高考数学-圆锥曲线解题常用方法
- 格式:doc
- 大小:289.82 KB
- 文档页数:6
高考数学复习----圆锥曲线压轴解答题常考套路归类专项练习题(含答案解析)1.(2023春·福建泉州·高三阶段练习)如图,在平面直角坐标系中,已知点,直线:,为平面上的动点,过点作直线的垂线,垂足为点,分别以PQ ,PF 为直径作圆和圆,且圆和圆交于P ,R 两点,且.(1)求动点的轨迹E 的方程;(2)若直线:交轨迹E 于A ,B 两点,直线:与轨迹E 交于M ,D 两点,其中点M 在第一象限,点A ,B 在直线两侧,直线与交于点且,求面积的最大值.【解析】(1)设点,因为, 由正弦定理知,,解得, 所以曲线的方程为.(2)直线与曲线在第一象限交于点, 因为,所以, 由正弦定理得:,xOy ()1,0F l =1x −P P l Q 1C 2C 1C 2C PQR PFR ∠=∠P 1l x my a =+2l 1x =2l 1l 2l N MA BN AN MB ⋅=⋅MAB △(,)P x y PQR PFR ∠=∠||||PQ PF =|1|x =+24y x =E 24y x =1x =E (1,2)M ||||||||MA BN AN MB ⋅=⋅||||||||MA MB AN BN =sin sin sin sin ANM BNMAMN BMN∠∠=∠∠所以. 设, 所以, 得,所以, 所以直线方程为:,联立,得 由韦达定理得,又因为点在直线的上方,所以,所以, 所以又因为点到直线的距离为所以方法一:令,则,所以当时,单调递增,当时,单调递减,所以, 所以当时,面积最大,此时最大值为.方法二:最大值也可以用三元均值不等式,过程如下:, 当且仅当,即时,等号成立.AMN BMN ∠=∠()()1122,,,A x y B x y 12122212121222224411221144AM BM y y y y k k y y x x y y−−−−+=+=+=+=−−++−−124y y +=−2121222121124144AB y y y y k y y x x y y −−====−−+−1l x y a =−+24y xx y a ⎧=⎨=−+⎩2440,16(1)0,1y y a a a +−=∆=+>>−12124,4y y y y a +=−=−M 1l 21a >−+13a −<<12||AB y =−=M 1l d =11||22ABMSAB d ==⨯=2()(1)(3),13f a a a a =+−−<<()(31)(3)f a a a '=−−113a −<<()0,()f a f a '>133a <<()0,()f a f a '<max 1256()327f a f ⎛⎫== ⎪⎝⎭13a =ABM S ∆=ABM S △ABMS==223a a +=−13a =2.(2023·北京·高三专题练习)已知椭圆中心在原点,焦点在坐标轴上,,一个焦点为. (1)求椭圆的标准方程;(2)过点且不与坐标轴垂直的直线与椭圆相交于两点,直线分别与直线相交于两点,若为锐角,求直线斜率的取值范围. 【解析】(1)由题意知:椭圆的离心率因为一个焦点为,所以,则由可得:,所以椭圆的标准方程为. (2)设直线的方程为,, 联立方程组,整理可得:,则有, 由条件可知:直线所在直线方程为:, 因为直线与直线相交于 所以,同理可得:, 则, 若为锐角,则有, 所以 C O ()0,1F C F l ,A B ,OA OB 2y =,M N MON ∠l k C c e a ==()0,1F 1c =a 222a b c =+1b =C 2212y x +=l 1y kx =+1122(,),(,)A x y B x y 22112y kx y x =+⎧⎪⎨+=⎪⎩22(2)210k x kx ++−=12122221,22k x x x x k k −−+==++OA 11y y x x =OA 2y =M 112(,2)x M y 222(,2)xN y 112(,2)x OM y =222(,2)xON y =MON ∠0OM ON >121212212121212444444(1)(1)()1x x x x x x OM ON y y kx kx k x x k x x =+=+=++++++,则,解得:或, 所以或或, 故直线斜率的取值范围为. 3.(2023·青海海东·统考一模)已知函数.(1)求曲线在处的切线方程;(2)若在点处的切线为,函数的图象在点处的切线为,,求直线的方程.【解析】(1),,则,所以曲线在处的切线方程为,即.(2)设,令,则. 当时,; 当时,.所以在上单调递增,在上单调递减,所以在时取得最大值2,即.,当且仅当时,等号成立,取得最小值2. 因为,所以,得.2222142=412122k k k k k k −⨯++−−⨯+⨯+++22=41k +−22421k k −=−224201k k −>−212k <21k>k −<<1k >1k <−l k 22(,1)(,)(1,)22−∞−−+∞()32ln 13x f x x x x =−+−()y f x =1x =()y f x =A 1l ()e e x xg x −=−B 2l 12l l ∥AB ()11101133f =−+−=−()222ln 212ln 3f x x x x x =+−+=−+'()12f '=()y f x =1x =()1213y x +=−723y x =−()()1122,,,A x y B x y ()22ln 3h x x x =−+()()()21122x x h x x x x+−=−='01x <<()0h x '>1x >()0h x '<()h x ()0,1()1,+∞()22ln 3h x x x =−+1x =()2f x '…()e e 2x x g x −=+'…0x =()g x '12l l ∥()()122f x g x ''==121,0x x ==即,所以直线的方程为,即. 4.(2023春·重庆·高三统考阶段练习)已知椭圆的左右焦点分别为,右顶点为A ,上顶点为B ,O 为坐标原点,.(1)若的面积为的标准方程;(2)如图,过点作斜率的直线l 交椭圆于不同两点M ,N ,点M 关于x 轴对称的点为S ,直线交x 轴于点T ,点P 在椭圆的内部,在椭圆上存在点Q ,使,记四边形的面积为,求的最大值.【解析】(1),∴,,解得的标准方程为:. (2),∴,椭圆,令,直线l 的方程为:, 联立方程组: ,消去y 得,由韦达定理得,,()11,,0,03A B ⎛⎫− ⎪⎝⎭AB ()130010y x −−−=−−13y x =−22122:1(0)x y C a b a b+=>>12,F F ||2||OA OB =12BF F △1C (1,0)P (0)k k >1C SN OM ON OQ +=OMQN 1S 21OT OQ S k⋅−||2||OA OB =2a b =12122BF F S b c =⋅=△bc =222a b c =+4,2,a b c ===1C 221164x y +=||2||OA OB =2a b =22122:14x yC b b+=()()()()201012,,,,,,,0T M x y N x y Q x y T x (1)y k x =−222214(1)x y b b y k x ⎧+=⎪⎨⎪=−⎩22222(14)8440k x k x k b +−+−=2122814k x x k +=+221224414k b x x k −=+有 ,因为:,所以, , 将点Q 坐标代入椭圆方程化简得: , 而此时: . 令,所以直线 , 令得 , 由韦达定理化简得,,而, O 点到直线l 的距离, 所以:,,因为点P 在椭圆内部,所以 ,得,即令 ,求导得 ,当,单调递增; 当 ,即,单调递减.所以:,即5.(2023·全国·高三专题练习)已知椭圆C :的右顶点为,过左焦点F 的直线交椭圆于M ,N 两点,交轴于P 点,,,记,,(为C 的右焦点)的面积分别为.121222(2)14kyy k x x k −+=+−=+OM ON OQ +=202814k x k =+02214k y k −=+222414k b k=+()22222284(14)(44)480k k k b k ∆=−+−=>()11,S x y −122221:()y y SN y y x x x x +−=−−0y =()1212211212212112122(1)(1)(2)2T x x x x x y x y k x x k x x x y y k x x x x −+−+−===+++−+−24T x b =12OMN S S =△12MN x =−=d =1122S MN d =⨯⋅=2222243212814(14)k b k OQ OT k k ⋅==++2312280(14)OT OQ S k k k ⋅−=+214b <2112k >k >322()(14)k f k k =+222222423(41)(43)(43)()(14)(14)k k k k k f k k k −+−−−'==++213124k <<k <<()0f k '>()f k 234k >k >()0f k '<()f k max()f k f ==⎝⎭21maxOT OQ S k ⎛⎫⋅−=⎪⎝⎭22221(0)x y a b a b+=>>A 1(0)x ty t =−≠y PM MF λ=PN NF μ=OMN 2OMF △2ONF △2F 123,,S S S(1)证明:为定值;(2)若,,求的取值范围.【解析】(1)由题意得F ,,所以椭圆C 的标准方程为:.设,显然,令,,则,则,,由得,解得,同理. 联立,得. ,从而(定值) (2)结合图象,不妨设,,,, λμ+123S mS S μ=+42λ−≤≤−m a (1,0)1c −⇒=2221b a c =−=2212x y +=1122(,),(,)M x y N x y 0t ≠0x =1y t =10,P t ⎛⎫⎪⎝⎭111,PM x y t ⎛⎫=− ⎪⎝⎭()111,MF x y =−−−PM MF λ=11111(,)(1,)x y x y t λ−=−−−111ty λ+=211ty μ+=22121x y x ty ⎧+=⎪⎨⎪=−⎩22(2)210t y ty +−−=12122221,11t y y y y t t −+==++121212*********y y tty ty t y y t λμ++++=+=⋅=⋅=−−4λμ+=−120y y >>1121211122S y y y y =⋅⋅−=−()21111122S y y =⋅⋅=32211122S y y =⋅⋅=−由得 代入,有,则, 解得 ,,设,则,设,则,令,解得,解得,故在上单调递减,在上单调递增,则且,则,则. 6.(2023·四川成都·统考二模)已知椭圆的左、右焦点分别为,离心率,.(1)求椭圆的标准方程;(2)过点的直线与该椭圆交于两点,且的方程. 【解析】(1)由已知得,解得,,所求椭圆的方程为;(2)由(1)得.