高中数学必修一 人教A版·数学·必修1课时作业14指数函数及其性质的应用 Word版含解析
- 格式:doc
- 大小:138.50 KB
- 文档页数:6
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升卷(十六)指数函数的图象及性质(45分钟 100分)一、选择题(每小题6分,共30分)1.若函数y=(2a-3)x是指数函数,则a的取值范围是( )A.a>B.a>,且a≠2C.a<D.a≠22.指数函数y=f(x)的图象经过点(-2,),那么f(4)·f(2)等于( )A.8B.16C.32D.643.(2013·黄冈高一检测)已知集合M={y|y=-x2+2,x∈R},集合M)∩N=( )N={y|y=2x,0≤x≤2},则(RA.[1,2]B.(2,4]C.[1,2)D.[2,4)4.当x>0时,指数函数f(x)=(a-1)x<1恒成立,则实数a的取值范围是( )A.a>2B.1<a<2C.a>1D.a∈R5.(2012·四川高考)函数y=a x-(a>0,a≠1)的图象可能是( )二、填空题(每小题8分,共24分)6.已知函数f(x)=则f(2)+f(-2)= .7.(2012·山东高考改编)若函数f(x)=a x(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)x2在[0,+∞)上是增函数,则a= .8.(2013·长沙高一检测)关于下列说法:(1)若函数y=2x的定义域是{x|x≤0},则它的值域是{y|y≤1}.(2)若函数y=的定义域是{x|x≥2},则它的值域是{y|y≤}.(3)若函数y=2x的值域是{y|0<y≤4},则它的定义域一定是{x|0<x≤2}.其中不正确的说法的序号是.三、解答题(9题,10题14分,11题18分)9.已知函数f(x)=a x+b(a>0,且a≠1).若f(x)的图象如图所示,求a,b 的值.10.(2013·长春高一检测)已知函数f(x)=a x-1(x≥0)的图象经过点(2,),其中a>0且a≠1.(1)求a的值.(2)求函数y=f(x)(x≥0)的值域.11.(能力挑战题)已知函数y=a x(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,记f(x)=.(1)求a的值.(2)证明f(x)+f(1-x)=1.(3)求f()+f()+f()+…+f()的值.答案解析1.【解析】选B.由题意得2a-3>0,且2a-3≠1,所以a>,且a≠2.2.【解析】选D.设f(x)=a x(a>0且a≠1),由已知得=a-2,a2=4,所以a=2,于是f(x)=2x,所以f(4)·f(2)=24·22=26=64.3.【解析】选B.由题可知M=(-∞,2],N=[1,4],∴R M=(2,+∞),(RM)∩N=(2,4].【变式备选】若集合M={y|y=2-x},P={y|y=},则M∩P等于( ) A.{y|y>1} B.{y|y≥1}C.{y|y>0}D.{y|y≥0}【解析】选C.y=2-x的值域为{y|y>0},y=的值域为{y|y≥0},因此,其交集为{y|y>0}.故选C.4.【解题指南】结合指数函数的图象,若x>0时,(a-1)x<1恒成立,则必有0<a-1<1,进而求解.【解析】选B.∵x>0时,(a-1)x<1恒成立,∴0<a-1<1,∴1<a<2.5.【解析】选D.当a>1时,y=a x-在R上为增函数,且与y轴的交点为(0,1-),又0<1-<1,故排除A,B.当0<a<1时,y=a x-在R上为减函数,且与y轴的交点为(0,1-),又1-<0,故选D.6.【解析】f(2)+f(-2)=22+3-2=.答案:【举一反三】若对于本题中的函数f(x),有f(a)=16,试求a的值.【解析】当a≤1时,f(a)=3a≤3<16,故a>1,此时有f(a)=2a=16,所以a=4.7.【解析】当a>1时,有a2=4,a-1=m,此时a=2,m=,此时g(x)=-x2在[0,+∞)上是减函数,不合题意.若0<a<1,则a-1=4,a2=m,故a=,m=,检验知符合题意.答案:8.【解题指南】解答本题一方面要注意利用函数的单调性由定义域求值域,由值域求定义域;另一方面要注意结合函数的图象,弄清楚函数值与自变量的关系.【解析】(1)不正确.由x≤0得0<2x≤20=1,值域是{y|0<y≤1}.(2)不正确.