 符合题意. 3.(2022·湖南·雅礼中学二模)已知曲线C :22221(0)x y a b a b+=>>,1F ,2F 分别为C 的左、右焦点,过1F 作直线l 与C 交于A ,B 两点,满足115AF F B =,且1222AF F S =.设e 为C 的离心率. (1)求2e ; (2)若32e ≤2a =,过点P (4,1)的直线1l 与C 交于E ,F 两点,1l 上存在一点T 使111EP FP PT +=.求T 的轨迹方程. 【解析】 (1)由题直线l 斜率存在且不为0,设:l x my c =-,()()1122,,,A x y B x y ,联立方程组22221x my cx ya b =-⎧⎪⎨+=⎪⎩得22222221210m mc c y y ab a a ⎛⎫+-+-= ⎪⎝⎭, 则2222122122222222214,511mc c a a y y y y y y m m a b a b -+=-==-=++,消去2y ,得2222454a m c b =-,不妨设0m >,则()()122121212215452226AF F c y y y y c y y cSy +--====,整理可得64272176136330e e e -+-=,解得212e =3537-3537+(舍). (2)由题知22:142x y C +=, 若1l 斜率不存在,则与C 无交点,不合题意; 若1l 斜率存在,设1:(4)1l y k x =-+,与22142x y +=联立, 得()()222221416321620k x k k x k k ++-+--=,设()()1122,,,E x y F x y ,则2212122216432162,2121k k k k x x x x k k ---+==++,由()2Δ812810k k =-++>得2727k -+∈⎝⎭,设()00,T x y ,由题120111444x x x +=---,即()1212120811644x x x x x x x --=+-+-, 则可得07424x k -=+, 若07424x k -=+,则008954,2424k k x y k k +-+==++,消去k 得0042110x y +-=,若07424x k --=+,则0082394,2424k k x y k k ++==++,消去k 得0042250x y +-=, 综上,T 的轨迹方程为42110x y +-=或42250x y +-=.4.(2022·广东深圳·二模)已知椭圆2222:1(0)x y E a b a b +=>>经过点3M ⎛ ⎝⎭,且焦距1223F F =,AB CD 分别是它的长轴和短轴.(1)求椭圆E 的方程;(2)若(,)N s t 是平面上的动点,从下面两个条件中选一个...........,证明:直线PQ 经过定点. ①31,s t =≠,NA NB 与椭圆E 的另一交点分别为P ,Q ; ②2,t s =∈R ,直线,NC ND 与椭圆E 的另一交点分别为P ,Q . 【解析】(1)由已知,3c =3M ⎛ ⎝⎭在椭圆上,所以221314a b +=,又因为222a c b -=,所以 224,1a b ==,所以椭圆的方程为:224,1a b ==.(2)选①,则()()(1,),2,0,2,0N t A B -,设()(),,,P P Q Q P x y Q x y , ,,12312NA NB t t t k k t ====-+-所以()():2,:2,3NA NB tl y x l y t x =+=-- ()222314t y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩消去y 得:()2222941616360t x t x t +++-=, ()()42222564941636360t t t ∆=-+-=>所以221636294P t x t --=+,所以2281894Pt x t -+=+,则21294P t y t =+,所以22281812,9494t t P t t ⎛⎫-+ ⎪++⎝⎭, ()22214y t x x y ⎧=--⎪⎨+=⎪⎩,消去y 得:()222214161640t x t x t +-+-=, ()()422256414164160t t t ∆=-+-=>,所以22164214Q t x t -=+,所以228214Qt x t -=+,则2414Q t y t =+,所以 222824,1414t t Q t t ⎛⎫- ⎪++⎝⎭, 所以322224222124322429414818823664349414PQt tt t t t t k t t t t t t ---++===-+--+-++,所以直线PQ 的方程为:22224282143414t t t y x t t t ⎛⎫---=- ⎪+++⎝⎭, 所以()()43216832162830y x t yt x t y +-++-+=,所以0,4y x ==,故直线PQ 恒过定点()4,0.选②,则()()(,2),0,1,0,1N s C D -,设()(),,,P P Q Q P x y Q x y , 211213,,NC ND k k s s s s -+====所以13:1,:1,NC ND l y x l y x s s=+=- 221114y x s x y ⎧=+⎪⎪⎨⎪+=⎪⎩消去y 得:()22224240s y s y s +++-=, ()()4224444640s s s ∆=-+-=>所以2244P s y s -=+,所以284P s x s -=+, 所以22284,44s s P s s ⎛⎫-- ⎪++⎝⎭ 同理:223636Q s y s -=+,所以22436Q s x s =+,所以2222436,3636s s Q s s ⎛⎫- ⎪++⎝⎭()()()2222222222364121212364248161612364PQs s s s s s s k s s s s s s s ---+⋅--++===-+-++所以直线PQ 的方程为:22224128+4164s s s y x s s s --⎛⎫-= ⎪++⎝⎭令0x =,则()()2222212+2841=22424s s s y s s --+==++ 故直线PQ 恒过定点10,2⎛⎫⎪⎝⎭.5.(2022·广东汕头·二模)如图所示,C 为半圆锥顶点,O 为圆锥底面圆心,BD 为底面直径,A 为弧BD 中点.BCD △是边长为2的等边三角形,弦AD 上点E 使得二面角E BC D --的大小为30°,且AE t AD =.(1)求t 的值;(2)对于平面ACD 内的动点P 总有OP //平面BEC ,请指出P 的轨迹,并说明该轨迹上任意点P 都使得OP //平面BEC 的理由. 【解析】 (1)易知OC ⊥面ABD ,OA BD ⊥,以,,OD OA OC 所在直线为,,x y z 轴建立如图的空间直角坐标系,则(0,1,0),(1,0,0),(1,0,0),(0,0,3)A B D C -,(1,0,3),(1,1,0),(1,1,0)BC AD BA ==-=,()1,1,0(1,1,0)(1,1,0)BE BA AE BA t AD t t t =+=+=+-=+-, 易知面BCD 的一个法向量为(0,1,0)OA =,设面BCE 的法向量为(,,)n x y z =,则30(1)(1)0n BC x z n BE t x t y ⎧⋅=+=⎪⎨⋅=++-=⎪⎩,令1x =,则13(1,,)13t n t +=--, 可得222131cos30213113t OA n t OA nt t +⋅-===⋅⎛⎫+⎛⎫++- ⎪ ⎪-⎝⎭⎝⎭,解得13t =或3,又点E 在弦AD 上,故13t =. (2)P 的轨迹为过AD 靠近D 的三等分点及CD 中点的直线,证明如下: 取AD 靠近D 的三等分点即DE 中点M ,CD 中点N ,连接,,MN OM ON , 由O 为BD 中点,易知ON BC ∥,又ON ⊄面BEC ,BC ⊂面BEC , 所以ON //平面BEC ,又MN EC ∥,MN ⊄面BEC ,CE ⊂面BEC ,所以MN //平面BEC , 又ON MN N ⋂=,所以面OMN //平面BEC ,即O 和MN 所在直线上任意一点连线都平行于平面BEC ,又MN ⊂面ACD ,故P 的轨迹即为MN 所在直线, 即过AD 靠近D 的三等分点及CD 中点的直线.(限时:30分钟)1.已知圆C :()22116x y -+=,点()1,0F -,P 是圆C 上一动点,若线段PF 的垂直平分线和CP 相交于点M .(1)求点M 的轨迹方程E .(2)A ,B 是M 的轨迹方程与x 轴的交点(点A 在点B 左边),直线GH 过点()4,0T 与轨迹E 交于G ,H 两点,直线AG 与1x =交于点N ,求证:动直线NH 过定点B .【详解】(1)由圆()22116x y -+=,可得圆心()1,0C ,半径4r =,因为24FC =<,所以点F 在圆C 内,又由点M 在线段PF 的垂直平分线上,所以MF MP =, 所以4MC MF MP MC PC +=+==,由椭圆的定义知,点M 的轨迹是以F ,C 为焦点的椭圆, 其中2a =,1c =,23b =,所以点M 的轨迹方程为22143x y +=.(2)设直线GH 的方程为4x my =+,()11,G x y ,()22,H x y ,()2,0A -,()2,0B ,将4x my =+代入22143x y +=,得()223424360m y my +++=,1222434my y m -+=+,1223634y y m =+, 直线AG 的方程为11(2)2y yxx ,令1x =得1132y y x =+,即1131,2y N x ⎛⎫⎪+⎝⎭,NH 的直线方程为121121323(1)12y y x y y x x x -+=-+-+, 2x =代入得()()()()121211211212133231231212y y y y x y x x y y x x x x --++-+=+=-+-+ 12112213(6)3(3)(1)(2)y y my y my x x -++--=-+12122146()(1)(2)my y y y x x ++=-+222136244634340(1)(2)mm m m x x -⨯+⨯++==-+,所以直线NH 过定点(2,0)B .2.已知定点()22,0O ,点P 为圆1O :()22232x y ++=(1O 为圆心)上一动点,线段2O P 的垂直平分线与直线1O P 交于点G .(1)设点G 的轨迹为曲线C ,求曲线C 的方程;(2)若过点2O 且不与x 轴重合的直线l 与(1)中曲线C 交于D ,E 两点,M 为线段DE 的中点,直线OM (O 为原点)与曲线C 交于A ,B 两点,且满足2MD MA MB =⋅,若存在这样的直线,求出直线l 的方程,若不存在请说明理由. 