①若直线的斜率不存在,则直线的方程为,由得. 111ty λ+=21211111,,13y y y tt y λμμμλμ++++====+−−123S mS S μ=+()1212111222y y my y μ−=−1212y y my y μ−=−2222111811(1)17(3)133y y y m y y y μμμμμμ⎡⎤=−+=−−=−=−++−+⎢⎥+⎣⎦42λ−≤≤−31[1,3]μλ∴+=−−∈3u μ=+[]1,3u ∈()87h u u u ⎛⎫=−+ ⎪⎝⎭()228uh u u −'=()0h u '>1u <<()0h u '<3u <<()h u ()(()max 7h u =−()()412,33h h =−=()2,7h u ⎡∈−−⎣2,7m ⎡−−⎣∈22221(0)x y a b a b+=>>12,F F e =22a c =1F l M N 、2223F M F N +=l 22c a a c⎧=⎪⎪⎨⎪=⎪⎩1a c ==1b ∴∴2212x y +=()()121,01,0F F −、l l =1x −22112x x y =−⎧⎪⎨+=⎪⎩2y =设, ,这与已知相矛盾. ②若直线的斜率存在,设直线直线的斜率为,则直线的方程为,设,联立, 消元得,,,又,, 化简得,解得或(舍去)所求直线的方程为或.7.(2023·全国·高三专题练习)设分别是椭圆的左、右焦点,过作倾斜角为的直线交椭圆于两点,到直线的距离为3,连接椭圆的四个顶点得到的菱形面积为4. (1)求椭圆的方程;(2)已知点,设是椭圆上的一点,过两点的直线交轴于点,若,1,M N ⎛⎛−− ⎝⎭⎝⎭、()222,4,04F M F N ⎛⎛⎫∴+=−+−=−= ⎪ ⎪⎝⎭⎝⎭l l k l ()1y k x =+()()1122,,M x y N x y 、()22112y k x x y ⎧=+⎪⎨+=⎪⎩()2222124220k x k x k +++−=22121222422,1212k k x x x x k k −−∴+==++()121222212ky y k x x k ∴+=++=+()()2112221,,1,F M x y F N x y =−=−()2212122,F M F N xx y y ∴+=+−+(22F M F N x ∴+=424023170k k −−=21k =21740k =−1k ∴=±∴l 1y x =+=1y x −−12,F F 2222:1(0)x y D a b a b+=>>2F π3D ,A B 1F AB D D ()1,0M −E D ,E M l y C CE EM λ=求的取值范围;(3)作直线与椭圆交于不同的两点,其中点的坐标为,若点是线段垂直平分线上一点,且满足,求实数的值.【解析】(1)设的坐标分别为,其中; 由题意得的方程为. 因为到直线的距离为3,解得①因为连接椭圆的四个顶点得到的菱形面积为4,所以,即 ②联立①②解得: ,所求椭圆D 的方程为.(2)由(1)知椭圆的方程为,设,因为,所以所以,代入椭圆的方程, 所以,解得或.(3)由,设根据题意可知直线的斜率存在,可设直线斜率为,则直线的方程为,把它代入椭圆的方程,消去整理得: 由韦达定理得则,; 所以线段的中点坐标为. (i )当时,则,线段垂直平分线为轴,λ1l D ,P Q P ()2,0−()0,N t PQ 4NP NQ ⋅=t 12,F F ()(),0,,0c c −0c >AB )y x c −1F AB 3,=c =2223a b c −==D 12242a b ⨯⨯=2ab =2,1a b ==2214x y +=2214x y +=11(,),(0,)E x y C m CE EM λ=1111(,)(1,),x y m x y λ−=−−−11,11m x y λλλ=−=++22()1()141m λλλ−++=+2(32)(2)04m λλ++=≥23λ≥−2λ≤−()2,0P −11(,)Q x y 1l k 1l ()2y k x =+D y 2222(14)16(164)0k x k x k +++−=212162,14k x k −+=−+2122814k x k −=+112()4214k y k x k =+=+PQ 22282(,)1414k kk k −++0k =()2,0Q PQ y于是,由解得(ii )当时,则线段垂直平分线的方程为. 由点是线段垂直平分线的一点,令,得;于是由, 解得综上可得实数的值为8.(2023·全国·高三专题练习)如图所示,为椭圆的左、右顶点,焦距长为在椭圆上,直线的斜率之积为.(1)求椭圆的方程;(2)已知为坐标原点,点,直线交椭圆于点不重合),直线交于点.求证:直线的斜率之积为定值,并求出该定值. 【解析】(1)由题意,,设,,由题意可得,即,可得 (2,),(2,)NP t NQ t =−−=−244,NP NQ t ⋅=−+=t =±0k ≠PQ 222218()1414k ky x k k k −=−+++()0,N t PQ 0x =2614kt k =−+11(2,),(,)NP t NQ x y t =−−=−24211222224166104(16151)2()4141414(14)k k k k k NP NQ x t y t k k k k −++−⎛⎫⋅=−−−=+== ⎪++++⎝⎭k =2614k t k =−=+t ±,A B 2222:1(0)x yE a b a b+=>>P E ,PA PB 14−E O ()2,2C −PC E (,M M P ,BM OC G ,AP AG ()(),0,,0A a B a −()00,P x y 0000,PA PB y y k k x a x a==+−000014y y x a x a ⋅=−+−222014y x a =−−2202222222201111444x b a b a c x a a a ⎛⎫− ⎪−⎝⎭=−⇒=⇒=−又所以,椭圆的方程为;(2)由题意知,直线的斜率存在,设直线,且联立,得 由,得,所以, 设,由三点共线可得所以,直线的斜率之积为定值.9.(2023·全国·高三专题练习)已知,分别是椭圆的上、下焦点,直线过点且垂直于椭圆长轴,动直线垂直于点,线段的垂直平分线交于点,点的轨迹为.2c =c =2a =E 2214x y +=MP :MP y kx m =+()()112222,,,,k m P x y M x y =−+2214y kx m x y =+⎧⎪⎨+=⎪⎩()222148440k x kmx m +++−=Δ0>22410k m +−>2121222844,1414km m x x x x k k −−+==++(),G t t −,,G M B 222222222y y tt t x x y −=⇒=−−−+−11,22AG AP y tk k t x ==−++()()()()112121221212222221222AG AP y y y y y tk k t x x y x k x m x ⋅=⋅=−=−−+++−+⎡⎤++−+⎣⎦()()()()()())()()22212122212112121221222124y k x x km x x m y m x x m x m x m x x x x +++=−=−=−−++⎡⎤⎡⎤−+−+−+++⎣⎦⎣⎦()()()2222222222222222244844841414448144164161241414m kmk km m k m k m m k m k k m km m m km k m k k −−+⋅+−−++++=−=−⎡⎤⎡⎤−−−−−++⎣⎦−+⋅+⎢⎥++⎣⎦()()()()()()()2222222422141(2)818144144m k m k m k m k m m m m k m m m m km k −+−++−=−=−=−=−=−−−−−−−+,AP AG 14−F F '221:171617C x y +=1l F '2l 1l G GF 2l H H 2C(1)求轨迹的方程;(2)若动点在直线上运动,且过点作轨迹的两条切线、,切点为A 、B ,试猜想与的大小关系,并证明你的结论的正确性.【解析】(1),,椭圆半焦距长为,,,,动点到定直线与定点的距离相等,动点的轨迹是以定直线为准线,定点为焦点的抛物线,轨迹的方程是;(2)猜想证明如下:由(1)可设,,,则,切线的方程为:同理,切线的方程为: 联立方程组可解得的坐标为, 在抛物线外,,,2C P :20l x y −−=P 2C PA PB PFA ∠PFB ∠22171617x y +=∴2211716y x +=∴1410,4F ⎛⎫'− ⎪⎝⎭10,4F ⎛⎫ ⎪⎝⎭HG HF =∴H 11:4l y =−10,4F ⎛⎫⎪⎝⎭∴H 11:4l y =−10,4F ⎛⎫⎪⎝⎭∴2C 2x y =PFA PFB ∠=∠()211,A x x ()()22212,B x x x x ≠2y x =2y x '∴=112AP x x k y x =='=∴AP ()1221111220y x x x x y x x x −⇒−=−−=BP 22220x x y x −−=P 122P x x x +=12P y x x =P ∴||0FP ≠2111,4FA x x ⎛⎫=− ⎪⎝⎭12121,24x x FP x x +⎛⎫=− ⎪⎝⎭2221,4FB x x ⎛⎫=− ⎪⎝⎭22121121112122221112211111244444cos ||||||11||||4x x x x x x x x x x x FP FA AFP FP FA FP FP x x FP x +⋅−−+++⋅∴⎛⎫⎛⎫⎛⎫⎛⎫+⋅∠====+− ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎝⎭⎝⋅+同理10.(2023春·江西·高三校联考阶段练习)已知椭圆+=1(a >b >0),右焦点F (1,0),,过F作两条互相垂直的弦AB ,CD .(1)求椭圆的标准方程;(2)求以A ,B ,C ,D 为顶点的四边形的面积的取值范围.【解析】(1)由题意知,,又,所以,所以,所以椭圆的标准方程为;(2)①当直线与中有一条直线的斜率为0时,另一条直线的斜率不存在,不妨设直线的斜率为0,的斜率不存在,则直线方程为,直线的方程为,联立可得所以联立可得所以所以四边形ADBC 的面积. ②当两条直线的斜率均存在且不为0时,设直线的方程为,1214cos ||||||x x FP FB BFP FP FB FP +⋅∠==cos cos AFP BFP ∴∠=∠PFA PFB ∴∠=∠22x a 22y b2c e a ==a 1c =a =222abc =+21b =2212x y +=AB CD AB CD AB 0y =CD 1x =22120x y y ⎧+=⎪⎨⎪=⎩0x y ⎧=⎪⎨=⎪⎩AB =22121x y x ⎧+=⎪⎨⎪=⎩1x y =⎧⎪⎨=⎪⎩CD =11||||222S AB CD =⋅=⨯AB (1)y k x =−则直线的方程为. 将直线的方程代入椭圆方程,整理得,方程的判别式,设, 所以, ∴, 同理可得, ∴四边形ADBC 的面积 , ∵,当且仅当时取等号,∴四边形ADBC 的面积,综上①②可知,四边形ADBC 的面积的取值范围为.11.