由x≥2得0<≤,值域是{y|0<y≤}.(3)不正确.由2x≤4=22得x≤2,所以若函数y=2x的值域是{y|0<y≤4},则它的定义域一定是{x|x≤2}.答案:(1)(2)(3)9.【解析】由图象得,点(2,0),(0,-2)在函数f(x)的图象上,所以解得10.【解析】(1)∵函数f(x)=a x-1(x≥0)的图象经过点(2,),∴=a2-1,∴a=.(2)由(1)知f(x)=()x-1=2·()x,∵x≥0,∴0<()x≤()0=1,∴0<2·()x≤2,∴函数y=f(x)(x≥0)的值域为(0,2].11.【解析】(1)函数y=a x(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,∴a+a2=20,得a=4或a=-5(舍去).(2)由(1)知f(x)=,∴f(x)+f(1-x)=+=+=+=+=1.(3)由(2)知f()+f()=1,f()+f()=1,…,f()+f()=1,∴f()+f()+f()+…+f()=++…+=1+1+…+1=1 006.关闭Word文档返回原板块。
指数函数性质及应用1.若2x +1<1,则x 的取值范围是( ) A .(-1,1) B .(-1,+∞) C .(0,1)∪(1,+∞) D .(-∞,-1) 2.下列判断正确的是( )A .1.72.5>1.73B .0.82<0.83C .0.9-0.3<1 D .1.90.3>0.92.53.已知f (x )=3x -b (2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域是( ) A .[9,81] B .[3,9] C .[1,9] D .[1,+∞)4.函数y =(12)1-x 的单调递增区间为( )A .(-∞,+∞)B .(0,+∞)C .(1,+∞)D .(0,1)5.若函数f (x )=12x +1,则该函数在(-∞,+∞)上( )A .单调递减且无最小值B .单调递减且有最小值C .单调递增且无最大值D .单调递增且有最大值6.若1>n >m >0,则指数函数①y =m x ,②y =n x 的图象为()7.已知函数f (x )=⎩⎪⎨⎪⎧a x,(x <0)(a -3)x +4a ,(x ≥0),满足对任意的x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是( )A .(0,14]B .(0,1)C . [14,1) D .(0,3)8.函数f (x )=4x +12x 的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称9.设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则y 1,y 2,y 3的大小关系为________.10.若函数f (x )=(13)ax 2-(a +2)x +3在区间[-1,+∞)上单调递增,则a 的取值范围是____________.11.函数f (x )=⎩⎪⎨⎪⎧-x +3a ,x <0,a x , x ≥0(a >0且a ≠1)是R 上的减函数,则a 的取值范围是________.12.已知函数f (x )=12x +1+a 是奇函数,则a =_____.13.函数y =2x2+4x +2的值域为 ,增区间为 . 14.已知函数f (x )=13x +1+a 为奇函数,则常数a =______.15.已知指数函数f (x )=(2a -1)x 是R 上的减函数,则实数a 的取值范围是 .16.已知a =20.2,b =0.40.2,c =0.40.6,则a ,b ,c 的大小关系是____________.17.不等式0.52x >4x -1的解集为____________.(用区间表示)18.已知函数f (x )=(a -2)a x (a >0,且a ≠1),若对任意x 1,x 2∈R ,f (x 1)-f (x 2)x 1-x 2>0,则a 的取值范围是______________.19.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)=________.20.比较下列各组数的大小.(1)2.30.6和2.31.2; (2)(35)0..5和(35)0..8;(3)1.91.5和31.5; (4)3.10.6和0.63.1;21.