【详解】(1)依题意有2111||42GO GO GO GP O P +=+==,所以G 点轨迹是以1O ,2O 为焦点的椭圆,长轴长242a =,焦距24c =,故点G 的轨迹C 方程为22184x y +=;(2)设存在直线l 满足2MD MA MB =⋅,因为()()22AM BM AO OMBO OM AO OM ⋅=+-=-,222MD AO OM =-,设l 方程为2x my =+,()11,D x y ,()22,E x y ,222184x my x y =+⎧⎪⎨+=⎪⎩得22(2)440m y my ++-=,12242m y y m -+=+,12242y y m -=+. 22221222241642(1)11()222m m DE m y mm m m -+=+-=++=+++,222(1)m MD += 121228()42x x m y y m +=++=+,∴2242(,)22m M m m -++,2OM m k =-,224m OM +=,AB 方程为2m y x =-,设()00,A x y ,()00,B x y --,由222184m y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩得22162x m =+, ∴22222000224(1)42m m OA x y x m +=+=+⋅=+∴2222222228(1)4(4)4(4)(2)2(2)m m m m m m +++=-+++,解得:22m =或21m =-(舍),2m =±,故存在符合条件的直线l ,其方程为220x y +-=或220x --=.3.已知椭圆E :()222210x y a b a b +=>>的离心率32e =,椭圆E 与x 轴交于A ,B 两点,与y 轴交于C ,D 两点,四边形ACBD 的面积为4.(1)求椭圆E 的方程;(2)若P 是椭圆E 上一点(不在坐标轴上),直线PC ,PD 分别与x 轴相交于M ,N 两点,设PC ,PD ,OP 的斜率分别为1k ,2k ,3k ,过点P 的直线l 的斜率为k ,且123k k kk =,直线l 与x 轴交于点Q ,求MQ NQ -的值.【详解】(1)由题:32c a =,且12242a b ⋅⋅=,又222a c b -=, 所以2a =,1b =,所以椭圆的方程为2214x y +=.(2)设()00,P x y ,则220014x y +=即()220041x y =-,不妨设()0,1C ,()0,1D -,直线PC :0011y y x x -=+, 令0y =得001x x y =-,故00,01x M y ⎛⎫ ⎪-⎝⎭;同理可求00,01x N y⎛⎫ ⎪+⎝⎭. 则200012200011114y y y k k x x x -+-=⋅==-,030y k x =,所以004x k y =-,所以直线l 为()00004x y y x x y -=--,令0y =得220004x y x x +=,又220014x y +=, 故04x x =即04,0Q x ⎛⎫⎪⎝⎭. ()()0000000002881111x MQ NQ x x y y x y y x =+-=--++--, 又220014x y +=即()220041x y =-,代入上式得,02002804x x MQ N x Q --==. 4.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别是点A ,B ,直线2:3l x =与椭圆C 相交于D ,E两个不同点,直线DA 与直线DB 的斜率之积为14-,ABD △的面积为23. (1)求椭圆C 的标准方程;(2)若点P 是直线2:3l x =的一个动点(不在x 轴上),直线AP 与椭圆C 的另一个交点为Q ,过P 作BQ 的垂线,垂足为M ,在x 轴上是否存在定点N ,使得MN 为定值,若存在,请求出点N 的坐标;若不存在,请说明理由.【详解】解:(1)设02,3D y ⎛⎫ ⎪⎝⎭,由题意得0002022122433142223419DA DB y y k k a a a y y ab ⎧⋅=⋅=-⎪+-⎪⎪⎪⎪⨯⨯=⎨⎪⎪+=⎪⎪⎪⎩, 2214b a ⎧=∴⎨=⎩,∴椭圆C 的方程为2214x y +=; (2)假设存在这样的点N ,设直线PM 与x 轴相交于点()0,0T x ,由题意得TP BQ ⊥,由(1)得()2,0B ,设2,3P t ⎛⎫ ⎪⎝⎭,()11,Q x y ,由题意可设直线AP 的方程为2x my =-, 由22214x my x y =-⎧⎪⎨+=⎪⎩,得()22440m y my +-=,1244m y m ∴=+或10y =(舍去),212284m x m -=+, 223mt =-,83t m∴=, TP BQ ⊥,()0112203TP BQ x x ty ⎛⎫∴⋅=--+= ⎪⎝⎭, 210212284403233416ty m m x x m m +∴=+=+⋅⋅=-+-, ∴直线PM 过定点()0,0T ,∴存在定点()1,0N ,使得1MN =.5.如图,A ,B ,M ,N 为抛物线22y x =上四个不同的点,直线AB 与直线MN 相交于点()1,0,直线AN 过点()2,0.(1)记A ,B 的纵坐标分别为A y ,B y ,求A B y y 的值;(2)记直线AN ,BM 的斜率分别为1k ,2k ,是否存在实数λ,使得21k k λ=?若存在,求出λ的值;若不存在,说明理由.【详解】解:(1)设直线AB 的方程为1x my =+,代入22y x =得2220y my --=,则2A B y y ⋅=-.(2)由(1)同理得2M N y y ⋅=-设直线AN 的方程为2x ny =+,代入22y x =得2240y ny --=,则4A N y y ⋅=- 又122222N A N A N A N A N A y y y y k y y x x y y --===-+-,同理22M B k y y =+ 则212222A N A N A NB M A N y y y y y y k k y y y y λ++=====--+-+ ∴存在实数2λ=,使得212k k =成立.。
高考数学中的八大斜率模型与应用模型1.圆锥曲线第三定义此处以椭圆第三定义为例,双曲线第三定义类似推得.如图,椭圆22221(0)x y a b a b+=>>上任意一点P 与过原点为中心的弦AB 的两端点A 、B连线PA 、PB 与坐标轴不平行,则直线PA 、PB 的斜率之积PA PB k k ⋅为定值22b a -.证明 设(,)P x y ,11(,)A x y ,则11(,)B x y --.所以12222=+b y a x ①1221221=+b y a x ②由①-②得22122212b y y a x x --=-,所以22212212a b x x y y -=--,所以 222111222111PA PBy y y y y y b k k x x x x x x a-+-⋅=⋅==--+-为定值. 这条性质是圆的性质:圆上一点对直径所张成的角为直角在椭圆中的推广,它充分揭示了椭圆的本质属性.例1.(2019年高考数学课标全国Ⅱ卷理科)已知点()2,0A -,()2,0B ,动点(),M x y 满足 直线AM 与BM 的斜率之积为12-.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于,P Q 两点,点P 在第一象限,PE x ⊥轴,垂足为E ,连结QE 并延长交C 于点G .()i 证明:POG △是直角三角形; ()ii 求POG △面积的最大值.解析:(1)直线AM 的斜率为(2)2y x x ≠-+,直线BM 的斜率为(2)2yx x ≠-,由题意可知:22124,(2)222y y x y x x x ⋅=-⇒+=≠±+-,所以曲线C 是以坐标原点为中心,焦点在x 轴上,不包括左右两顶点的椭圆,其方程为()221,242x yx +=≠±;(2)略.模型2.中点弦与点差法1.椭圆中的点差法:设直线m kx y +=与椭圆)0(12222>>=+b a by a x 相交于点B A ,两点,其中设点A (11,y x ),B (22,y x ) 由于B A ,两点均在椭圆上,代入椭圆的方程可得:∴1221221=+b y a x ①,1222222=+b y a x ②,①-②得:02222122221=-+-byy a x x ,进一步, 则2222122221-b y y a x x -=-,即2221212121))((ab x x y y x x y y -=++--,则 22a b k k OM AB -=(其中M 为B A ,中点,O 为原点).椭圆垂径定理:直线AB 的斜率与中点M 和原点O 所成直线斜率的乘积等于2y 下的系数比上2x 下的系数的相反数,即22ba k k OMAB -=.例2.已知椭圆22154x y +=,则以点()1,1M 为中点的弦所在直线方程为( )A .4510x y -+=B .5490x y +-=C .4590x y +-=D .5410x y --=解析:设以点()1,1M 为中点的弦与椭圆22154x y += 交于点()11,A x y ,()22,B x y ,则122x x +=,122y y +=,分别把点A ,B 的坐标代入椭圆方程得:22112222154154x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得:12121212()()()()045x x x x y y y y +-+-+=,∴12122()052x x y y --+=,∴直线AB 的斜率121245y y k x x -==--,∴以点(1,1)M 为中点的弦所在直线方程为:41(1)5y x -=--,即4590x y +-=,故选:C .模型3.四点共圆充要条件1.基础知识:(1)圆锥曲线四点共圆:若两条直线)2,1)((:00=-=-i x x k y y l i i 与二次曲线22:0()ax by cx dy e a b Γ++++=≠有四个交点,则这四个交点共圆的充要条件是021=+k k .例3.平面直角坐标系xOy 中,已知点()1F、)2122F MF MF -=,点M的轨迹为C . (1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.解析:因为12122MF MF F F -=<=C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b-=>>,则22a =,可得1a =,4b =,所以,轨迹C 的方程为()221116yx x -=≥; (2)设点1,2T t ⎛⎫ ⎪⎝⎭,若过点T 的直线的斜率不存在,此时该直线与曲线C 无公共点,不妨直线AB 的方程为112y t k x ⎛⎫-=- ⎪⎝⎭,即1112y k x t k =+-,联立1122121616y k x t k x y ⎧=+-⎪⎨⎪-=⎩,消去y 并整理可得()()222111111621602k x k t k x t k ⎛⎫-+-+-+=⎪⎝⎭,设点()11,A x y 、()22,B x y ,则112x >且212x >.