( 4 )根据( 1 )( 2 )( 3 )题的结论,试猜想 S△ABC 与12bc·sin A 的大小
关系,并给出证明.
解:( 4 )猜想 S△ABC=12bc·sin A, 理由:作△ABC 的高 CD,
在 Rt△ADC 中,∵CD=AC·sin A=bsin A, ∴S△ABC=12AB·CD=12c·bsin A=12bc·sin A.
第23章
第1课时 解直角三角形
知识要点基础练
综合能力提升练
拓展探究突破练
-12-
第23章
第1课时 解直角三角形
知识要点基础练
综合能力提升练
拓展探究突破练
-13-
解:( 1 )∵∠A=60°,∠ABE=90°,AB=6,tan A=������������������������, ∴∠E=30°,BE=6tan 60°=6 3, 又∵∠CDE=90°,CD=4,∠E=30°,∴CE=8,
( 1 )当∠A=30°,b=6,c=3 时,S△ABC= 4.5 ,12bc·sin A= 4.5 ;
(
2
)当∠A=45°,b=6,c=3
时,S△ABC=
92 2
,12bc·sin
A=
92 2
;
( 3 )当∠A=60°,b=4,c=3 时,S△ABC= 3 3 ,12bc·sin A= 3 3 ;
略
第23章
第1课时 解直角三角形
知识要点基础练
综合能力提升练
拓展探究突破练
-7-
识点3 构造直角三角形 7.如图,△ABC的顶点是正方形网格的格点,则cos A的值为( B )
A.12
B.
2 2
C.
3 2