比较大小:a =1.50.6,b =0.60.2,c =0.61.5.22.已知函数f (x )=(12)x 2-2x ,求f (x )的值域和单调区间.23.已知函数y =2-x 2+4x -1,求其单调区间及值域.24.已知函数f (x )=2x -b2x +a是定义在R 上的奇函数.(1)求a 、b 的值;(2)判断并证明函数f (x )的单调性; (3)求函数f (x )在R 上的值域.25.已知函数f (x )=2x -12x .(1)判断函数f (x )的奇偶性; (2)证明:f (x )为R 上的增函数;(3)若对于任意m ∈[-2,2],不等式f (m 2-3m )+f (m -k )<0恒成立,求k 的取值范围.26.设函数f (x )=1-22x +1,(1)证明:f (x )为奇函数. (2)求f (x )的值域.27.求函数f (x )=4-2x 2+2x -2的值域和单调区间.28.已知函数f (x )=3x,f (a +2)=81,g (x )=1-a x1+a x.(1)求g (x )的解析式并判断g (x )的奇偶性;(2)用定义证明:函数g (x )在R 上是单调递减函数; (3)求函数g (x )的值域.29.已知函数f (x )=(13)ax 2-4x +3..(1)若f (x )有最大值3,求a 的值;(2)若f (x )在(-∞,1)上单调递增,求a 的取值范围.30.已知函数y =a 2x +2a x -1(a >0且a ≠1)在[-1,1]上有最大值14,试求a 的值.。
高中数学14种函数图像和性质知识解析新人教A版必修1高中数学 14种函数图像和性质知识解析新人教A版必修1高中不得不掌握的函数图像与常用性质高中常用函数有14种,它们是:1.正比例函数;2.反比例函数;3.根式函数;4一次函数;5.二次函数;6双勾函数.;7..双抛函数;8.指数函数;9对数函数;10.三角函数;11分段函数.;12.绝对值函数;13.超越函数;14.抽象函数。
而函数的性质常见的有:1.定义域;2.值域;3.单调性;4.奇偶性;5.周期性;6.对称性;7.有界性;8.反函数;9.连续性.高中都是从函数解析式入手画出函数图像,再利用函数图像研究其性质,下面我们就函数的图像和性质做归纳总结。
1.正比例函数解析式图像定义域:值域:单调性:奇偶性:反函数:2.反比例函数解析式图像性质定义域:值域:单调性:奇偶性:反函数:对称性:定义域:值域:单调性:对称性:3根式函数解析式图像定义域:值域:单调性:奇偶性:反函数:4一次函数解析式图像定义域:值域:1 性质性质性质用心爱心专心单调性:反函数:5二次函数解析式图像定义域:值域:单调性:对称性:定义域:值域:单调性:对称性:6.双勾函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:值域:单调性:奇偶性:对称性:7.双抛函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:性质性质性质用心爱心专心值域:单调性:奇偶性:对称性:8.指数函数解析式图像定义域:值域:单调性:9.对数函数解析式图像定义域:值域:单调性:10.三角函数解析式图像单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:11.分段函数分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。
4.2.1 指数函数的概念必备知识基础练1.(多选)下列函数是指数函数的有( ) A .y =x 4B .y =(12)xC .y =22xD .y =-3x2.已知某种细胞分裂时,由1个分裂成2个,2个分裂成4个……依此类推,那么1个这样的细胞分裂3次后,得到的细胞个数为( )A .4个B .8个C .16个D .32个3.如果指数函数f (x )=a x(a >0,且a ≠1)的图象经过点(2,4),那么a 的值是( ) A . 2 B .2 C .3 D .44.若函数f (x )是指数函数,且f (2)=2,则f (x )=( ) A .(2)x B .2xC .(12)xD .(22)x5.已知f (x )=3x -b(b 为常数)的图象经过点(2,1),则f (4)的值为( )A .3B .6C .9D .86.已知函数f (x )=⎩⎪⎨⎪⎧2x,x <0,3x ,x >0,则f (f (-1))=( )A .2B . 