由韦达定理可得2111221216k k t x x k -+=-,211221116216t k x x k ⎛⎫-+ ⎪⎝⎭=-,所以,()()()()22122121121122112111*********t k x x TA TB k x x k x x k +++⎛⎫⋅=+⋅-⋅-=+⋅-+= ⎪-⎝⎭, 设直线PQ 的斜率为2k ,同理可得()()2222212116t k TP TQ k ++⋅=-,因为TA TB TP TQ ⋅=⋅,即()()()()22221222121211211616tk t k k k ++++=--,整理可得2212k k =,即()()12120k k k k -+=,显然120k k -≠,故120k k +=.因此,直线AB 与直线PQ 的斜率之和为0.模型4.极点极线斜率等差1.基本结论若D B C A ,,,四点成调和点列,在这四点所在直线外任取一点P ,所形成的的四条射线,PA ,PC ,PB ,PD 称为调和线束. 对于一组调和线束,本节给出其斜率之间所满足的基本关系,并进一步用此结论去解决一些与极点极线有关的斜率恒等式.结论[1]:如图1.若调和线束OA ,OC ,OB ,OD 的方程为4,3,2,1,:=+=i b x k y l i i i .那么1)()()()(),(413242314321-=-⋅--⋅-=k k k k k k k k l l l l .图1 图2 2.基本应用此处,我们选择比较经典的两个问题,即2013年江西高考的文理科圆锥曲线题目来作为上述结论应用的范例.例4.如图2,椭圆)0(1:2222>>=+b a b y a x C 经过点)23,1(P ,离心率21=e ,直线l 的方程为4=x .(1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记PA ,PB ,PM 的斜率分别为123,,k k k .问:是否存在常数λ,使得123+=k k k λ?若存在,求λ的值;若不存在,说明理由.证明:由于直线l 是点F 关于椭圆C 的极线,所以PM PB PF PA ,,,成调和点列,分别设直线PM PB PF PA ,,,为4321,,,l l l l ,那么四直线的交比1),(4321-=l l l l ,利用交比的性质可得1),(2143-=l l l l ,又由于∞=2l k ,故1)(),(1432143-=--==PAPM PAPB k k k k l l l l l l l ,即3212k k k =+,证毕.详解:(1)椭圆C 的方程为22143x y +=. 结论:已知椭圆)0(1:2222>>=+b a b y a x C ,过定点)0)(0,(a n n N <<作一直线交椭圆C于B A ,两点,交点N 的极线na x l 2:=于点M ,P 是椭圆C 上一点,且P 点横坐标为n ,则直线PB PM PA ,,的斜率成等差数列.模型5.蝴蝶定义与斜率之商结论1[1]:设抛物线)0(2:2>=p px y C 的弦AB 过定点)0)(0,(>m m M ,过点M 作非水平线l 交C 于Q P ,两点,若直线AP 与x 轴交于定点)0,(n ,直线BQ AP ,的斜率21,k k 存在且非零,则nm k k =21. 上述结论1就是2022年全国甲卷解析几何试题的命题背景,即所谓的“蝴蝶定理”!这个定理同样适用于椭圆与双曲线,下面我们通过例题予以展示.例5.已知椭圆2222:1(0)x y a b a b Γ+=>>的离心率为23,半焦距为(0)c c >,且1a c -=,经过椭圆的左焦点F ,斜率为11(0)k k ≠的直线与椭圆交于A ,B 两点,O 为坐标原点. (1)求椭圆Γ的标准方程.(2)设(1,0)R ,延长AR ,BR 分别与椭圆交于C ,D 两点,直线CD 的斜率为2k ,求证:12k k 为定值. 解析:(1)由题意,椭圆Γ的方程为22195x y +=.(2)设()33,C x y ,()44,D x y ,由已知,直线AR 的方程为()1111y y x x =--,即1111x x y y -=+.由112211195x x y y x y -⎧=+⎪⎪⎨⎪+=⎪⎩消去x 并整理,得2112115140x x y y y y --+-=. 则2113145y y y x =--,∵10y ≠,∴13145y y x =-,∴1111331111114591155x x y x x y y y x x ---=+=⋅+=--.∴1111594,55x y C x x ⎛⎫- ⎪--⎝⎭,同理2222594,55x y D x x ⎛⎫- ⎪--⎝⎭.()()()()()()1212211221212211244454555595959559555y y y x y x x x k x x x x x x x x -----==---------()()()122121454516y x y x x x ---=-,∵()1112y k x =+,()2122y k x =+, ∴()()()()()()()112121121122121425425771644k x x k x x k x x k k x x x x +--+--===--,∴1247k k =为定值.注:可以看到,椭圆中的蝴蝶构型在证明过程中会出现非对称韦达结构.模型6.斜率倒数成等差模型例6(2022武汉九月调考)已知椭圆2222:1(0)x y E a b a b+=>>,过点(1,1)--P 且与x 轴平行的直线与椭圆E 恰有一个公共点,过点P 且与y 轴平行的直线被椭圆E(1)求椭圆E 的标准方程;(2)设过点P 的动直线与椭圆E 交于,M N 两点,T 为y 轴上的一点,设直线MT 和NT 的斜率分别为1k 和2k ,若1211k k +为定值,求点T 的坐标.解:由题意,椭圆的下顶点为()0,1-,故1b =.由对称性,椭圆过点1,⎛- ⎝⎭,代入椭圆方程有21314a +=,解得:2a =. 故椭圆E 的标准方程为:2214x y +=.(2)设点T 坐标为()0,t .当直线MN 斜率存在时,设其方程为()11y k x =+-,与2214x y +=联立得:()()()224181420k x k k x k k ++-+-=.设()()1122,,,M x y N x y ,则()()1212228142,4141k k k k x x x x k k ---+==++.12121212121111x x x x k k y t y t kx k t kx k t+=+=+--+--+--, ()()()()1212221212211(1)kx x k t x x k x x k k t x x k t +--+=+--++--,()()()()()()()232228281142811(1)41k k k k k t k k kk k t k t k-----=-----+--+()()()2222881.4321(1)tk t ktk t k t -+=--+++1211k k +为定值,即与k 无关,则2(1)0,1t t +==-,此时12118k k +=-. 经检验,当直线MN 斜率不存在时也满足12118k k +=-,故点T 坐标为()0,1-. 一般性推广:已知椭圆)0(1:2222>>=+b a by a x E ,点P 为直线b y -=上任一点,过P 的直线l 与椭圆E 交于N M ,两点,设椭圆E 的下顶点为T ,则tba k k TN TM2211=+. 模型7.手电筒模型1.设),0(b P 为椭圆)0(12222>>=+b a by a x 上顶点,AB 是椭圆上一条动弦,直线PB PA AB ,,的斜率分别为21,,k k k ,则:(1)2221a b t k k ≠=⇔直线AB 过定点⎪⎪⎭⎫ ⎝⎛-+b t a b t a b 2222,0 (2)若021≠+k k ,则⇔+=+bm bk k k 221则直线AB 过),0(m . 2.设),(00y x P 为椭圆)0(12222>>=+b a by a x 上的定点,AB 是椭圆上一条动弦,直线PB PA AB ,,的斜率分别为21,,k k k ;(1)若2221a b k k =,则有000,0x y k x -=≠, (2)若2221ab k k ≠,则直线AB 过定点,(3)若021=+k k ,则有02020,0y a x b k y =≠, (4)若021≠+k k ,则直线AB 过定点.例8.已知椭圆E :22221(0)x y a b a b +=>>点()0,1A -是椭圆E 短轴的一个四等分点.(1)求椭圆E 的标准方程;(2)设过点A 且斜率为1k 的动直线与椭圆E 交于M ,N 两点,且点()0,2B ,直线BM ,BN 分别交C :()2211x y +-=于异于点B 的点P ,Q ,设直线PQ 的斜率为2k ,求实数λ,使得21k k λ=恒成立.解析:(1)椭圆E 的标准方程为14822=+y x .(2)设()()()()1122,,,,,,,P P Q Q M x y N x y P x y Q x y ,直线MN 的方程为11y k x =-, 则直线BM 的方程为1122y y x x -=+,与()2211x y +-=联立, 得:()()()22211112220x y x x y x +-+-=,由0P x ≠,且点()0,2B 在C 上,得()()112211222P x y x x y --=+-,又2211184x y +=,即221182x y =-,代入上式()()111221112226822P x y x x y y y --==+-+-, 111216246P P y y x x y -=+=-+,即点111216,466x P y y ⎛⎫- ⎪++⎝⎭,同理222216,466x Q y y ⎛⎫- ⎪++⎝⎭,则()121221212211212161644866226666P Q P Q y y y y y y k x x x x x y x y x x y y ⎛⎫⎛⎫--- ⎪ ⎪--++⎝⎭⎝⎭===--+--++,将1112121,1y k x y k x =-=-代入上式,得()()()()()112112211122111212888116655k x x k x x k k x k x x k x x x x x --===---+--,所以85λ=时,21k k λ=恒成立.模型8.角度转化例9.(2018全国1卷)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠. 解析:(1)所以AM的方程为2y x =-+2y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为()()10y k x k =-≠,()()1122,,,A x y B x y ,则12x x <<MA 、MB 的斜率之和为121222MA MB y yk k x x +=+--. 由1122,y k k x y k x k =-=-得()()()12121223422MA MB kx x k x x kk k x x -+++=--.将()1y k x =-代入2212x y +=得()2222214220k x k x k +-+-=.所以,22121222422,2121k k x x x x k k -+==++. 则()33312122441284234021k k k k kkx x k x x k k --++-++==+.从而0MA MB k k +=,故MA 、MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.。