(2023·全国·高三专题练习)如图,椭圆,经过点,且斜率为的直线与椭圆交于不同的两点P ,Q (均异于点,证明:直线AP 与AQ 的斜率之和为2.CD 1(1)y x k=−−AB ()2222124220k xk x k +−+−=()2222124220k x k x k +−+−=()()42221642122880k k k k ∆=−+−=+>()()1122,,,A x y B x y 22121222422,1212k k x x x x k k −+=⋅=++12||AB x −)22112kAB k +==+)2222111||1212k k CD k k⎫+⎪+⎝⎭==++⨯))22221111||||22122k k S AB CD k k ++=⋅=⨯⨯++()2222242144122252112121k k k k k k k k k ⎛⎫+ ⎪+⎝⎭===−++⎛⎫⎛⎫++++ ⎪ ⎪⎝⎭⎝⎭22121219k k ⎛⎛⎫++≥+= ⎪⎝⎭⎝1k =±16,29S ⎡⎫∈⎪⎢⎣⎭S 16,29⎡⎤⎢⎥⎣⎦22:12+=x E y (1,1)M k E (0,1)A −【解析】设,直线的方程为,两交点异于点,则 ,联立直线与椭圆方程,消去变量 并整理得,由已知,由韦达定理得,则所以可知直线与的斜率之和为2.12.(2023·全国·高三专题练习)已知椭圆的左右焦点分别为,,,,是椭圆上的三个动点,且,,若,求的值.【解析】由题可知,设,,,由,得, 满足,可得,()()1122,,,P x y Q x y PQ (1)1y k x =−+A 2k ≠y ()222221124(1)2402(1)1x y k x k k x k k y k x ⎧+=⎪⇒++−+−=⎨⎪=−+⎩0∆>21212224(1)24,1212k k k kx x x x k k −−+==++()()12121212121211AP AQ k x k x y y k k x x x x −+−++++=+=+()()12121212122(2)(2)2kx x k x x k x x k x x x x +−+−+==+222244122(2)1224k k k k k k k k−+=+−⋅⋅+−()2212k k =−−=AP AQ 22162x y +=1F 2F A B P 11PF F A λ=22PF F B μ=2λ=μ2226,2,4a b c ===()00,P x y 11(,)A x y 22(,)B x y 11PF F A λ=22PF F B μ=()1,0F c −0101101x x c y y λλλλ+⎧−=⎪⎪+⎨+⎪=⎪+⎩()010110x x c y y λλλ⎧+=−+⎨+=⎩满足,可得,由,可得, 所以,∴,, 又,∴, 同理可得, ∴, 所以,又,所以.13.(2023·全国·高三专题练习)已知椭圆的离心率为,且直线被椭圆. (1)求椭圆的方程;(2)以椭圆的长轴为直径作圆,过直线上的动点作圆的两条切线,设切点为,若直线与椭圆交于不同的两点,,求的取值范围.【解析】(1)直线,经过点,,被椭圆,可得.又,,解得:,,, ()2,0F c 0202101x x c y y μμμμ+⎧=⎪+⎪⎨+⎪=⎪+⎩()020210x x c y y μμμ⎧+=−+⎨+=⎩22002222112211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩2200222222211221x y a b x y a b λλλ⎧+=⎪⎪⎨⎪+=⎪⎩()()()()010*******21x x x x y y y y abλλλλλ−+−++=−()()()()0101211x x x x a λλλλ−+=−+()()2011a x x cλλ−=−−()()011x x c λλ+=−+222202a c a c x c cλ−+=−222202a c a c x c c μ−+=−+()22222a c a c c cλμ−++=⋅2222210a c a cλμ++=⋅=−2λ=8μ=22122:1(0)x y C a b a b+=>>121:1x yl a b+=1C 1C 1C 2C 2:4l y =M 2C ,A B AB 1C C D ||||CD AB ⋅1:1x yl a b+=(,0)a (0,)b 1C 227a b +=12c a =222a b c =+24a =23b =1c =椭圆的方程为.(2)由(1)可得:圆的方程为:.设,则以为直径的圆的方程为:,与相减可得:直线的方程为:,设,,,,联立,化为:,,则,,故又圆心到直线的距离,令,则,可得,可得:14.(2023·全国·高三专题练习)已知椭圆的两个焦点,,动点在椭圆上,且使得的点恰有两个,动点到焦点的距离的最大值为∴1C22143x y+=2C224x y+=(2,4)M t OM222()(2)4x t y t−+−=+224x y+=AB2440tx y+−=1(C x1)y2(D x2)y222440143tx yx y+−=⎧⎪⎨+=⎪⎩22(3)480t x tx+−−=248(2)0t∆=+>12243tx xt+=+12283x xt=⋅−+||CDO AB d=||AB∴=||||AB CD∴⋅==23(3)t m m+=≥||||AB CD⋅==3m≥3233m≤−<||||AB CD⋅<22122:1(0)x yC a ba b+=>>1F2F P 1290F PF∠=︒P P1F2(1)求椭圆的方程;(2)如图,以椭圆的长轴为直径作圆,过直线作圆的两条切线,设切点分别为,,若直线与椭圆交于不同的两点,,求弦长的取值范围. 【解析】(1)设半焦距为,由使得的点恰有两个可得, 动点到焦点的距离的最大值为,可得所以椭圆的方程是. (2)圆的方程为,设直线的坐标为.设,连接OA ,因为直线为切线,故,否则直线垂直于轴,则与直线若,则,故, 故直线的方程为:, 整理得到:;当时,若,直线的方程为:;若,则直线的方程为:, 满足.故直线的方程为,同理直线的方程为, 又在直线和上,即,故直线的方程为.1C 1C 2C x =−T 2C A B AB 1C C D ||CD c 1290F PF ∠=︒P ,b c a =P 1F 22a c +=2,a c =1C 22142x y +=2C 224x y +=x =−T ()t −1122(,),(,)A x y B x y AT 10y ≠AT x AT x =−10x ≠11OA y k x =11AT x k y =−AT ()1111x y y x x y −=−−2211114x x y y x y +=+=10x =(0,2)A AT 2y =(0,2)A −AT =2y −114x x y y +=AT 114x x y y +=BT 224x x y y +=()t −AT BT 112244ty ty ⎧−+=⎪⎨−+=⎪⎩AB 4ty −+=联立,消去得,设,. 则, 从而, 又,从而,所以. 15.(2023·全国·高三专题练习)已知、分别为椭圆的左、右焦点,且右焦点的坐标为,点在椭圆上,为坐标原点.(1)求椭圆的标准方程(2)若过点的直线与椭圆交于两点,且的方程; (3)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为,(,224142ty x y ⎧−+=⎪⎨+=⎪⎩x 22(16)8160t y ty +−−=33(,)C x y 44(,)D x y 343422816,1616t y y y y t t −+==++||CD 224(8)16t t +=+232416t −=++21616t +≥2322016t −−≤<+||[2,4)CD ∈1F 2F 2222:1(0)x yC a b a b+=>>2F (1,0)(P C O C 2F l C ,A B ||AB =l C Q 22:1O x y +=M N M不在坐标轴上),若直线在轴、轴上的截距分别为、,那么是否为定值?若是,求出此定值;若不是,请说明理由. 【解析】(1)椭圆的右焦点的坐标为,椭圆的左焦点的坐标为,由椭圆的定义得, 所以,由题意可得,即,即椭圆的方程为;(2)直线与椭圆的两个交点坐标为,, ①当直线垂直轴时,方程为:,代入椭圆可得,舍去;②当直线不垂直轴时,设直线联立,消得,,则,,恒成立., 又, N MN x y m n 2212m n+C 2F (1,0)∴C 1F (1,0)−12||||2PF PF a +=2a =a ∴=22a =1c =2221b ac =−=C 2212x y +=l C ()11,A x y ()22,B x y l x l 1x =y =||AB =l x :(1)l y k x =−2212(1)x y y k x ⎧+=⎪⎨⎪=−⎩y ()2222124220k x k x k +−+−=2122421k x x k +=+21222221k x x k −=+()()()()22222442122810k k k k ∆=−+−=+>22AB =()()22121214k x x x x ⎡⎤=++−⎣⎦()()22228121k k +=+||AB =()()222228132921k k +==+⎝⎭化简得,,即,解得或(舍去),所以,直线方程的方程为或. (3)是定值,定值为2.设点,,,连接,,,,则有,. ,不在坐标轴上,则,, 则,, 直线的方程为,即,① 同理直线的方程为,②,将点代入①②,得,显然,满足方程,直线的方程为,分别令,,得到,,,,又满足,,即.16.(2023·全国·高三专题练习)某同学在探究直线与椭圆的位置关系时发现椭圆的一个重要性427250k k −−=()()227510k k +−=21k =257k =−1k =±∴l 10x y −−=10x y +−=()00,Q x y ()33,M x y ()44,N x y OM ON 0M MQ ⊥ON NQ ⊥22331x y +=22441x y +=M N 33MO y k x =44NO y k x =331MQ MOx k k y =−=−441NQ NO x k k y =−=−∴MQ ()3333x y y x x y −=−−2233331xx yy x y +=+=⋯NQ 441xx yy +=⋯Q 0303040411x x y y x x y y +=⎧⎨+=⎩()33,M x y ()44,N x y 001xx yy +=∴MN 001xx yy +=0x =0y =01n x =01=m y 01y m ∴=01x n =()00,Q x y 2212x y +=∴221112m n +=22122m n +=质:椭圆在任意一点,处的切线方程为.现给定椭圆,过的右焦点的直线交椭圆于,两点,过,分别作的两条切线,两切线相交于点. (1)求点的轨迹方程;(2)若过点且与直线垂直的直线(斜率存在且不为零)交椭圆于,两点,证明:为定值. 【解析】(1)由题意F 为,设直线为,,,,, 易得在点处切线为,在点处切线为, 由得,又,,可得,故点的轨迹方程.(2)证明:联立的方程与的方程消去,得.由韦达定理,得,,所以,因为,直线MN 可设为,同理得, 所以.2222:1(0)x y C a b a b+=>>0(M x 0)y 00221xx yy a b +=22:143x y C +=C F l C P Q P Q C G G F l C M N 11||||PQ MN +()1,0PQ 1x ty =+1(P x 1)y 2(Q x 2)y P 11143x x y y +=Q 22143x x y y+=11221,431,43x xy yx x y y⎧+=⎪⎪⎨⎪+=⎪⎩1122124()y y x x y x y −=−111x ty =+221x ty =+4x =G 4x =l C 221143x ty x y =+⎧⎪⎨+=⎪⎩x 22(34)690t y ty ++−=122634t y y t +=−+122934y y t =−+2212(1)||34t PQ t +=+PQ MN ⊥11x y t =−+2222112(1)12(1)||13434t t MN t t++==+⋅+22221134347||||12(1)12(1)12t t PQ MN t t +++=+=++。