圆锥曲线切线的一条性质圆锥曲线就是由平面上一条固定的直线(称为母线)和固定点(称为焦点)所确定的一类曲线。
圆锥曲线包括椭圆、双曲线和抛物线三种类型。
在圆锥曲线上,每个点都有一个切线。
本文将讨论圆锥曲线切线的一条重要性质。
在平面直角坐标系中,设圆锥曲线的方程为F(x,y)= 0。
假设在点(x0,y0)处存在一条切线L。
定义切线L的斜率为K。
现在我们来探讨一下圆锥曲线切线的性质。
性质1:切线斜率K的取值范围对于一个圆锥曲线,它在每一个点上都必然存在一条切线。
当我们观察切线时,我们会发现它的斜率是有限的。
考虑某一切点(x0,y0),假设这个点在椭圆上,我们用红色的线段表示作为切线的三角形,其中斜率为K,如下图所示。
在上图中,我们可以看到切线L的方程为y = Kx + b。
斜率K 可以表示为K = tanθ。
因此,图中的角度θ可以表示为tanθ = K。
我们可以看出,当θ沿逆时针方向旋转时,斜率K也会变化。
由于计算机对于圆周的表达方式是具有周期性的,所以圆锥曲线切线在θ增加2π时也应该和之前的情况是相似的。
这样,我们就得到了切线斜率K的取值范围。
椭圆:在椭圆上,斜率K的取值范围是-K0 < K < K0,其中K0是椭圆的一个与x轴平行的主轴斜率。
抛物线:在抛物线上,斜率K的取值范围是负无穷到正无穷。
双曲线:在双曲线的左侧或右侧,斜率K的取值范围是-K0 <K < K0,其中K0是双曲线的一个与x轴平行的渐近线斜率。
在双曲线的内部,斜率K的取值范围是-K0 > K 或 K > K0。
性质2:切线和法线的夹角相等在圆锥曲线上的任何一点,切线和法线都垂直相交。
因此,切线和法线有一个重要的性质:它们夹角相等。
我们假设在某一点p(x0,y0)处存在一条切线L,斜率为K。
我们来求一下切线的方程式。
切线可以表示为y - y0 = K(x -x0)。
因为圆锥曲线F(x,y)= 0在点p上有一个切线L,所以它在这个点的导数存在,即有:F’(x0,y0)= 0。
圆锥曲线中的斜率问题一、考情分析斜率问题也是高考圆锥曲线考查的热点,主要有以下类型:利用斜率求解三点共线问题;与斜率之和或斜率之积为定值有关的问题;与斜率有关的定值问题;与斜率有关的范围问题.二、解题秘籍(一)利用斜率求解三点共线问题利用斜率判断或证明点A,B,C共线,通常是利用k AB=k AC.【例1】(2023届广东省部分学校高三上学期联考)设直线x=m与双曲线C:x2-y23=m(m>0)的两条渐近线分别交于A,B两点,且三角形OAB的面积为 3.(1)求m的值;(2)已知直线l与x轴不垂直且斜率不为0,l与C交于两个不同的点M,N,M关于x轴的对称点为M ,F 为C的右焦点,若M ,F,N三点共线,证明:直线l经过x轴上的一个定点.【解析】(1)双曲线C:x2-y23=m(m≠0)的渐近线方程为y=±3x,不妨设A m,3m,B m,-3m因为三角形OAB的面积为3,所以12AB⋅m=3m2,所以3m2=3,又m>0,所以m=1.(2)双曲线C的方程为C:x2-y23=1,所以右焦点F的坐标为2,0,若直线l与x轴交于点p,0,故可设直线l的方程为y=k x-pk≠0,设M x1,y1,N x2,y2,则M x1,-y1,联立y=k x-px2-y23=1,得3-k2x2+2pk2x-k2p2+3=0,3-k2≠0且Δ=2pk22+43-k2k2p2+3>0,化简得k2≠3且p2-1k2+3>0,所以x1+x2=-2pk23-k2,x1x2=-k2p2+33-k2,因为直线MN的斜率存在,所以直线M N的斜率也存在,因为M ,F,N三点共线,所以k M F=k FN,即-y1x1-2=y2x2-2,即-y1x2-2=y2x1-2,所以-k x1-px2-2=k x2-px1-2,因为k≠0,所以x1-px2-2+x2-px1-2=0,所以2x1x2-(p+2)x1+x2+4p=0,所以2⋅-k2p2+3 3-k2-(p+2)-2pk23-k2+4p=0,化简得p=12,所以MN经过x轴上的定点12,0.【例2】(2022届北京市一六一中学高三上学期期中)已知椭圆W:x24+y23=1的左、右顶点分别为A,B,右焦点为F,直线l1:x=4.(1)若椭圆W的左顶点A关于直线x+my-4=0的对称点在直线l1上,求m的值;(2)过F 的直线l 2与椭圆W 相交于不同的两点C ,D (不与点A ,B 重合),直线CB 与直线l 1相交于点M ,求证:A ,D ,M 三点共线.【解析】(1)由题意知,直线l 3:x +my -4=0的斜率存在,且斜率为k 3=-1m,设点A 关于直线l 3对称的点为A 1,则A 1(4,n ),AA 1⊥l 3所以线段AA 1的中点1,n 2 在直线l 3上,又k AA 1=n6,k 3k AA 1=-1,有-1m ×n 6=-11+m ×n 2-4=0,解得m =1n =6 或m =-1n =-6 ,所以m =±1;(2)已知A (-2,0),B (2,0),F (1,0),当直线l 2的斜率不存在时,l 2:x =1,此时C 1,-32,D 1,32 ,有k CB =0+322-1=32,所以直线l CB :y =32(x -2),当x =4时,y =3,所以M (4,3),所以k DM =3-324-1=12,k AD =32-01+2=12,所以k DM =k AD ,即A 、D 、M 三点共线;当直线l 2的斜率存在时,设直线l 2:y =k (x -1)(k ≠0),则x 24+y 23=1y =k (x -1),得(4k 2+3)x 2-8k 2x +4k 2-12=0,Δ=(-8k 2)2-4(4k 2+3)(4k 2-12)=144k 2+144>0,设C x 1,y 1 ,D x 2,y 2 ,则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,直线BC 的方程为y =y 1x 1-2(x -2),令x =4,得M 4,2y 1x 1-2,所以直线AD 、AM 的斜率分别为k AD =y 2x 2+2,k AM =y 13(x 1-2),k AD -k AM =y 2x 2+2-y 13(x 1-2)=3y 2(x 1-2)-y 1(x 2+2)3(x 2+2)(x 1-2),上式的分子3y 2(x 1-2)-y 1(x 2+2)=3k (x 2-1)(x 1-2)-k (x 1-1)(x 2+2)=2kx 1x 2-5k (x 1+x 2)+8k=2k ⋅4k 2-124k 2+3-5k ⋅8k 24k 2+3+8k =0,所以k AD -k AM =0,即A 、D 、M 三点共线.综上,A 、D 、M 三点共线.(二)根据两直线斜率之和为定值研究圆锥曲线性质1.设点P m ,n 是椭圆C :x 2a 2+y 2b2=1(a >b >0)上一定点,点A ,B 是椭圆C 上不同于P 的两点,若k PA +k PB =λ,则λ=0时直线AB 斜率为定值bm 2an 2n ≠0 ,若λ≠0,则直线AB 过定点m -2n λ,-n -2b 2ma 2λ,2.设点P m ,n 是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)一定点,点A ,B 是双曲线C 上不同于P 的两点,若k PA +k PB =λ,则λ=0时直线AB 斜率为定值-bm 2an 2n ≠0 ,若λ≠0,则直线AB 过定点m -2n λ,-n +2b 2m a 2λ ;3.设点P m ,n 是抛物线C :y 2=2px p >0 一定点,点A ,B 是抛物线C 上不同于P 的两点,若k PA +k PB=λ,则λ=0时直线AB 斜率为定值-p n n ≠0 ,若λ≠0,则直线AB 过定点m -2nλ,-n +2p λ ;【例3】(2023届山西省山西大附属中学高三上学期诊断)若点P 在直线y =t 上,证明直线PA ,PB 关于y =t对称,或证明直线y =t 平分∠APB ,可证明k PA +k PB =0.已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,点M 0,2 是椭圆C 的一个顶点,△F 1MF 2是等腰直角三角形.(1)求椭圆C 的标准方程;(2)过点M 分别作直线MA ,MB 交椭圆于A ,B 两点,设两直线MA ,MB 的斜率分别为k 1,k 2,且k 1+k 2=8,证明:直线AB 过定点.【解析】(1)由题意点M 0,2 是椭圆C 的一个顶点,知b =2,因为△F 1MF 2是等腰直角三角形,所以a =2b ,即a =22,所以椭圆C 的标准方程为:x 28+y 24=1.(2)若直线AB 的斜率存在,设其方程为y =kx +m ,由题意知m ≠±2.由y =kx +m x 28+y 24=1,得1+2k 2 x 2+4km x +2m 2-8=0,由题意知Δ=8(8k 2+4-m 2)>0,设A x 1,y 1 ,B x 2,y 2 ,所以x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-81+2k 2,因为k 1+k 2=8,所以k 1+k 2=y 1-2x 1+y 2-2x 2=kx 1+m -2x 1+kx 2+m -2x 2=2k +(m -2)×x 1+x 2x 1x 2=2k +m -2 ×-4km2m 2-8=8,所以k -km m +2=4,整理得m =12k -2,故直线AB 的方程为y =kx +12k -2,即y =k x +12 -2,所以直线AB 过定点-12,-2 .若直线AB 的斜率不存在,设其方程为x =x 0,A x 0,y 0 ,B x 0,-y 0 .由题意得y 0-2x 0+-y 0-2x 0=8,解得x 0=-12,此时直线AB 的方程为x =-12,显然过点-12,-2 .综上,直线AB 过定点-12,-2 .【例4】(2023届江苏省南通市如皋市高三上学期教学质量调研)已知点A (2,1)在双曲线C :x 2a 2-y 2a 2-1=1(a>1)上,直线l 交C 于P ,Q 两点,直线AP ,AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan ∠PAQ =22,求△PAQ 的面积.【解析】(1)将点A (2,1)代入x 2a 2-y 2a 2-1=1中,得4a 2-1a 2-1=1,即a 4-4a 2+4=0,解得a 2=2,故双曲线方程为x 22-y 2=1;由题意知直线l 的斜率存在,设l :y =kx +m ,设P (x 1,y 1),Q (x 2,y 2),则联立直线与双曲线x 22-y 2=1得:(2k 2-1)x 2+4km x +2m 2+2=0,需满足2k 2-1≠0,Δ=8(m 2+1-2k 2)>0,故x 1+x 2=-4km 2k 2-1,x 1x 2=2m 2+22k 2-1,k AP +k AQ =y 1-1x 1-2+y 2-1x 2-2=kx 1+m -1x 1-2+kx 2+m -1x 2-2=0,化简得:2kx 1x 2+(m -1-2k )(x 1+x 2)-4(m -1)=0,故2k (2m 2+2)2k 2-1+(m -1-2k )-4km 2k 2-1-4(m -1)=0,即2k 2+(m +1)k +m -1=0,即(k +1)(m +2k -1)=0,由题意可知直线l 不过A 点,即m +2k -1≠0,故l 的斜率k =-1.(2)设直线AP 的倾斜角为α,由tan ∠PAQ =22,∴2tan∠PAQ 21-tan2∠PAQ 2=22,得tan ∠PAQ 2=22,(负值舍去),由直线AP ,AQ 的斜率之和为0,可知2α+∠PAQ =π,即tan π-2α2=22,则tan π2-α =cos αsin α=22,得k AP =tan α=2,即y 1-1x 1-2=2,联立y 1-1x 1-2=2,及x 212-y 21=1得x 1=10-423,y 1=42-53,将x 1=10-423,y 1=42-53代入l :y =-x +m 中,得m =53,故x 1+x 2=203,x 1x 2=689,而|AP |=2+1|x 1-2|=3|x 1-2|,|AQ |=3|x 2-2|,由tan ∠PAQ =22,得sin ∠PAQ =223,故S △PAQ =12|AP |⋅|AQ |sin ∠PAQ =2|x 1x 2-2(x 1+x 2)+4|=2689-2×203+4 =1629.【例5】(2022届广东省深圳市高三上学期月考)已知抛物线E :y 2=2px (p >0)的焦点为F ,其中P 为E 的准线上一点,O 是坐标原点,且OF ⋅OP =-94.(1)求抛物线E 的方程;(2)过Q 1,0 的动直线与E 交于C ,D 两点,问:在x 轴上是否存在定点M t ,0 t ≠0 ,使得x 轴平分∠CMD ?若存在,求出点M 的坐标;若不存在,请说明理由.【解析】(1)抛物线E :y 2=2px (p >0)的焦点为F p 2,0设P -p 2,y P ,则OF =p 2,0 ,OP =-p 2,y P 因为OF ⋅OP =-94,所以-p 24=-94,得p =3.所以抛物线E 的方程为y 2=6x ;(2)假设在x 轴上存在定点M t ,0 t ≠0 ,使得x 轴平分∠CMD .设动直线的方程为x =my +1,点C x 1,y 1 ,D x 2,y 2 ,联立x =my +1y 2=6x,可得y 2-6my -6=0.∵Δ=36m 2+24>0恒成立,∴y 1+y 2=6m ,y 1y 2=-6设直线MC ,MD 的斜率分别为k 1,k 2,则k 1+k 2=y 1x 1-t +y 2x 2-t =y 1x 2-t +y 2x 1-t x 1-t x 2-t=y 1my 2+1-t +y 2my 1+1-t x 1-t x 2-t =2my 1y 2+1-t y 1+y 2 x 1-t x 2-t由定点M t ,0 t ≠0 ,使得x 轴平分∠CMD ,则k 1+k 2=0,所以2my 1y 2+1-t y 1+y 2 =0.把根与系数的关系代入可得m +mt =0,得t =-1.故存在t =-1满足题意.综上所述,在x 轴上存在定点M -1,0 ,使得x 轴平分∠CMD .(三)根据两直线斜率之积为定值研究圆锥曲线性质1.若点A ,B 是椭圆C :x 2a 2+y 2b2=1a >b >0 上关于原点对称的两点,点P 是椭圆C 上与A ,B 不重合的点,则k PA ⋅k PB =-b 2a 2;若点A ,B 是双曲线C :x 2a 2-y 2b2=1a >0,b >0 上关于原点对称的两点,点P 是双曲线C 上与A ,B 不重合的点,则k PA ⋅k PB =b2a2.2.若圆锥曲线上任意一点P 作两条直线与该圆锥曲线分别交于点A ,B ,若k PA ⋅k PB 为定值,则直线AB 过定点.【例6】(2022届黑龙江省大庆高三上学期期中)在平面直角坐标系xOy 中,已知椭圆C :x 24+y 23=1的左、右顶点和右焦点分别为A 、B 和F ,直线l :x =my +t 与椭圆C 交于不同的两点M 、N ,记直线AM 、BM ,BN 的斜率分别为k 1、k 2、k 3.(1)求证:k 1k 2为定值;(2)若k 1=3k 3,求△FMN 的周长.【解析】(1)证明:设M x 0,y 0 ,易知A -2,0 、B 2,0 ,其中x 204+y 203=1,则x 20=4-43y 20,k 1k 2=y 0x 0+2⋅y 0x 0-2=y 20x 20-4=y 204-43y 20-4=-34为定值.(2)解:∵k 1=3k 3,即-34k 2=3k 3⇒k 2k 3=-14,设M x 1,y 1 、N x 2,y 2 ,而B 2,0 ,联立x =my +t3x 2+4y 2=12⇒3my +t 2+4y 2=12⇒3m 2+4 y 2+6mty +3t 2-12=0,则Δ=36m 2t 2-4×3m 2+4 3t 2-12 =483m 2+4-t 2 >0,且y 1+y 2=-6mt3m 2+4y 1y 2=3t 2-123m 2+4,k 2k 3=y 1x 1-2⋅y 2x 2-2=-14,⇒my 1+t -2 my 2+t -2 +4y 1y 2=0.所以,m 2+4 y 1y 2+m t -2 y 1+y 2 +t -2 2=0⇒m 2+4 ⋅3t 2-123m 2+4+m t -2 -6mt 3m 2+4+t -2 2=0,∵t ≠2,∴m 2+4 ⋅3t +2 3m 2+4-6m 2t3m 2+4+t -2=0,所以,3m 2t +6m 2+12t +24-6m 2t +3m 2t -6m 2+4t -8=0,16t +16=0⇒t =-1,故直线MN 恒过椭圆C 的左焦点-1,0 ,所以,△FMN 的周长为4a =8.【例7】(2023届湖南省永州市高三上学期第一次适应性考试)点P (4,3)在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,离心率e =72.(1)求双曲线C 的方程;(2)A ,B 是双曲线C 上的两个动点(异于点P ),k 1,k 2分别表示直线PA ,PB 的斜率,满足k 1k 2=32,求证:直线AB 恒过一个定点,并求出该定点的坐标.【解析】(1)由题意点P (4,3)在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,离心率e =72可得;16a 2-9b 2=1a 2+b 2a =72,解出,a =2,b =3,所以,双曲线C 的方程是x 24-y 23=1(2)①当直线AB 的斜率不存在时,则可设A n ,y 0 ,B n ,-y 0 ,代入x 24-y 23=1,得y 02=34n 2-3,则k 1k 2=y 0-3n -4⋅-y 0-3n -4=9-y 20(n -4)2=12-34n 2(n -4)2=32,即9n 2-48n +48=0,解得n =43或n =4,当n =4时,y 0=±3,A ,B 其中一个与点P 4,3 重合,不合题意;当n =43时,直线AB 的方程为x =43,它与双曲线C 不相交,故直线AB 的斜率存在;②当直线AB 的斜率存在时,设直线AB 的方程y =kx +m 代入x 24-y 23=1,整理得,3-4k 2 x 2-8km x -4m 2-12=0,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=8km 3-4k 2,x 1x 2=-4m 2+123-4k 2,由Δ=(-8km )2-43-4k 2 -4m 2-12 >0,∴m 2+3>4k 2,所以k 1k 2=y 1-3x 1-4⋅y 2-3x 2-4=kx 1+m -3x 1-4⋅kx 2+m -3x 2-4=k 2x 1x 2+k m -3 x 1+x 2 +(m -3)2x 1x 2-4x 1+x 2 +16=32所以,2k 2-3 x 1x 2+2km -6k +12 x 1+x 2 +2m 2-12m -30=0,即2k 2-3 ⋅-4m 2-123-4k 2+2km -6k +12 ⋅8km 3-4k2+2m 2-12m -30=0,整理得3m 2+16k -6 m +16k 2-9=0,即3m +4k +3 m +4k -3 =0,所以3m +4k +3=0或m +4k -3=0,若3m +4k +3=0,则m =-4k +33,直线AB 化为y =k x -43 -1,过定点43,-1 ;若m +4k -3=0,则m =-4k +3,直线AB 化为y =k x -4 +3,它过点P 4,3 ,舍去综上,直线AB 恒过定点43,-1 另解:设直线AB 的方程为m x -4 +n y -3 =1①,双曲线C 的方程x 24-y 23=1可化为3x -4 +4 2-4 y -3 +3]2=12,即3(x -4)2-4(y -3)2+24x -4 -y -3 =0②,由①②可得3(x -4)2-4(y -3)2+24x -4 -y -3 m x -4 +n y -3 =0,整理可得24m +3 (x -4)2-24n +4 (y -3)2+24n -m x -4 y -3 =0,两边同时除以(x -4)2,整理得24n +4 y -3x -4 2-24n -my -3x -4-24m +3 =0③,Δ=242(n -m )2+424n +4 24m +3 >0,则k 1,k 2是方程③的两个不同的根,所以k 1k 2=-24m +3 24n +4=32,即8m +12n +3=0④,由①④可得-3x -4 =8-3y -3 =12 ,解得x =43y =-1,故直线AB 恒过定点43,-1 .(四)判断或证明与斜率有关的定值与范围问题1.判断或证明与斜率有关的定值问题,通常是把与斜率有关的式子用某些量来表示,然后通过化简或赋值得到定值.2.求斜率有关的范围问题,通常是把与斜率有关的式子用其他量来表示,转化为求函数值域问题,或由已知条件整理出关于斜率的不等式,通过解不等式求范围.【例8】(2022届山东省学情高三上学期12月质量检测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1(-1,0),F 2(1,0).过F 2与x 轴垂直的直线与椭圆C 交于点D ,点D 在x 轴上方,且DF 1 =322.(1)求椭圆C 的方程;(2)过点F 2的直线l 与椭圆C 交于A ,B 两点,是否存在一定点M 使得k MA +k MB 为定值,若存在,求出点M的坐标,若不存在,请说明理由.【解析】(1)由己知得c =1,|DF 1|=322,所以|DF 2|=22,所以2a =22+322=22⇒a =2,∴b =1.所以椭圆C 的方程为x 22+y 2=1.