高中数学圆锥曲线解题十招全归纳
1.熟悉圆锥曲线的基本概念,如焦点、准线、离心率等。
2. 对于椭圆和双曲线,要注意判断其是横向还是纵向,并掌握
其标准方程。
3. 解题时要注意转化,如通过平移、旋转等方式将方程转化为
标准方程。
4. 对于椭圆和双曲线的焦点、准线、离心率等参数要有清晰的
认识,能正确描绘出图形。
5. 注意判断椭圆和双曲线的类型,如是否为实心或空心图形等。
6. 对于椭圆和双曲线的对称性要有充分的认识。
7. 在解题过程中,注意运用对称性和几何意义,如面积公式、
周长公式等。
8. 对于椭圆和双曲线的渐近线,要了解其定义和性质,并掌握
其方程。
9. 在解题过程中,注意运用渐近线的性质,如过定点、过中心、垂直等。
10. 解题时要注意画出图形,有助于更好地理解题目和解题思路。
- 1 -。
高考数学圆锥曲线解题技巧高考数学两类压轴大题是导数和圆锥曲线,难度大、综合性强,取得满分不容易,但要得到尽可能多的分数还是有方法可行的。
下面店铺为高考考生整理数学圆锥曲线解题技巧,希望对大家有所帮助!高考数学圆锥曲线解题技巧1.解决圆锥曲线的最值与范围问题常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法;(2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.2.在利用代数法解决最值与范围问题时常从以下五个方面考虑:(1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;(3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;(4)利用基本不等式求出参数的取值范围;(5)利用函数的值域的求法,确定参数的取值范围.高考数学圆锥曲线基础知识点圆锥曲线定义圆锥曲线包括圆,椭圆,双曲线,抛物线。
其统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
当e>1时为双曲线,当e=1时为抛物线,当e<1时为椭圆。
椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
且当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
离心率这里的参数e就是圆锥曲线的离心率,它不仅可以描述圆锥曲线的类型,也可以描述圆锥曲线的具体形状,简言之,离心率相同的圆锥曲线都是相似图形。
一个圆锥曲线,只要确定了离心率,形状就确定了。
特别的,因为抛物线的离心率都等于1,所以所有的抛物线都是相似图形。
准线在圆锥曲线的统一定义中:到定点与定直线的距离的比为常数e(e>0)的点的轨迹,叫圆锥曲线。
而这条定直线就叫做准线。
2021年高中数学圆锥曲线问题常用方法解圆锥曲线问题常用以下方法: 1、定义法(1)椭圆有两种定义。
第一定义中,r1+r2=2a。
第二定义中,r1=ed1 r2=ed2。
(2)双曲线有两种定义。
第一定义中,r1 r2 2a,当r1_gt;r2时,注意r2的最小值为c-a:第二定义中,r1=ed1,r2=ed2,尤其应注意第二定义的应用,常常将半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(_1,y1),B(_2,y2),弦AB中点为M(_0,y0),将点A、B坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:_y0_2y2k 0。
(1)2 2 1(a b 0)与直线相交于A、B,设弦AB中点为M(_0,y0),则有0 22abab_y0_2y2k 0 (2)2 2 1(a 0,b 0)与直线l相交于A、B,设弦AB中点为M(_0,y0)则有022abab(3)y2=2p_(p_gt;0)与直线l相交于A、B设弦AB中点为M(_0,y0),则有2y0k=2p,即y0k=p.【典型例题】例1、(1)抛物线C:y2=4_上一点P到点A(3,4______________(2)抛物线C: y2=4_上一点Q到点B(4,1)与到焦点F的距离和最小,分析:(1)A在抛物线外,如图,连PF,则PH PF当A、P、F三点共线时,距离和最小。
第八章圆锥曲线方程考试内容:椭圆及其标准方程.椭圆的简单几何性质.了解椭圆的参数方程.双曲线及其标准方程.双曲线的简单几何性质.抛物线及其标准方程.抛物线的简单几何性质.考试要求:(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程.(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质.(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质.(4)了解圆锥曲线的初步应用.基本方法和数学思想1.求轨迹方程的基本方法有两大类,即直接法和间接法。
其中直接法包括:直译法,定义法,待定系数法,公式法等。
间接法包括:转移法,参数法(k参数、t参数,θ参数及多个参数)等。
2.本节解题时用到的主要数学思想方法有:(1)函数方程思想。
求平面曲线的轨迹方程,其解决问题的最终落脚点就是将几何条件(性质)表示为动点坐标x、y的方程或函数关系(参数法)。
(2)数形结合思想。
解题时重视方程的几何意义和图形的辅助作用是非常必要的。
即将对几何图形的研究,转化为对代数式的研究,同时又要理解代数问题的几何意义。
(3)等价转化思想。
在解决问题的过程中往往需要将一个问题等价转化为另一个较为简单的问题去求解。
3.避免繁复运算的基本方法可以概括为:回避,选择,寻求。
所谓回避,就是根据题设的几何特征,灵活运用曲线的有关定义、性质等,从而避免化简方程、求交点、解方程等繁复的运算。
所谓选择,就是选择合适的公式,合适的参变量,合适的坐标系等,一般以直接性和间接性为基本原则。
因为对普通方程运算复杂的问题,用参数方程可能会简单;在某一直角坐标系下运算复杂的问题,通过移轴可能会简单;在直角坐标系下运算复杂的问题,在极坐标系下可能会简单“所谓寻求”。
热点分析高考圆锥曲线试题一般有3题(1个选择题, 1个填空题, 1个解答题), 共计22分左右, 考查的知识点约为20个左右. 其命题一般紧扣课本, 突出重点, 全面考查. 选择题和填空题考查以圆锥曲线的基本概念和性质为主, 难度在中等以下,一般较容易得分,解答题常作为数学高考中的压轴题,综合考查学生数形结合、等价转换、分类讨论、逻辑推理等诸方面的能力,重点考查圆锥曲线中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查直线与圆锥曲线的位置关系, 往往结合平面向量进行求解,在复习应充分重视。
高考数学圆锥曲线及解题技巧汇总高考数学圆锥曲线及解题技巧汇总在高中数学圆锥曲线知识点学习中,很多同学都遇到难题,说圆锥曲线难,也是高考必考之一在选择、填空、解答这几种题型中,都有圆锥曲线的身影, 接下来小编总结了高考数学圆锥曲线及解题技巧,希望对你有用。
高考数学圆锥曲线及解题技巧1:牢记核心知识点核心的知识点是基础,好多同学在做圆锥曲线题时,特别是小题,比如椭圆,双曲线离心率公式和范围记不清,焦点分别在x轴,y轴上的双曲线的渐近线方程也傻傻分不清,在做题时自然做不对。
高考数学圆锥曲线及解题技巧2:计算能力与速度计算能力强的同学学圆锥曲线相对轻松一些,计算能力是可以通过多做题来提升的。
后期可以尝试训练自己口算得到联立后的二次方程,然后得到判别式,两根之和,两根之积的整式。
当然也要掌握一些解题的小技巧,加快运算速度。
高考数学圆锥曲线及解题技巧3:思维套路拿到圆锥曲线的题,很多同学说无从下手,从表面感觉很难。
老师建议:山重水复疑无路,没事你就算两步。
大部分的圆锥曲线大题,都有共同的三部曲:一设二联立三韦达定理。
一设:设直线与圆锥曲线的两个交点,坐标分别为(x1,y1),(x2,y2),直线方程为y=kx+b。
二联立:通过快速计算或者口算得到联立的二次方程。
三韦达定理:得到二次方程后立马得出判别式,两根之和,两根之积。
走完三部曲之后,在看题目给出了什么条件,要求什么。
例如涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化。
总结起来:找值列等量关系,找范围列不等关系,通常结合判别式,基本不等式求解。
高考数学圆锥曲线及解题技巧4:直线与圆锥曲线位置关系这类问题主要采用分析判别式,有△>0,直线与圆锥曲线相交;△=0,直线与圆锥曲线相切;△<0,直线与圆锥曲线相离.若且a=0,b≠0,则直线与圆锥曲线相交,且有一个交点.注意:设直线方程时一定要考虑斜率不存在的情况,可单独提前讨论高考数学圆锥曲线及解题技巧5:圆锥曲线与向量结合问题这类问题主要利用向量的相等,平行,垂直去寻找坐标间的数量关系,往往要和根与系数的关系结合应用,体现数形结合的思想,达到简化计算的目的。
高考数学圆锥曲线解题策略归纳一、基本方法1待定系数法,基本量,求直线方程中的参数,求曲线方程中的a b c e p2齐次方程法,比值问题,解决离心率渐近线夹角等比值问题3韦达定理法,直线和曲线的相交问题。
对交点设而不求,勇韦达定理实现转化,如果根很容易求得,需要直接求根4点差法,弦中点问题,对端点设而不求。
也叫五条等式法,点满足方程2个,中点公式2个,斜率公式1个5距离转化法,将斜线上的长度问题 ,比例问题,向量问题,转化为直线上的问题二、基本思想1常规求值需要找等式,求范围找不等式2”是否存在”当存在解决不存在的自然无解3过“定点”“定值”先设参变量,然后说明和变量无关(定点问题:常把参数的齐次项放在一起,令=0.或者特殊值探解定值问题:把变动的参数表示出来,然后证明和参数无关,或者特殊求值,在进行一般证明最值问题:几何法,二次配方法,三角代换法,均值不等式,切线方法)4有些题思路易成,但是难以实施,需要优化方法,才具有可行性,积累经验5大部分题目只要忠诚的准确的将条件表达出来,一般都会产生思路三、解题套路1一化(点,直线,曲线化成代数式)2二代(点代入线,点代入曲线)3图形特点的代数化4解方程组出答案四、直线曲线(2)问做题步骤1设直线2设点3联立方程4韦达定理5条件转化(1)”以AB为直径的圆经过点O”——OA*OB=0——K1*K2=-1(需要考虑k是否存在)——X1X2+Y1Y2=0 (2)”点在圆上,圆外,圆内”——直角,锐角,钝角问题——X1X2+Y1Y2=0、〉0、〈0(3)”等角,角平分线,互补问题”——斜率关系K1+K2=0.K1=K2(4)”共线问题”——AQ=λAP;坐标表示(5)“点线对称问题”——坐标斜率问题(6)“弦长,面积问题”——坐标和弦长公式6简化计算7注意细节(判别式是否考虑,二次系数a)。
都说数学中的圆锥曲线高考难题排名第二名,大部分同学抱怨无从下手,计算能力跟不上,算错一次没有勇气从头再来,今天教大家如何学好!