(2)如果存在点M ,由于椭圆的对称性可知点M 一定在 x 轴上,设其坐标为(x 0,0),因为椭圆右焦点F (1,0),直线斜率存在时设l 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),则x 1<2,x 2<2,将y =k (x -1)代入x 22+y 2=1得:(2k 2+1)x 2-4k 2x +2k 2-2=0,所以x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1,又k MA +k MB =y 1x 1-x 0+y 2x 2-x 0由y 1=kx 1-k ,y 2=kx 2-k 得:k MA +k MB =2kx 1x 2-k (x 1+x 2)(x 0+1)+2x 0k(x 1-x 0)(x 2-x 0).则2kx 1x 2-k (x 1+x 2)(x 0+1)+2x 0k =2(x 0-2)k2k 2+1⋅当x 0=2时,k MA +k MB =0,当直线斜率不存在时,存在一定点M (2,0)使得k MA +k MB 为定值0.综上:存在定点M (2,0)使得k MA +k MB 为定值0.【例9】(2022届广东省高三上学期12月大联考)已知圆(x +1)2+y 2=16的圆心为A ,点P 是圆A 上的动点,点B 是抛物线y 2=4x 的焦点,点G 在线段AP 上,且满足GP =GB .(1)求点G 的轨迹E 的方程;(2)不过原点的直线l 与(1)中轨迹E 交于M ,N 两点,若线段MN 的中点Q 在抛物线y 2=4x 上,求直线l 的斜率k 的取值范围.【分析】(1)依题意GA +GB =AP =4>2=AB ,根据椭圆的定义可得到轨迹为椭圆,再由几何关系得到相应的参数值即可得到椭圆方程;(2)设出直线方程并且和椭圆联立,根据韦达定理得到中点坐标Q -4kt 4k 2+3,3t 4k 2+3,将点Q 坐标代入抛物线方程得到t =-16k 4k 2+3 9,将此式代入4k 2-t 2+3>0得到k 4+34k 2-9322<0,解不等式即可.【解析】(1)易知A -1,0 ,∵点B 是抛物线y 2=4x 的焦点,∴B 1,0 ,依题意GA +GB =AP =4>2=AB ,所以点G 轨迹是一个椭圆,其焦点分别为A ,B ,长轴长为4,设该椭圆的方程为x 2a 2+y 2b2=1(a >b >0),则2a =4,2c =2,∴a =2,c =1,∴b 2=a 2-c 2=3,故点G 的轨迹E 的方程为x 24+y 23=1.(2)易知直线1的斜率存在,设直线1:y =kx +t t ≠0 ,M x 1,y 1 ,N x 2,y 2 ,Q x 0,y 0 ,由y =kx +t 3x 2+4y 2=12 得:4k 2+3 x 2+8ktx +4t 2-12=0,∵Δ=(8kt )2-43+4k 2 4t 2-12 >0,即4k 2-t 2+3>0①又x 1+x 2=-8kt 4k 2+3,x 1⋅x 2=4t 2-124k 2+3故Q -4kt 4k 2+3,3t 4k 2+3 ,将Q -4kt 4k 2+3,3t4k 2+3,代λy 2=4x ,得:t =-16k 4k 2+39②,k ≠0 ,将②代入①,得:162k 24k 2+3 <81,4×162k 4+3×162k 2-81<0,即k 4+34k 2-932 2<0,即k 2-332 k 2+2732 <0,即k 2-332<0,∴-68<k <68且k ≠0,即k 的取值范围为:-68<k <0或0<k <68.三、跟踪检测1.(2023届山西省长治市高三上学期9月质量检测)已知点P 1,32 在椭圆C :x 2a 2+y 2b2=1(a >b >0)上,且点P 到椭圆右顶点M 的距离为132.(1)求椭圆C 的方程;(2)若点A ,B 是椭圆C 上不同的两点(均异于M )且满足直线MA 与MB 斜率之积为14.试判断直线AB是否过定点,若是,求出定点坐标,若不是,说明理由.【解析】(1)点P 1,32 ,在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上代入得:1a 2+94b2=1,点P 到椭圆右顶点M 的距离为132,则132=a -1 2+94,解得a =2,b =3,故椭圆C 的方程为x 24+y 23=1.(2)由题意,直线AB 的斜率存在,可设直线AB 的方程为y =kx +m (k ≠0),M 2,0 ,A x 1,y 1 ,B x 2,y 2 .联立y =kx +m 3x 2+4y 2=12得3+4k 2 x 2+8km x +4m 2-12=0.Δ=64k 2m 2-43+4k 2 4m 2-12 =484k 2-m 2+3 >0.∴x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2,∵直线MA 与直线MB 斜率之积为14.∴y 1x 1-2⋅y 2x 2-2=14,∴4kx 1+m kx 2+m =x 1-2 x 2-2 . 化简得4k 2-1 x 1x 2+4km +2 x 1+x 2 +4m 2-4=0,∴4k 2-1 4m 2-123+4k 2+4km +2 -8km3+4k 2+4m -4=0, 化简得m 2-2km -8k 2=0,解得m =4k 或m =-2k .当m =4k 时,直线AB 方程为y =k x +4 ,过定点-4,0 .m =4k 代入判别式大于零中,解得-12<k <12(k ≠0).当m =-2k 时,直线AB 的方程为y =k x -2 ,过定点2,0 ,不符合题意. 综上所述:直线AB 过定点-4,0 .2.(2023届重庆市第八中学校高三上学期月考)已知椭圆C 的中心为坐标原点,对称轴为x 轴,y 轴,且过A(-2,0),B 1,32两点.(1)求椭圆C 的方程;(2)F 为椭圆C 的右焦点,直线l 交椭圆C 于P ,Q (不与点A 重合)两点,记直线AP ,AQ ,l 的斜率分别为k 1,k 2,k ,若k 1+k 2=-3k,证明:△FPQ 的周长为定值,并求出定值.【解析】(1)由已知设椭圆C 方程为:mx 2+ny 2=1(m >0,n >0),代入A -2,0 ,B 1,32 ,得m =14,n =13,故椭圆C 方程为x 24+y 23=1.(2)设直线l :y =kx +m ,P x 1,y 1 ,Q x 2,y 2 ,由y =kx +m ,3x 2+4y 2=12⇒4k 2+3 x 2+8km x +4m 2-12=0得,x 1+x 2=-8km4k 2+3x 1⋅x 2=4m 2-124k 2+3,Δ=64k 2m 2-44k 2+3 4m 2-12 =192k 2-48m 2+144,又k 1=y 1x 1+2=kx 1+m x 1+2,k 2=kx 2+mx 2+2,故k 1+k 2=kx 1+m x 1+2+kx 2+mx 2+2=2kx 1x 2+2k x 1+x 2 +m x 1+x 2 +4m x 1x 2+2x 1+x 2 +4=8km 2-24k -16k 2m -8km 2+16k 2m +12m 4m 2-12-16km +16k 2+12=3m -6k m 2-4km +4k 2,由k 1+k 2=-3k,得m 2-3km +2k 2=0,故m -2k m -k =0⇒m =2k 或m =k ,①当m =2k 时,直线l :y =kx +2k =k x +2 ,过定点A -2,0 ,与已知不符,舍去;②当m =k 时,直线l :y =kx +k =k x +1 ,过定点-1,0 ,即直线l 过左焦点,此时Δ=192k 2-48m 2+144=144k 2+144>0,符合题意.所以△FPQ 的周长为定值4a =8.3.(2023届重庆市南开中学校高三上学期9月月考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为22,上顶点为D ,斜率为k 的直线l 与椭圆C 交于不同的两点A ,B ,M 为线段AB 的中点,当点M 的坐标为(2,1)时,直线l 恰好经过D 点.(1)求椭圆C 的方程:(2)当l 不过点D 时,若直线DM 与直线l 的斜率互为相反数,求k 的取值范围.【解析】(1)由题意知,离心率e=22,所以a=2b=2c,设A x1,y1,B x2,y2,x21a2+y21b2=1x22a2+y22b2=1两式相减得k⋅k OM=-b2a2=-12,所以k=-1;所以直线为y-1=-(x-2),即y=-x+3,所以b=c=3,椭圆方程为x218+y29=1;(2)设直线为y=kx+m,由y=kx+mx2+2y2=18得1+2k2x2+4km x+2m2-18=0,则x M=x1+x22=-2km1+2k2,y M=m1+2k2,Δ=16k2m2-41+2k22m2-18=818k2-m2+9>0,所以k DM=y M-3x M-0=6k2+3-m2km=-k,解得m=6k2+31-2k2,1-2k2≠0,k≠±22因为l不过D点,则6k2+31-2k2≠3,即k≠0则18k2+9-6k2+321-2k22>0,化简得4k4-4k2-3>0,解得2k2-32k2+1>0,k2>3 2,所以k>62或k<-62.4.(2023届江苏省南通市高三上学期第一次质量监测)已知A ,A分别是椭圆C:x2a2+y2b2=1(a>b>0)的左、右顶点,B,F分别是C的上顶点和左焦点.点P在C上,满足PF⊥A A,AB∥OP,FA=2- 2.(1)求C的方程;(2)过点F作直线l(与x轴不重合)交C于M,N两点,设直线AM,AN的斜率分别为k1,k2,求证:k1k2为定值.【解析】(1)因为PF⊥A A,故可设P-c,y0,因为AB∥OP,故k AB∥k OP,即-ba=-y0c,解得y0=bca.又P-c,bc a在椭圆C上,故c2a2+b2c2a2b2=1,解得a2=2c2=2a2-2b2,故a=2b=2c.又FA=2-2,故FA=a-c=2-1c=2-2,故c=2,a=2,b=2.故C的方程为x24+y22=1.(2)因为椭圆方程为x24+y22=1,故F-2,0,A2,0,当l斜率为0时A,M或A,N重合,不满足题意,故可设l:x=ty-2.联立x24+y22=1x=ty-2可得t2+2y2-22ty-2=0,设M x1,y1,N x2,y2,则y1+y2=22tt2+2,y1y2=-2t2+2.故k1k2=y1x1-2⋅y2x2-2=y1y2ty1-2-2ty2-2-2=y1y2t2y1y2-2+2t y1+y2+2+22=1t2-2+2ty1+y2y1y2+2+22y1y2=1t 2+22+2 t 2-2+2 2×t2+2 2=1-23+22=2-32故定值为2-325.(2023届重庆市第一中学校高三上学期9月月考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)经过点3,12 ,其右焦点为F 3,0 .(1)求椭圆C 的离心率;(2)若点P ,Q 在椭圆C 上,右顶点为A ,且满足直线AP 与AQ 的斜率之积为120.求△APQ 面积的最大值.【解析】(1)依题可得,c =33a 2+14b 2=1a 2=b 2+c 2 ,解得a =2b =1c =3,所以椭圆C 的方程为x 24+y 2=1.所以离心率e =32.