学好圆锥曲线的几个关键点
1、牢记核心知识点
核心的知识点是基础,好多同学在做圆锥曲线题时,特别是小题,比如椭圆,双曲线离心率公式和范围记不清,焦点分别在x轴,y轴上的双曲线的渐近线方程也傻傻分不清,在做题时自然做不对。
2、计算能力与速度
计算能力强的同学学圆锥曲线相对轻松一些,计算能力是可以通过多做题来提升的。
后期可以尝试训练自己口算得到联立后的二次方程,然后得到判别式,两根之和,两根之积的整式。
当然也要掌握一些解题的小技巧,加快运算速度。
3、思维套路
拿到圆锥曲线的题,很多同学说无从下手,从表面感觉很难。
老师建议:山重水复疑无路,没事你就算两步。
大部分的圆锥曲线大题,都有共同的三部曲:一设二联立三韦达定理。
一设:设直线与圆锥曲线的两个交点,坐标分别为(x1,y1),(x2,y2),直线方程为y=kx+b。
二联立:通过快速计算或者口算得到联立的二次方程。
三韦达定理:得到二次方程后立马得出判别式,两根之和,两根之积。
走完三部曲之后,在看题目给出了什么条件,要求什么。
例如涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.总结起来:找值列等量关系,找范围列不等关系,通常结合判别式,基本不等式求解。
2019高考数学复习常用圆锥曲线公式总结
圆锥曲线包括圆, 椭圆, 双曲线, 抛物线。
以下是常用圆锥曲线公式总结, 请考生及时学习。
抛物线: y = ax *+ bx + c
就是y等于ax 的平方加上 bx再加上 c
a 0时开口向上
a 0时开口向下
c = 0时抛物线经过原点
b = 0时抛物线对称轴为y轴
还有顶点式y = a(x+h)* + k
就是y等于a乘以(x+h)的平方+k
-h是顶点坐标的x
k是顶点坐标的y
一般用于求最大值与最小值
抛物线标准方程:y^2=2px
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
圆: 体积=4/3(pi)(r^3)
面积=(pi)(r^2)
周长=2(pi)r
圆的标准方程 (x-a)2+(y-b)2=r2 注: (a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注: D2+E2-4F0
常用圆锥曲线公式总结的全部内容就是这些, 查字典数学网预祝考生取得优异的成绩。
2019年高考第一轮复习备考专题已经新鲜出炉了, 专题包含高考各科第一轮复习要点、复习方法、复习计划、复习试题, 大家来一起看看吧~。
高考圆锥曲线压轴大题常见解题模型高考圆锥曲线压轴大题常见解题模型近年来,高考圆锥曲线题在高考数学试卷中占据着重要的地位,不仅考察了学生对圆锥曲线的理解和掌握程度,还对学生的综合能力提出了较高的要求。
熟悉常见的解题模型对于高考圆锥曲线题的应对至关重要。
在圆锥曲线的解题过程中,我们常见的解题模型如下:一、圆的方程与图像性质1. 圆的标准方程:$(x-a)^2+(y-b)^2=r^2$,其中$(a,b)$为圆心坐标,$r$为半径。
2. 圆的一般方程:$Ax^2+By^2+Cx+Dy+E=0$。
3. 圆的图像性质:圆是由平面上到一个定点的距离等于常数的点的轨迹。
4. 圆与其他图形的位置关系:如直线、抛物线等,通过解方程组或运用几何知识进行求解。
二、椭圆的方程与图像性质1. 椭圆的标准方程:$\frac{(x-a)^2}{a^2}+\frac{(y-b)^2}{b^2}=1$,其中$(a,b)$为椭圆的中心坐标,且$a>b>0$。
2. 椭圆的离心率:离心率为$e=\frac{\sqrt{a^2-b^2}}{a}$,离心率越小,椭圆越圆。
3. 椭圆的图像性质:椭圆是平面上到两个定点的距离之和等于常数的点的轨迹。
4. 椭圆的参数方程:$x=a\cos\theta, y=b\sin\theta$。
三、双曲线的方程与图像性质1. 双曲线的标准方程:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$(a,b)$为双曲线的中心坐标,且$a>0, b>0$。
2. 双曲线的渐近线:$x=\pm\frac{a}{e}$,$y=\pm b\tan\alpha$,其中$e$为离心率,$\alpha$为与横轴正方向的夹角。
3. 双曲线的图像性质:双曲线是平面上到两个定点的距离之差等于常数的点的轨迹。
4. 双曲线的参数方程:$x=a\cosh\theta, y=b\sinh\theta$。
圆锥曲线1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如方程2222(6)(6)8x y x y -+-++=表示的曲线是_____(答:双曲线的左支)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时2222bx a y +=1(0a b >>)。
方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。
若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___(答:5,2)(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。
方程22Ax By C +=表示双曲线的充要条件是什么?(ABC≠0,且A ,B 异号)。
如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C的方程为_______(答:226x y -=)(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y p x p =->,开口向上时22(0)x p y p =>,开口向下时22(0)x py p =->。
第81讲圆锥曲线拓展题型一必考题型全归纳题型一:定比点差法例1.已知椭圆2222:1x y C a b+=(0a b >>)的离心率为2,过右焦点F 且斜率为k (0k >)的直线与C 相交于A ,B 两点,若3AF FB =,求k例2.已知22194x y +=,过点(0,3)P 的直线交椭圆于A ,B (可以重合),求PA PB 取值范围.例3.已知椭圆22162x y +=的左右焦点分别为1F ,2F ,A ,B ,P 是椭圆上的三个动点,且11PF F A λ= ,22PF F B μ=若2λ=,求μ的值.变式1.设1F ,2F 分别为椭圆2213x y +=的左、右焦点,点A ,B 在椭圆上,若125F A F B = ,求点A 的坐标变式2.已知椭圆22:12C x y +=,设过点()2,2P 的直线l 与椭圆C 交于A ,B ,点Q 是线段AB 上的点,且112PA PB PQ+=,求点Q 的轨迹方程.题型二:齐次化例4.已知抛物线2:4C y x =,过点(4,0)的直线与抛物线C 交于P ,Q 两点,O 为坐标原点.证明:90POQ ︒∠=.例5.如图,椭圆22:12x E y +=,经过点(1,1)M ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点(0,1)A -,证明:直线AP 与AQ 的斜率之和为2.例6.已知椭圆22:14x C y +=,设直线l 不经过点2(0,1)P 且与C 相交于A ,B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:直线l 过定点.变式3.已知椭圆22:13x C y +=,()0,1B ,P ,Q 为上的两个不同的动点,23BP BQ k k =,求证:直线PQ 过定点.题型三:极点极线问题例7.(2024·全国·高三专题练习)椭圆方程2222:1(0)x y a b a bΓ+=>>,平面上有一点00(,)P x y .定义直线方程0022:1x x y y l a b +=是椭圆Γ在点00(,)P x y 处的极线.已知椭圆方程22:143x y C +=.(1)若0(1,)P y 在椭圆C 上,求椭圆C 在点P 处的极线方程;(2)若00(,)P x y 在椭圆C 上,证明:椭圆C 在点P 处的极线就是过点P 的切线;(3)若过点(4,0)P -分别作椭圆C 的两条切线和一条割线,切点为X ,Y ,割线交椭圆C 于M ,N 两点,过点M ,N 分别作椭圆C 的两条切线,且相交于点Q .证明:Q ,X ,Y 三点共线.例8.(2024·全国·高三专题练习)阅读材料:(一)极点与极线的代数定义;已知圆锥曲线G :22220Ax Cy Dx Ey F ++++=,则称点P (0x ,0y )和直线l :()()00000Ax x Cy y D x x E y y F ++++++=是圆锥曲线G 的一对极点和极线.事实上,在圆锥曲线方程中,以0x x 替换2x ,以02x x+替换x (另一变量y 也是如此),即可得到点P (0x ,0y )对应的极线方程.特别地,对于椭圆22221x y a b+=,与点P (0x ,0y )对应的极线方程为00221x x y y a b +=;对于双曲线22221x y b b-=,与点P (0x ,0y )对应的极线方程为00221x x y y a b -=;对于抛物线22y px =,与点P (0x ,0y )对应的极线方程为()00y y p x x =+.即对于确定的圆锥曲线,每一对极点与极线是一一对应的关系.(二)极点与极线的基本性质、定理①当P 在圆锥曲线G 上时,其极线l 是曲线G 在点P 处的切线;②当P 在G 外时,其极线l 是曲线G 从点P 所引两条切线的切点所确定的直线(即切点弦所在直线);③当P 在G 内时,其极线l 是曲线G 过点P 的割线两端点处的切线交点的轨迹.结合阅读材料回答下面的问题:(1)已知椭圆C :22221(0)x y a b a b +=>>经过点P (4,0),离心率是2,求椭圆C 的方程并写出与点P 对应的极线方程;(2)已知Q 是直线l :142y x =-+上的一个动点,过点Q 向(1)中椭圆C 引两条切线,切点分别为M ,N ,是否存在定点T 恒在直线MN 上,若存在,当MT TN =时,求直线MN 的方程;若不存在,请说明理由.例9.(2024秋·北京·高三中关村中学校考开学考试)已知椭圆M :22221x y a b+=(a >b >0)过A (-2,0),B (0,1)两点.(1)求椭圆M 的离心率;(2)设椭圆M 的右顶点为C ,点P 在椭圆M 上(P 不与椭圆M 的顶点重合),直线AB 与直线CP 交于点Q ,直线BP 交x 轴于点S ,求证:直线SQ 过定点.变式4.(2024·全国·高三专题练习)若双曲线229x y -=与椭圆2222:1(0)x y C a b a b+=>>共顶点,且它们的离心率之积为43.(1)求椭圆C 的标准方程;(2)若椭圆C 的左、右顶点分别为1A ,2A ,直线l 与椭圆C 交于P 、Q 两点,设直线1A P 与2A Q 的斜率分别为1k ,2k ,且12105k k -=.试问,直线l 是否过定点?若是,求出定点的坐标;若不是,请说明理由.变式5.(2024·全国·高三专题练习)已知椭圆2222:1(0)x y E a b a b +=>>的离心率为2,且过点⎛⎝⎭,A ,B 分别为椭圆E 的左,右顶点,P 为直线3x =上的动点(不在x 轴上),PA 与椭圆E 的另一交点为C ,PB 与椭圆E 的另一交点为D ,记直线PA 与PB 的斜率分别为1k ,2k.(Ⅰ)求椭圆E 的方程;(Ⅱ)求12k k 的值;(Ⅲ)证明:直线CD 过一个定点,并求出此定点的坐标.题型四:蝴蝶问题例10.(2003·全国·高考真题)如图,椭圆的长轴12A A 与x 轴平行,短轴12B B 在y 轴上,中心为(0,)(0)M r b r >>.(1)写出椭圆的方程,求椭圆的焦点坐标及离心率;(2)直线1y k x =交椭圆于两点()()()11222,,,0C x y D x y y >;直线2y k x =交椭圆于两点()33,G x y ,()()444,0H x y y >.求证:1122341234k x x k x x x x x x =++;(3)对于(2)中的中的在C ,D ,G ,H ,设CH 交x 轴于P 点,GD 交x 轴于Q 点,求证:||||OP OQ =(证明过程不考虑CH 或GD 垂直于x 轴的情形)例11.(2024·全国·高三专题练习)已知椭圆2222:1x y C a b +=(0a b >>),四点()11,1P ,()20,1P,31,2P ⎛- ⎝⎭,31,2P ⎛⎫- ⎪ ⎪⎝⎭,41,2P ⎛ ⎝⎭中恰有三点在椭圆C 上.(1)求椭圆C 的方程;(2)蝴蝶定理:如图1,AB 为圆O 的一条弦,M 是AB 的中点,过M 作圆O 的两条弦CD ,EF .若CF ,ED 分别与直线AB 交于点P ,Q ,则MP MQ =.该结论可推广到椭圆.如图2所示,假定在椭圆C 中,弦AB 的中点M 的坐标为10,2⎛⎫⎪⎝⎭,且两条弦CD ,EF 所在直线斜率存在,证明:MP MQ =.例12.(2021·全国·高三专题练习)(蝴蝶定理)过圆AB 弦的中点M ,任意作两弦CD 和EF ,CF 与ED 交弦AB 于P 、Q ,求证:PM QM =.变式6.(2024·全国·高三专题练习)蝴蝶定理因其美妙的构图,像是一只翩翩起舞的蝴蝶,一代代数学名家蜂拥而证,正所谓花若芬芳蜂蝶自来.如图,已知圆M 的方程为()222x y b r +-=,直线x my =与圆M 交于()11,C x y ,()22,D x y ,直线x ny =与圆M 交于()33,E x y ,()44,F x y .原点O 在圆M 内.(1)求证:34121234y y y y y y y y ++=.(2)设CF 交x 轴于点P ,ED 交x 轴于点Q .求证:OP OQ =.变式7.(2024·陕西西安·陕西师大附中校考模拟预测)已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为点A ,B ,且AB 4=,椭圆C 离心率为12.(1)求椭圆C 的方程;(2)过椭圆C 的右焦点,且斜率不为0的直线l 交椭圆C 于M ,N 两点,直线AM ,BN 的交于点Q ,求证:点Q 在直线4x =上.变式8.(2024·全国·高三专题练习)已知椭圆C :22x a +22y b=1(a >b >0)的左、右顶点分别为A ,B ,离心率为12,点P 31,2⎛⎫ ⎪⎝⎭为椭圆上一点.(1)求椭圆C 的标准方程;(2)如图,过点C (0,1)且斜率大于1的直线l 与椭圆交于M ,N 两点,记直线AM 的斜率为k 1,直线BN 的斜率为k 2,若k 1=2k 2,求直线l 斜率的值.变式9.(2021秋·广东深圳·高二校考期中)已知椭圆()222210x y C a b a b +=>>:的右焦点是()0F ,过点F 的直线交椭圆C 于A ,B 两点,若线段AB 中点Q的坐标为67⎫-⎪⎪⎝⎭.(1)求椭圆C 的方程;(2)已知()0,P b -是椭圆C 的下顶点,如果直线y =kx +1(k ≠0)交椭圆C 于不同的两点M ,N ,且M ,N 都在以P 为圆心的圆上,求k 的值;(3)过点02a D ⎛⎫⎪⎝⎭,作一条非水平直线交椭圆C 于R 、S 两点,若A ,B 为椭圆的左右顶点,记直线AR 、BS 的斜率分别为k 1、k 2,则12k k 是否为定值,若是,求出该定值,若不是,请说明理由.变式10.(2024·全国·高三专题练习)如图,已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,A ,B 分别是椭圆C 的左、右顶点,右焦点F ,1BF =,过F 且斜率为(0)k k >的直线l 与椭圆C 相交于M ,N 两点,M 在x轴上方.(1)求椭圆C 的标准方程;(2)记AFM △,BFN 的面积分别为1S ,2S ,若1232S S =,求k 的值;(3)设线段MN 的中点为D ,直线OD 与直线4x =相交于点E ,记直线AM ,BN ,FE 的斜率分别为1k ,2k ,3k ,求213()k k k ⋅-的值.变式11.(2024秋·福建莆田·高二莆田华侨中学校考期末)已知点(1,2-A 在椭圆C :22221(0)x y a b a b +=>>上,O 为坐标原点,直线l:21x a =的斜率与直线OA 的斜率乘积为14-(1)求椭圆C 的方程;(2)不经过点A 的直线l:2y x t =+(0t ≠且t R ∈)与椭圆C 交于P ,Q 两点,P 关于原点的对称点为R (与点A 不重合),直线AQ ,AR 与y 轴分别交于两点M ,N ,求证:AM AN =.11变式12.(2022·全国·高三专题练习)极线是高等几何中的重要概念,它是圆锥曲线的一种基本特征.对于圆222x y r +=,与点()00,x y 对应的极线方程为200x x y y r +=,我们还知道如果点()00,x y 在圆上,极线方程即为切线方程;如果点()00,x y 在圆外,极线方程即为切点弦所在直线方程.同样,对于椭圆22221x y a b+=,与点()00,x y 对应的极线方程为00221x x y y a b +=.如上图,已知椭圆C :22143x y +=,()4,P t -,过点P 作椭圆C 的两条切线PA ,PB ,切点分别为A ,B ,则直线AB 的方程为;直线AB 与OP 交于点M ,则sin PMB ∠的最小值是.。
解答题:圆锥曲线的综合应用目录题型一最值问题 1题型二参数范围问题 3题型三定值问题 4题型四过定点问题 6题型五定直线问题 7题型六动点轨迹问题 9题型七角度关系证明问题 11题型八向量共线问题 12题型九存在性问题探究 14题型十“非对称”韦达定理 16必刷大题 18最值问题大题典例1.(24-25高三上·福建福州·月考)已知椭圆Γ:x2a2+y2b2=1经过点A2,3,右焦点为F2,0(1)求椭圆Γ的方程;(2)若直线l与Γ交于B,C两点,且直线AB与AC的斜率互为相反数,求BC的中点M与F的最小距离.变式训练2.(24-25高三上·贵州黔东南·开学考试)已知双曲线C 1:y 2a 2-x 2b 2=1a >0,b >0 的一个焦点与抛物线C 2:x 2=8y 的焦点F 重合,且C 1被C 2的准线l 截得的弦长为233.(1)求C 1的方程;(2)若过F 的直线与C 1的上支交于A ,B 两点,设O 为坐标原点,求OA +OB的取值范围.3.(24-25高三上·四川成都·期中)已知抛物线E :y 2=2px (p >0)经过点P 1,2 ,直线l :y =kx +m 与E 的交点为A ,B ,且直线P A 与PB 倾斜角互补.(1)求抛物线在点P 1,2 处的切线方程;(2)求k 的值;(3)若m <3,求△P AB 面积的最大值.题型二参数范围问题大题典例4.(23-24高三下·全国·模拟预测)已知椭圆C:x24+y2=1.(1)若椭圆C的左右焦点分别为F1,F2,P为C的上顶点,求△PF1F2的周长;(2)设过定点M0,2的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.变式训练5.(23-24高三下·江苏苏州·月考)在平面直角坐标系xOy中,已知动点M到定点F3,0的距离和它到定直线x=233的距离之比为62,记M的轨迹为曲线C.(1)求C的方程;(2)已知点A0,1,不过A的直线l与C交于P,Q两点,直线AP,PQ,AQ的斜率依次成等比数列,求A到l距离的取值范围.6.(24-25高三上·湖南·开学考试)已知抛物线C:y2=2px(p>0)的焦点为F,点D x 0,2在抛物线C上,且DF =2.(1)求抛物线C 的标准方程;(2)抛物线的准线与x 轴交于点K ,过K 的直线l 交抛物线C 于M ,N 两点,且KM =λKN ,λ∈1,2 ,点G 为线段MN 的垂直平分线与x 轴的交点,求点G 的横坐标x G 的取值范围.定值问题大题典例7.(24-25高三上·贵州毕节·期中)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的焦距为4,Q 3,1 为椭圆C上一点.(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,直线l :x =t ,P 为椭圆上任意一点,点P 到F 的距离为m ,点P 到l 的距离为n ,若mn为定值,求此定值及t 的值.变式训练8.(24-25高三上·湖北武汉·开学考试)已知曲线C上的点到点F-1,0的距离比到直线x=3的距离小2,O为坐标原点.直线l过定点A0,1.(1)直线l与曲线C仅有一个公共点,求直线l的方程;(2)曲线C与直线l交于M,N两点,试分别判断直线OM,ON的斜率之和、斜率之积是否为定值?并说明理由.9.(24-25高三上·甘肃张掖·模拟预测)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的焦距为8,右焦点为F,直线l:y=33x与双曲线在一、三象限的交点分别为P,Q,且FP⊥FQ.(1)求双曲线C的方程及△PQF的面积;(2)直线y=kx+n k≠0与双曲线C交于A,B两点,若直线P A、PB与x轴分别交于点A1,B1,且P A1=PB1.证明:k为定值.题型四过定点问题大题典例10.(24-25高三上·河南驻马店·开学考试)已知动圆P过点F2(2,0),并且与圆F1:(x+2)2+y2=4外切,设动圆的圆心P的轨迹为C.(1)直线F2Q与圆F1相切于点Q,求F2Q的值;(2)求曲线C的方程;(3)过点F2的直线l1与曲线C交于E,F两点,设直线l:x=12,点D(-1,0),直线ED交l于点M,证明直线FM经过定点,并求出该定点的坐标.变式训练11.(24-25高三上·湖北襄阳·月考)已知抛物线E:y2=2px(p>0)与双曲线x23-y24=1的渐近线在第一象限的交点为Q,且Q点的横坐标为3.