(2)易知直线AP 与AQ 的斜率同号,所以直线PQ 不垂直于x 轴,故可设PQ :y =kx +m ,k ≠0,P x 1,y 1 ,Q x 2,y 2 ,由x 24+y 2=1y =kx +m可得,1+4k 2 x 2+8mkx +4m 2-4=0,所以x 1+x 2=-8mk 1+4k 2,x 1x 2=4m 2-41+4k 2,Δ=164k 2+1-m 2 >0,而k AP k AQ =120,即y 1x 1-2⋅y 2x 2-2=120,化简可得20kx 1+m kx 2+m =x 1-2 x 2-2 ,20k 2x 1x 2+20km (x 1+x 2)+20m 2=x 1x 2-2(x 1+x 2)+4,20k 2⋅4m 2-41+4k 2+20km ⋅-8mk 1+4k 2+20m 2=4m 2-41+4k 2-2×-8mk 1+4k 2+4化简得6k 2+mk -m 2=0,所以m =-2k 或m =3k ,所以直线PQ :y =k x -2 或y =k x +3 ,因为直线PQ 不经过点A ,所以直线PQ 经过定点-3,0 .设定点B -3,0 ,S △APQ =S △ABP -S △ABQ =12AB y 1-y 2 =52k x 1-x 2 =52k (x 1+x 2)2-4x 1x 2=52k -8km 1+4k 2 2-4×4m 2-41+4k 2=5k 2164k 2+1-m 2 1+4k 2=101-5k 2 k 21+4k 2,因为1-5k 2>0,所以0<k 2<15,设t =4k 2+1∈1,95,所以S △APQ =52-5t 2+14t -9t 2=52-91t -79 2+49≤53,当且仅当t =97即k 2=114时取等号,即△APQ 面积的最大值为53.6.(2023届湖南省长沙市雅礼中学高三上学期月考)已知双曲线C :x 2-y 2=1和点B 0,1 .(1)斜率为k 且过原点的直线与双曲线C 交于E ,F 两点,求∠EBF 最小时k 的值.(2)过点B 的动直线与双曲线C 交于P ,Q 两点,若曲线C 上存在定点A ,使k AP +k AQ 为定值λ,求点A 的坐标及实数λ的值.【解析】(1)由对称性可设E x ,y ,F -x ,-y ,则BE ⋅BF=x ,y -1 ⋅-x ,-y -1 =-x 2-y 2+1,因为E 点在双曲线C 上,所以x 2-y 2=1,即y 2=x 2-1,且x ≥1所以BE ⋅BF=21-x 2 ≤0,当x =1时,BE ⋅BF=0,∠EBF 为直角,当x >1时,BE ⋅BF<0,∠EBF 为钝角,所以∠EBF 最小时,x =1,k =0.(2)设A m ,n ,由题意知动直线一定有斜率,设点B 的动直线为y =tx +1,设P x 1,y 1 ,Q x 2,y 2联立x 2-y 2=1,y =tx +1,得1-t 2 x 2-2tx -2=0,,所以1-t 2≠0,Δ=4t 2+81-t 2 >0,x 1+x 2=2t 1-t 2,x 1x 2=-21-t 2,,解得t 2<2且t 2≠1,k AP +k AQ =λ,即y 1-n x 1-m +y 2-nx 2-m=λ,即tx 1+1-n x 1-m +tx 2+1-n x 2-m=λ,化简得2t -λ x 1x 2+-mt +1-n +λm x 1+x 2 -2m +2mn -λm 2=0,2t -λ -21-t 2+-mt +1-n +λm 2t 1-t2-2m +2mn -λm 2=0,化简得λm 2-2mn t 2+2λm -n -1 t +2λ-2m +2mn -λm 2=0,由于上式对无穷多个不同的实数t 都成立,所以λm 2-2mn =0,①λm -n -1=0,2λ-2m +2mn -λm 2=0,②将①代入②得λ=m ,从而m 3=2mn ,m 2=n +1.如果m =0时,那么n =-1,此时A 0,-1 不在双曲线C 上,舍去,因此m ≠0,从而m 2=2n ,代入m 2=n +1,解得n =1,m =±2,此时A ±2,1 在双曲线上,综上,A 2,1 ,λ=2,或者A -2,1 ,λ=-2.7.(2023届河北省邢台市名校联盟高三上学期考试)已知A 1、A 2为椭圆C :x 2+y 23=1的左右顶点,直线x=x 0与C 交于A 、B 两点,直线A 1A 和直线A 2B 交于点P .(1)求点P 的轨迹方程.(2)直线l 与点P 的轨迹交于M 、N 两点,直线NA 1的斜率与直线MA 2斜率之比为-13,求证以MN 为直径的圆一定过C 的左顶点.【解析】(1)由题意得A 1-1,0 ,A 21,0 ,设A x 0,y 0 ,B x 0,-y 0 y 0≠0 ,P x ,y ,则k PA 1=k AA 1,k PA 2=k BA 2,即y x +1=y 0x 0+1,y x -1=-y 0x 0-1,得y 2x 2-1=-y 2x 20-1,又∵点x 0,y 0 在C 上,即x 20-1=-y 203,得y 2x 2-1=3,∴x 2-y 23=1y ≠0 ;(2)∵k NA 1=-13k NA 2,设直线NA 1方程为x =-3my -1,m ≠0 ,则MA 2方程为x =my +1,联立x =-3my -1x 2-y 23=1,得27m 2-1 y 2+18my =0(27m 2-1≠0且Δ>0),设N x N ,y N ,得x N =54m 227m 2-1-1,y N=-18m27m 2-1,同理设M x M ,y M ,得x M =-6m 23m 2-1+1,y M=-6m3m 2-1,k MA 1=y M x M +1=-6m -6m 2+23m 2-1 =3m ,k NA 1=y N x N +1=-18m 54m2=-13m ,∴k MA 1⋅k NA 1=-1,即MA 1⊥NA 1,∴以MN 为直径的圆一定过C 的左顶点.8.(2023届安徽省皖南八校高三上学期考试)已知椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右焦点为F 1,F 2,且左焦点坐标为-2,0 ,P 为椭圆上的一个动点,∠F 1PF 2的最大值为π2.(1)求椭圆M 的标准方程;(2)若过点-2,-4 的直线l 与椭圆M 交于A ,B 两点,点N 2,0 ,记直线NA 的斜率为k 1,直线NB 的斜率为k 2,证明:1k 1+1k 2=1.【解析】(1)因为左焦点坐标为-2,0 ,所以c =2,当点P 在上、下顶点时,∠F 1PF 2最大,又∠F 1PF 2的最大值为π2.所以b =c =2,由a 2=b 2+c 2得a 2=4,所以椭圆M 的标准方程为x 24+y 22=1;(2)当直线l 的斜率为0时,直线l 的方程为y =-4,直线y =-4与椭圆x 24+y 22=1没有交点,与条件矛盾,故可设直线l 的方程为x =my +t ,联立直线l 的方程与椭圆方程可得,x =my +tx 24+y 22=1,化简可得my +t 2+2y 2=4,所以m 2+2 y 2+2mtx +t 2-4=0,由已知方程m 2+2 y 2+2mtx +t 2-4=0的判别式Δ=4m 2t 2-4m 2+2 t 2-4 =16m 2-8t 2+32>0,又直线x =my +t 过点-2,-4 ,所以-2=-4m +t ,所以7m 2-8m <0,所以0<m <87,设A x 1,y 1 ,B x 2,y 2 ,则y 1+y 2=-2mt m 2+2,y 1y 2=t 2-4m 2+2,因为N 2,0所以1k 1+1k 2=x 1-2y 1+x 2-2y 2=my 1+t -2y 1+my 2+t -2y 2=2m +t -2 y 1+y 2y 1y 2,所以1k 1+1k 2=2m +t -2 -2mt t 2-4=2m -2mt t +2=2m -2mt 4m =2m -t 2=1方法二:设直线l 的方程为m x -2 +ny =1,A x 1,y 1 ,B x 2,y 2 ,由椭圆M 的方程x 2+2y 2=4,得(x -2)2+2y 2=-4x -2 .联立直线l 的方程与椭圆方程,得(x -2)2+2y 2=-4x -2 m x -2 +ny ,即1+4m (x -2)2+4n x -2 y +2y 2=0,1+4m x -2y 2+4n x -2y +2=0,所以1k 1+1k 2=x 1-2y 1+x 2-2y 2=-4n1+4m .因为直线l 过定点-2,-4 ,所以m +n =-14,代入1k 1+1k 2,得1k 1+1k 2=x 1-2y 1+x 2-2y 2=-4n 1+4m =1+4m1+4m =1.9.(2022届河北省石家庄高三上学期11月月考)已知椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,椭圆Γ的离心率为22,椭圆Γ上的一点P 满足PF 2⊥x 轴,且PF 2 =1.(1)求椭圆Γ的标准方程;(2)已知点A 为椭圆Γ的左顶点,若点B ,C 为椭圆Γ上异于点A 的动点,设直线AB ,AC 的斜率分别为k AB ⋅k AC ,且k AB ⋅k AC =1,过原点O 作直线BC 的垂线,垂足为点D ,问:是否存在定点E ,使得线段DE 的长为定值?若存在,求出定点E 的坐标及线段DE 的长;若不存在,请说明理由.【解析】(1)由椭圆Γ上的一点P 满足PF 2⊥x 轴,且PF 2 =1,可得b 2a=1,即b 2=a ,又由椭圆Γ的离心率为22,可得c a =22,即a =2c ,因为a 2-b 2=c 2,联立方程组,可得a =2,b =2,所以椭圆Γ的标准方程为x 24+y 22=1.(2)由椭圆Γ:x 24+y 22=1,可得A (-2,0),设直线BC 的方程为y =mx +n (n ≠2m ),则B (x 1,mx 1+n ),C (x 2,mx 2+n ),联立方程组y=mx+nx24+y22=1,整理得(2m2+1)x2+4mnx+2n2-4=0,则Δ=8(4m2-n2+2)>0,x1+x2=4mn2m2+1,x1x2=2n2-42m2+1,由k AB⋅k AC=1,可得(mx1+n)(mx2+n) (x1+2)(x2+2)=1,即(m2-1)x1x2+(mn-2)(x1+x2)+n2-4=0,可得(m2-1)(2n2-4)+(mn-2)(-4mn)+(n2-4)(2m2+1)=0,整理得12m2-8mn+n2=0,所以(6m-n)(2m-n)=0,所以n=6m或n=2m(舍去),所以直线BC的方程为y=mx+6m,即y=m(x+6),当x=-6时,y=0,可得直线BC过定点F-6,0,因为OD⊥BC,所以点D在以OF为直径的圆上,所以当点E为线段OF的中点时,线段DE的长为定值,此时线段DE的长为3,点E3,0.10.(2022届八省八校(T8联考)高三上学期联考)设椭圆E:x2a2+y2b2=1(a>b>0),圆C:(x-2m)2+(y-4m)2=1(m≠0),点F1,F2,分别为E的左右焦点,点C为圆心,O为原点,线段OC的垂直平分线为l.已知E的离心率为12,点F1,F2关于直线l的对称点都在圆C上.(1)求椭圆E的方程;(2)设直线l与椭圆E相交于A,B两点,问:是否存在实数m,使直线AC与BC的斜率之和为23若存在,求实数m的值;若不存在,说明理由.【解析】(1)由已知,e=ca=12,则a=2c设点F1,F2关于直线l的对称点分别为M,N,因为点O,C关于直线l对称,O为线段F1F2的中点,则C为线段MN的中点,从而线段MN为圆C的一条直径,所以F1F2=|MN|=2,即2c=2,即c=1.