(1)求抛物线E的方程;(2)过点M(-3,0)的直线l与抛物线E相交于A,B两点,B关于x轴的对称点为B ,求证:直线AB 必过定点.12.(24-25高三上·天津北辰·期中)已知椭圆C:x2a2+y2b2=1(a>b>0)的一个焦点为F,其短轴长是焦距的3倍,点A为椭圆上任意一点,且AF的最大值为3.(1)求椭圆C的方程;(2)设动直线l:y=kx+m与椭圆C有且只有一个公共点P,且与直线x=4相交于点Q.问:x轴上是否存在定点M,使得以PQ为直径的圆恒过定点M?若存在,求出点M的坐标;若不存在,说明理由.定直线问题大题典例13.(24-25高三上·北京·月考)已知椭圆C:x2a2+y2b2=1a>b>0的左、右焦点分别为F1、F2,一个焦点为F2,0,P是椭圆上一动点(与左、右顶点不重合).已知△PF1F2的面积的最大值为2.(1)求椭圆C的方程;(2)过点1,0且斜率不为0的直线l与椭圆C相交于M,N两点,椭圆长轴的两个端点分别为A1,A2,A1M与A2N相交于点Q,求证:点Q在某条定直线上.变式训练14.(23-24高三下·湖南长沙·三模)已知抛物线C:y2=2px(p>0),过点D0,2的直线l与C交于不同的两点A,B.当直线l的倾斜角为135°时,AB=430.(1)求C的方程;(2)在线段AB上取异于点A,B的点E,且满足DADB=AEEB,试问是否存在一条定直线,使得点E恒在这条定直线上?若存在,求出该直线;若不存在,请说明理由.15.(24-25高三上·上海·期中)已知双曲线C的中心为坐标原点,F1,F2是C的两个焦点,其中左焦点为(-25,0),离心率为 5.(1)求C的方程;(2)双曲线C上存在一点P,使得∠F1PF2=120°,求三角形PF1F2的面积;(3)记C的左、右顶点分别为A1,A2,过点(-4,0)的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.题型六动点轨迹问题大题典例16.(23-24高三下·湖南益阳·一模)已知两点A(-2,0),B(2,0)及一动点P,直线P A,PB的斜率满足k P A⋅k PB=-14,动点P的轨迹记为C.过点(1,0)的直线l与C交于M,N两点,直线AM,BN交于点Q.(1)求C的方程;(2)求△AMN的面积的最大值;(3)求点Q的轨迹方程.变式训练-y2=1经过点17.(23-24高三下·江西抚州·月考)在平面直角坐标系xOy中,已知双曲线M:x2m A2,1,点B与点A关于原点对称,C为M上一动点,且C异于A,B两点.(1)求M的离心率;(2)若△BCT的重心为A,点D8,4的最小值;,求DT(3)若△BCT的垂心为A,求动点T的轨迹方程.18.(23-24高三下·安徽合肥·模拟预测)图1为一种卫星信号接收器,该接收器的曲面与其轴截面的交线为抛物线的一部分,已知该接收器的口径AB =43,深度MO =2,信号处理中心F 位于抛物线的焦点处,以顶点O 为坐标原点,以直线OF 为x 轴建立如图2所示的平面直角坐标系xOy .(1)求该抛物线的方程;(2)设Q 是该抛物线的准线与x 轴的交点,直线l 过点Q ,且与抛物线交于R ,S 两点,若线段RS 上有一点P ,满足RP PS=RQ QS,求点P 的轨迹方程.角度关系证明问题大题典例19.(24-25高三上·云南昆明·开学考试)在平面直角坐标系xOy中,已知点A-2,0,B2,0,动点M满足直线AM与直线BM的斜率之积为-34,设点M的轨迹为曲线C.(1)求C的方程;(2)已知点F1,0,直线l:x=4与x轴交于点D,直线AM与l交于点N,证明:∠MFD=2∠NFD.变式训练20.(23-24高三下·山西运城·三模)已知双曲线C:x2-y23=1的左、右焦点分别为F1,F2,点A为C的左顶点,点P为C右支上一点(非顶点),∠F1PF2的平分线PM交x轴于M (1)过右焦点F2作F2N⊥PM于N,求ON;(2)求证:∠PF2A=2∠P AF2.21.(23-24高三下·广西·二模)已知抛物线C :x 2=y ,过点E 0,2 作直线交抛物线C 于A ,B 两点,过A ,B 两点分别作抛物线C 的切线交于点P .(1)证明:P 在定直线上;(2)若F 为抛物线C 的焦点,证明:∠PFA =∠PFB .向量共线问题大题典例22.(24-25高三上·四川成都·模拟预测)椭圆C 的中心为坐标原点O ,焦点在y 轴上,离心率e =22,椭圆上的点到焦点的最短距离为1-e ,直线l 与y 轴交于点P (0,m )(m ≠0),与椭圆C 交于相异两点A 、B ,且OA +λOB =4OP.(1)求椭圆方程;(2)求m 的取值范围.变式训练23.(23-24高三下·山西太原·三模)已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左、右顶点分别为A 与B ,点D 3,2 在C 上,且直线AD 与BD 的斜率之和为2.(1)求双曲线C 的方程;(2)过点P 3,0 的直线与C 交于M ,N 两点(均异于点A ,B ),直线MA 与直线x =1交于点Q ,求证:B ,N ,Q 三点共线.24.已知抛物线Γ:y 2=2px (p >0)经过点P 1,2 ,直线l 与抛物线Γ有两个不同的交点A ,B ,直线P A 交y 轴于M ,直线PB 交y 轴于N .(1)若直线l 过点Q 0,1 ,求直线l 的斜率k 的取值范围;(2)若直线l 过抛物线Γ的焦点F ,交y 轴于点D ,DA =λAF ,DB =μBF,求λ+μ的值;(3)若直线l 过点Q 0,1 ,设O 0,0 ,QM =λQO ,QN =μQO ,求1λ+1μ的值.存在性问题探究大题典例25.(23-24高三下·上海·三模)已知椭圆C :x 28+y 24=1,F 1、F 2分别为左、右焦点,直线l 过F 2交椭圆于A 、B 两点.(1)求椭圆的离心率;(2)当∠F 1AB =90°,且点A 在x 轴上方时,求A 、B 两点的坐标;(3)若直线AF 1交y 轴于M ,直线BF 1交y 轴于N ,是否存在直线l ,使得S △F 1AB =S △F 1MN ?若存在,求出直线l 的方程;若不存在,请说明理由.变式训练26.(24-25高三上·上海·月考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =2,左顶点A -1,0 ,过C 的右焦点F 作与x 轴不重合的直线l ,交C 于P 、Q 两点.(1)求双曲线C 的方程;(2)求证:直线AP 、AQ 的斜率之积为定值;(3)设PF =λFQ ,试问:在x 轴上是否存在定点T ,使得AF ⊥(TP -λTQ )恒成立?若存在,求出点T 的坐标;若不存在,说明理由.27.(23-24高三下·西藏拉萨·月考)已知抛物线C :y 2=2px (p >0),准线l 与x 轴交于点M ,A x 0,y 0 为抛物线C 上一点,AD ⊥l 交y 轴于点D .当y 0=42时,MA =MD +MF.(1)求抛物线C 的方程;(2)设直线AM 与抛物线C 的另一交点为B (点B 在点A ,M 之间),过点F 且垂直于x 轴的直线交AM 于点N .是否存在实数λ,使得AM BN =λBM AN ?若存在,求出λ的值;若不存在,请说明理由.“非对称”韦达定理大题典例28.(23-24高三上·陕西西安·期中)已知椭圆W:x24m +y2m=1m>0的长轴长为4,左、右顶点分别为A,B,经过点P(1,0)的动直线与椭圆W相交于不同的两点C,D(不与点A,B重合).(1)求椭圆W的方程及离心率;(2)若直线CB与直线AD相交于点M,判断点M是否位于一条定直线上?若是,求出该直线的方程;若不是,说明理由.变式训练29.(23-24高三上·上海闵行·期中)已知双曲线C:x2a2-y2b2=1a>0,b>0的离心率为2,点3,-1在双曲线C上.过C的左焦点F作直线l交C的左支于A、B两点.(1)求双曲线C的方程;(2)若M-2,0,试问:是否存在直线l,使得点M在以AB为直径的圆上?请说明理由.(3)点P-4,2,直线AP交直线x=-2于点Q.设直线QA、QB的斜率分别k1、k2,求证:k1-k2为定值.30.(24-25高三上·重庆·月考)已知F 是椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点,O 为坐标原点,M 为椭圆上任意一点,MF 的最大值为2+3,当OM =OF 时,△MOF 的面积为12.(1)求ba的值;(2)A ,B 为椭圆的左、右顶点,点P 满足AP =3PB,当M 与A ,B 不重合时,射线MP 交椭圆C 于点N ,直线AM ,BN 交于点T ,求∠ATB 的最大值.必刷大题刷模拟1.(23-24高三下·河北·模拟预测)椭圆C:x2a2+y2b2=1a>b>0左右顶点分别为A,B,且AB=4,离心率e=2 2 .(1)求椭圆C的方程;(2)直线l与抛物线y2=4x相切,且与C相交于M、N两点,求△MNB面积的最大值.2.(24-25高三上·河北石家庄·月考)已知焦距为23的椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,右顶点为A,过F作直线l与椭圆C交于B、D两点(异于点A),当BD⊥x轴时,|BD|=1.(1)求椭圆C的方程;(2)证明:∠BAD是钝角.3.(24-25高三上·重庆·月考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =32x ,点P 4,3 在双曲线C 上.(1)求双曲线C 的方程.(2)设过点-1,0 的直线l 与双曲线C 交于M ,N 两点,问在x 轴上是否存在定点Q ,使得QM ⋅QN为常数?若存在,求出Q 点坐标及此常数的值;若不存在,说明理由.4.(24-25高三上·云南保山·期中)若P 2,2 为抛物线Γ:y 2=mx 上一点,过P 作两条关于x =2对称的直线分别另交Γ于A x 1,y 1 ,B x 2,y 2 两点.(1)求抛物线Γ的方程与焦点坐标;(2)判断直线AB 的斜率是否为定值?若是,求出定值;若不是,请说明理由.5.(24-25高三上·湖北武汉·期中)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的离心率为32,点A 0,1 在C 上,直线l 与C 交于不同于A 的两点M ,N .(1)求C 的方程;(2)若AM ⋅AN=0,求△AMN 面积的最大值;(3)记直线AM ,AN 的斜率分别为k 1,k 2,若k 1k 2=-116,证明:以MN 为直径的圆过定点,并求出定点坐标.6.(24-25高三上·上海宝山·月考)已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F₁、F₂,N-2,0为椭圆的一个顶点,且右焦点F₂到双曲线.x²-y²=2渐近线的距离为2 2,(1)求椭圆C的标准方程;(2)设直线l:y=kx+m k≠0与椭圆C交于A、B两点.①若直线l过椭圆右焦点F₂,且△AF₁B的面积为835,求实数k的值;②若直线l过定点P(0,2),且k>0,在x轴上是否存在点T(t,0)使得以TA、TB为邻边的平行四边形为菱形?