于是a=2,b2=a2-c2=3,所以椭圆E的方程是x24+y23=1.(2)因为原点O为线段F1F2的中点,圆心C为线段MN的中点,直线l为线段OC的垂直平分线,所以点O与C也关于直线l对称,因为点C(2m,4m),则线段OC的中点为(m,2m),直线OC的斜率为2,又直线l为线段OC的垂直平分线,所以直线l的方程为y-2m=-12(x-m),即y=-12x+5m2.将y=-12x+5m2代入x24+y23=1,得3x2+4-x2+5m22=12,即4x2-10mx+25m2-12=0.设点A x1,y1,B x2,y2,则x1+x2=5m2,x1x2=25m2-124.所以k AC+k BC=y1-4mx1-2m+y2-4mx2-2m=-12x1+3mx1-2m+x2+3mx2-2m=-x1+3mx2-2m+x2+3mx1-2m2x1-2mx2-2m=-2x1x2+m x1+x2-12m2 2x1x2-4m x1+x2+8m2.由已知,k AC+k BC=23,则2x1x2+m x1+x2-12m22x1x2-4m x1+x2+8m2+23=0,得2x1x2-m x1+x2-4m2=0.所以25m 2-122-5m 22-4m 2=0,即m 2=1,即m =±1.因为直线l 与椭圆E 相交,则Δ=100m 2-1625m 2-12 >0,解得m 2<1625,即|m |<45.因为45<1,所以不存在实数m ,使直线AC 与BC 的斜率之和为23.11.(2022届上海市嘉定区高三一模)在平面直角坐标系xOy 中,已知椭圆Γ:x 2a 2+y 2b2=1a >b >0 的左、右顶点分别为A 、B ,右焦点为F ,且椭圆Γ过点0,5 、2,53 ,过点F 的直线l 与椭圆Γ交于P 、Q 两点(点P 在x 轴的上方).(1)求椭圆Γ的标准方程;(2)若PF+2QF =0 ,求点P 的坐标;(3)设直线AP 、BQ 的斜率分别为k 1、k 2,是否存在常数λ,使得k 1+λk 2=0?若存在,请求出λ的值;若不存在,请说明理由.【解析】(1)因为椭圆Γ过点0,5 、2,53 ,则有b =54a 2+259b2=1,解得a =3b =5 ,所以椭圆Γ的标准方程为x 29+y 25=1.(2)设P x 1,y 1 y 1>0 ,Q x 2,y 2 .由(1)知,F 2,0 .因为PF+2QF =0 ,则有2-x 1,-y 1 +22-x 2,-y 2 =0,0 ,即6-x 1-2x 2,-y 1-2y 2 =0,0 ,所以6-x 1-2x 2=0,-y 1-2y 2=0, 解得x 2=6-x 12,y 2=-y 12,即Q 6-x 12,-y 12.分别将P 、Q 两点的坐标代入x 29+y 25=1得x 219+y 215=1,6-x 12 29+-y 12 25=1, 解得x 1=34,y 1=-534 (舍)或x 1=34,y 1=534.所以所求点P 的坐标为34,534.(3)设存在常数λ,使得k 1+λk 2=0.由题意可设直线l 的方程为x =my +2,点P x 1,y 1 ,Q x 2,y 2 ,则-λ=k 1k 2=y 1x 1+3y 2x 2-3=y 1x 2-3 y 2x 1+3 .又因为x 229+y 225=1,即y 22x 22-9=-59,即y 2x 2-3=-5x 2+3 9y 2,所以-λ=-9y 1y 25x 1+3 x 2+3 =-9y 1y 25my 1+5 my 2+5即-λ=-9y 1y 25m 2y 1y 2+5m y 1+y 2 +25(*)又由x =my +2,x 29+y 25=1,得5m 2+9 y 2+20my -25=0,△=900m 2+1 >0,且y 1+y 2=-20m 5m 2+9,y 1y 2=-255m 2+9.代入(*)得-λ=-9-255m 2+9 5m 2-255m 2+9+5m -20m 5m 2+9 +25 =15即λ=-15,所以存在常数λ=-15,使得k 1+λk 2=0.12.(2022届海南省海口市高三上学期考试)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的虚轴长为4,直线2x -y =0为双曲线C 的一条渐近线.(1)求双曲线C 的标准方程;(2)记双曲线C 的左、右顶点分别为A ,B ,过点T (2,0)的直线l 交双曲线C 于点M ,N (点M 在第一象限),记直线MA 斜率为k 1,直线NB 斜率为k 2,求证:k1k 2为定值.【解析】(1)∵虚轴长为4,∴2b =4,即b =2,∵直线2x -y =0为双曲线C 的一条渐近线,∴ba=2,∴a =1,故双曲线C 的标准方程为x 2-y 24=1.(2)由题意知,A (-1,0),B (1,0),由题可知,直线l 斜率不能为零,故可设直线l 的方程为x =ny +2,设M (x 1,y 1)N (x 2,y 2),联立x 2-y 24=1x =ny +2,得(4n 2-1)y 2+16ny +12=0,∴y 1+y 2=-16n 4n 2-1,y 1y 2=124n 2-1,∴ny 1y 2=-34(y 1+y 2),∵直线MA 的斜率k 1=y 1x 1+1,直线NB 的斜率k 2=y 2x 2-1,∴k 1k 2=y 1x 1+1y 2x 2-1=y 1(ny 2+1)y 2(ny 1+3)=ny 1y 2+y 1ny 1y 2+3y 2=-34(y 1+y 2)+y 1-34(y 1+y 2)+3y 2=-13,为定值.13.(2023届江苏省南京市六校联合体高三上学期调研)已知椭圆C :x 25+y 24=1的上下顶点分别为A ,B ,过点P 0,3 且斜率为k (k <0)的直线与椭圆C 自上而下交于M ,N 两点,直线BM 与AN 交于点G .(1)设AN ,BN 的斜率分别为k 1,k 2,求k 1⋅k 2的值;(2)求证:点G 在定直线上.【解析】(1)设M (x 1,y 1),N (x 2,y 2),A 0,2 ,B 0,-2 ,k 1⋅k 2=y 2+2x 2⋅y 2-2x 2=y 22-4x 22,又x 225+y 224=1所以y 22=4⋅1-x 225,所以k 1⋅k 2=41-x 225-4x 22=-45.(2)设PM :y =kx +3联立4x 2+5y 2=20,得到(4+5k 2)x 2+30kx +25=0,∴x 1+x 2=-30k 4+5k 2x 1⋅x 2=254+5k 2,Δ=900k 2-100(4+5k 2)=400(k 2-1)>0,直线MB :y =y 1+2x 1x -2,直线NA :y =y 2-2x 2x +2,联立得:y +2y -2=x 2(y 1+2)(y 2-2)x 1,法一:y +2y -2=-54⋅y 2+2 x 2y 1+2 x 1=-54⋅k 2x 1x 2+5k (x 1+x 2)+25x 1x 2=-5,解得y =43.法二:由韦达定理得x 1+x 2x 1x 2=-65k ,∴y +2y -2=x 2kx 2+1(kx 1+5)x 1=kx 1x 2+5x 2kx 1x 2+x 1-56(x 1+x 2)+5x 2-56(x 1+x 2)+x1=-5.解得y =43,所以点G 在定直线y =43上.14.(2023届湖南省邵阳市高三上学期第三次月考)已知A (-22,0),B (22,0),直线PA ,PB 的斜率之积为-34,记动点P 的轨迹为曲线C .(1)求C 的方程;(2)直线l 与曲线C 交于M ,N 两点,O 为坐标原点,若直线OM ,ON 的斜率之积为-34, 证明:△MON 的面积为定值.【解析】(1)设P (x ,y ),则直线PA 的斜率k PA =y x +22(x ≠-22),直线PB 的斜率 k PB =yx -22(x ≠22),由题意k PA ⋅k PB =y x +22⋅y x -22=y 2x 2-8=-34,化简得 x 28+y 26=1(x ≠±22);(2)直线l 的斜率存在时,可设其方程为y =kx +m ,联立y =kx +m ,x 28+y 26=1,化简得3+4k 2 x 2+8km x +4m 2-24=0,设M x 1,y 1 ,N x 2,y 2 ,则Δ=(8km )2-43+4k 2 4m 2-24 =488k 2+6-m 2 >0,x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-243+4k 2,所以 k OM ⋅k ON =y 1y 2x 1x 2=kx 1+m kx 2+mx 1x 2=k 2x 1x 2+km x 1+x 2 +m 2x 1x 2=4m 2k 2-24k 2-8k 2m 2+3m 2+4k 2m 23+4k 24m 2-243+4k 2=-24k 2+3m 24m 2-24=-34化简得m 2=4k 2+3则|MN |=1+k 2x 1-x 2 =1+k 2488k 2+6-m 23+4k 2==431+k 24k 2+34k 2+3=431+k 23+4k 2,又O 到MN 的距离d =|m |1+k 2=4k 2+31+k 2,所以S △OMN =12|MN |⋅d =12⋅431+k 23+4k 2⋅3+4k 21+k 2=23,为定值.当直线l 的斜率不存在时,可设 M x 0,y 0 ,N x 0,-y 0 ,则k CM ⋅k ON =-y 20x 20=-34,且x 208+y 206=1,解得x 20=4,y 20=3,此时S △OMN =2×12×x 0y 0 =23,综上,△OMN 的面积为定值23.15.(2023届浙江省新高考研究高三上学期8月测试)已知椭圆C :x 2a 2+y 2b2=1(a >0,b >0)的右焦点为F 2,0 ,离心率为12,△ABC 为椭圆C 的任意内接三角形,点D 为△ABC 的外心.(1)求C 的方程;(2)记直线AB 、BC 、CA 、OD 的斜率分别为k 1、k 2、k 3、k 4,且斜率均存在.求证:4k 1k 2k 3k 4=3.【解析】(1)由椭圆C :x 2a 2+y 2b2=1(a >0,b >0)的右焦点为F 2,0 ,离心率为c a =12得a =4,c =2. 所以b =16-4=23.所以椭圆C 的方程为x 216+y 212=1.(2)证明:设A x 1,y 1 ,B x 2,y 2 ,C x 3,y 3 ,D x 4,y 4 ,则k 1=y 2-y 1x 2-x 1,k2=y 2-y 3x 2-x 3,k 3=y 3-y 1x 3-x 1,k 4=y 4x 4.设△ABC 的外接圆方程为x 2+y 2-2x 4x -2y 4y +F =0,得x 21+y 21-2x 4x 1-2y 4y 1+F =0,x 22+y 22-2x 4x 2-2y 4y 2+F =0,两式相减得x 22-x 21+y 22-y 21=2x 4x 2-x 1 +2y 4y 2-y 1 ,因为y 22-y 21=-34x 22-x 21 ,所以14x 2+x 1 =2x 4+2y 4k 1,同理:14x 2+x 3 =2x 4+2y 4k 2.两式相减得:2y 4=x 3-x 14k 2-k 1 ,于是:2x 4=x 2+x 14-x 3-x 14k 2-k 1⋅k 1。