若存在,则求出实数t的取值范围;若不存在,请说明理由.刷真题7.(2024·全国·高考真题)已知A(0,3)和P3,32为椭圆C:x2a2+y2b2=1(a>b>0)上两点.(1)求C的离心率;(2)若过P的直线l交C于另一点B,且△ABP的面积为9,求l的方程.8.(2024·全国·高考真题)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,点M1,32在C上,且MF⊥x轴.(1)求C的方程;(2)过点P4,0的直线交C于A,B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ⊥y轴.9.(2024·天津·高考真题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12.左顶点为A ,下顶点为B ,C是线段OB 的中点(O 为原点),△ABC 的面积为332.(1)求椭圆的方程.(2)过点C 的动直线与椭圆相交于P ,Q 两点.在y 轴上是否存在点T ,使得TP ⋅TQ≤0恒成立.若存在,求出点T 纵坐标的取值范围;若不存在,请说明理由.10.(2024·北京·高考真题)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 ,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点0,t t >2 且斜率存在的直线与椭圆E 交于不同的两点A ,B ,过点A 和C 0,1 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.11.(2024·上海·高考真题)已知双曲线Γ:x 2-y 2b2=1,(b >0),左右顶点分别为A 1,A 2,过点M -2,0 的直线l 交双曲线Γ于P ,Q 两点.(1)若离心率e =2时,求b 的值.(2)若b =263,△MA 2P 为等腰三角形时,且点P 在第一象限,求点P 的坐标.(3)连接OQ 并延长,交双曲线Γ于点R ,若A 1R ⋅A 2P=1,求b 的取值范围.12.(2024·上海·高考真题)在平面直角坐标系xOy 中,已知点A 为椭圆Γ:x 26+y 22=1上一点,F 1、F 2分别为椭圆的左、右焦点.(1)若点A 的横坐标为2,求AF 1 的长;(2)设Γ的上、下顶点分别为M 1、M 2,记△AF 1F 2的面积为S 1,△AM 1M 2的面积为S 2,若S 1≥S 2,求OA 的取值范围(3)若点A 在x 轴上方,设直线AF 2与Γ交于点B ,与y 轴交于点K ,KF 1延长线与Γ交于点C ,是否存在x 轴上方的点C ,使得F 1A +F 1B +F 1C =λF 2A +F 2B +F 2Cλ∈R 成立?若存在,请求出点C 的坐标;若不存在,请说明理由.。
1 FAPHB
Q
高考数学-圆锥曲线解题常用方法
解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r1+r2=2a。第二定义中,r1=ed1 r2=ed2。 (2)双曲线有两种定义。第一定义中,arr221,当r1>r2时,注意r2的最小值为c-a:第二定义中,r1=ed1,r2=ed2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、设而不求法 解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x1,y1),B(x2,y2),弦AB中点为M(x0,y0),将点A、B坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:
(1))0(12222babyax与直线相交于A、B,设弦AB中点为M(x0,y0),则有02020kbyax。
(2))0,0(12222babyax与直线l相交于A、B,设弦AB中点为M(x0,y0)则有02020kbyax (3)y2=2px(p>0)与直线l相交于A、B设弦AB中点为M(x0,y0),则有2y0k=2p,即y0k=p.
【典型例题】 例1、(1)抛物线C:y2=4x上一点P到点A(3,42)与到准线的距离和最小,则点 P的坐标为______________ (2)抛物线C: y2=4x上一点Q到点B(4,1)与到焦点F的距离和最小,则点Q的坐标为 。
分析:(1)A在抛物线外,如图,连PF,则PFPH,因而易发现,当A、P、F三点共线时,距离和最小。 (2)B在抛物线内,如图,作QR⊥l交于R,则当B、Q、R三点共线时,距离和最小。 解:(1)(2,2) 2 x
y0A
B
CMD
5
F′FPH
y
0x
A
连PF,当A、P、F三点共线时,PFAPPHAP最小,此时AF的方程为)1(13024xy 即 y=22(x-1),代入y2=4x得P(2,22),(注:另一交点为(2,21),它为直线AF与抛物线的另一交点,舍去) (2)(1,41) 过Q作QR⊥l交于R,当B、Q、R三点共线时,QRBQQFBQ最小,此时Q点的纵坐标为1,代入y2=4x得x=41,∴Q(1,41) 点评:这是利用定义将“点点距离”与“点线距离”互相转化的一个典型例题,请仔细体会。 例2、F是椭圆13422yx的右焦点,A(1,1)为椭圆内一定点,P为椭圆上一动点。 (1)PFPA的最小值为 (2)PFPA2的最小值为 分析:PF为椭圆的一个焦半径,常需将另一焦半径FP或准线作出来考虑问题。 解:(1)4-5 设另一焦点为F,则F(-1,0)连AF,PF 542)(22FAaPAFPaFPaPAPFPA
当P是FA的延长线与椭圆的交点时, PFPA取得最小值为4-5。 (2)3 作出右准线l,作PH⊥l交于H,因a2=4,b2=3,c2=1, a=2,c=1,e=21,
∴PHPFPHPF2,21即 ∴PHPAPFPA2 当A、P、H三点共线时,其和最小,最小值为3142Axca
例3、动圆M与圆C1:(x+1)2+y2=36内切,与圆C2:(x-1)2+y2=4外切,求圆心M的轨迹方程。 分析:作图时,要注意相切时的“图形特征”:两个圆心与切点这三点共线(如图中的A、M、C共线,B、D、M共线)。列式的主要途径是动 3
圆的“半径等于半径”(如图中的MDMC)。 解:如图,MDMC, ∴26MBMADBMBMAAC即 ∴8MBMA (*)
∴点M的轨迹为椭圆,2a=8,a=4,c=1,b2=15轨迹方程为1151622yx 点评:得到方程(*)后,应直接利用椭圆的定义写出方程,而无需再用距离公式列式求解,即列出4)1()1(2222yxyx,再移项,平方,…相当于将椭圆标准方程推导了一遍,较繁琐!
例4、△ABC中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A的轨迹方程。 分析:由于sinA、sinB、sinC的关系为一次齐次式,两边乘以2R(R为外接圆半径),可转化为边长的关系。
解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA
∴BCACAB53 即6ACAB (*) ∴点A的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4
所求轨迹方程为116922yx (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 例5、定长为3的线段AB的两个端点在y=x2上移动,AB中点为M,求点M到x轴的最短距离。
分析:(1)可直接利用抛物线设点,如设A(x1,x12),B(x2,X22),又设AB中点为M(x0y0)用弦长公式及中点公式得出y0关于x0的函数表达式,再用函数思想求出最短距离。
(2)M到x轴的距离是一种“点线距离”,可先考虑M到准线的距离,想到用定义法。 解法一:设A(x1,x12),B(x2,x22),AB中点M(x0,y0)
则0222102122221221229)()(yxxxxxxxxx ① ② ③ 4
xy0M
AB
A1
A2
M1
M2
B1
B2
由①得(x1-x2)2[1+(x1+x2)2]=9 即[(x1+x2)2-4x1x2]·[1+(x1+x2)2]=9 ④ 由②、③得2x1x2=(2x0)2-2y0=4x02-2y0 代入④得 [(2x0)2-(8x02-4y0)]·[1+(2x0)2]=9
∴2020041944xxy,
1149)14(4944202020200xxxxy ≥,5192 450y 当4x02+1=3 即 220x时,45)(min0y此时)45,22(M 法二:如图,32222ABBFAFBBAAMM ∴232MM, 即23411MM, ∴451MM, 当AB经过焦点F时取得最小值。 ∴M到x轴的最短距离为45 点评:解法一是列出方程组,利用整体消元思想消x1,x2,从而形成y0关于x0的函数,这是一种“设而不求”的方法。而解法二充分利用了抛物线的定义,巧妙地将中点M到x轴的距离转化为它到准线的距离,再利用梯形的中位线,转化为A、B到准线的距离和,结合定义与三角形中两边之和大于第三边(当三角形“压扁”时,两边之和等于第三边)的属性,简捷地求解出结果的,但此解法中有缺点,即没有验证AB是否能经过焦点F,而且点M的坐标也不能直接得出。
例6、已知椭圆)52(1122mmymx过其左焦点且斜率为1的直线与椭圆及准线从左到右依次变于A、B、C、D、设f(m)=CDAB,(1)求f(m),(2)求f(m)的最值。 5
xyF1F20
AB
CD
分析:此题初看很复杂,对f(m)的结构不知如何运算,因A、B来源于“不同系统”,A在准线上,B在椭圆上,同样C在椭圆上,D在准线上,可见直接求解较繁,将这些线段“投影”到x轴上,立即可得防
)()(22)(2)()(CDABCDABXxxxxxxxmf )()(2DACBxxxx )(2CBXx 此时问题已明朗化,只需用韦达定理即可。 解:(1)椭圆1122mymx中,a2=m,b2=m-1,c2=1,左焦点F1(-1,0) 则BC:y=x+1,代入椭圆方程即(m-1)x2+my2-m(m-1)=0 得(m-1)x2+m(x+1)2-m2+m=0 ∴(2m-1)x2+2mx+2m-m2=0
设B(x1,y1),C(x2,y2),则x1+x2=-)52(122mmm
12222)()(2)()(2)(2121mmxxxxxx
xxxxCDABmf
CACDAB
(2))1211(2121122)(mmmmf ∴当m=5时,9210)(minmf 当m=2时,324)(maxmf 点评:此题因最终需求CBxx,而BC斜率已知为1,故可也用“点差法”设BC中点为M(x0,y0),通过将B、C坐标代入作差,得0100kmymx,将y0=x0+1,k=1代入得01100mxmx,∴
120mmx,可见122mmxxCB