3C .0D .127.已知函数y =a ·2x和y =2x +b都是指数函数,则a +b =________.8.已知函数f (x )是指数函数,且f (-32)=525,则f (3)=________.关键能力综合练1.若函数y =(m 2-m -1)·m x是指数函数,则m 等于( ) A .-1或2 B .-1 C .2 D .122.函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +3,x ≤0,则f (f (-2))的值为( )A .14B .12C .2D .43.若函数f (x )=(12a -1)·a x是指数函数,则f (12)的值为( )A .-2B .2C .-2 2D .2 24.若函数y =(2a -1)x(x 是自变量)是指数函数,则a 的取值范围是( ) A .a >0且a ≠1 B .a ≥0且a ≠1 C .a >12且a ≠1 D .a ≥125.某产品计划每年成本降低p %,若三年后成本为a 元,则现在成本为( ) A .a (1+p %)元 B .a (1-p %)元 C .a (1-p %)3元 D .a1+p %元 6.(多选)设指数函数f (x )=a x(a >0,且a ≠1),则下列等式中正确的是( ) A .f (x +y )=f (x )f (y ) B .f (x -y )=f (x )f (y )C .f (xy)=f (x )-f (y ) D .f (nx )=[f (x )]n(n ∈Q )7.某厂2018年的产值为a 万元,预计产值每年以7%的速度增加,则该厂到2022年的产值为________万元.8.若函数y =(k +2)a x+2-b (a >0,且a ≠1)是指数函数,则k =________,b =________. 9.已知指数函数f (x )=a x(a >0,且a ≠1), (1)求f (0)的值;(2)如果f (2)=9,求实数a 的值.10.已知函数f (x )=(a 2+a -5)a x是指数函数. (1)求f (x )的表达式;(2)判断F (x )=f (x )-f (-x )的奇偶性,并加以证明.核心素养升级练1.某乡镇现在人均一年占有粮食360千克,如果该乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么x 年后若人均一年占有y 千克粮食,则y 关于x 的解析式为( )A .y =360(1.041.012)x -1B .y =360×1.04xC .y =360×1.04x1.012D .y =360(1.041.012)x2.已知函数f (x )=⎩⎪⎨⎪⎧3x(x >0)2x -3(x ≤0),若f (a )-f (2)=0,则实数a 的值等于________.3.截止到2018年底,我国某市人口约为130万.若今后能将人口年平均递增率控制在3‰,经过x 年后,此市人口数为y (万).(1)求y 与x 的函数关系y =f (x ),并写出定义域;(2)若按此增长率,2029年年底的人口数是多少?(3)哪一年年底的人口数将达到135万?4.2.1 指数函数的概念必备知识基础练1.答案:BC解析:对于A,函数y =x 4不是指数函数, 对于B,函数y =(12)x是指数函数;对于C,函数y =22x=4x是指数函数; 对于D,函数y =-3x不是指数函数. 2.答案:B解析:由题意知1个细胞分裂3次的个数为23=8. 3.答案:B解析:由题意可知f (2)=a 2=4,解得a =2或a =-2(舍). 4.答案:A解析:由题意,设f (x )=a x(a >0且a ≠1), 因为f (2)=2,所以a 2=2,解得a = 2. 所以f (x )=(2)x. 5.答案:C 解析:f (2)=32-b=1=30,即b =2,f (4)=34-2=9.6.答案:B解析:f (-1)=2-1=12,f (f (-1))=f (12)=312= 3.7.答案:1解析:因为函数y =a ·2x是指数函数,所以a =1, 由y =2x +b是指数函数,所以b =0,所以a +b =1. 8.答案:125解析:设f (x )=a x(a >0且a ≠1),则f (-32)=a -32=525=5-32,得a =5,故f (x )=5x,因此,f (3)=53=125.关键能力综合练1.答案:C解析:由题意可得⎩⎪⎨⎪⎧m 2-m -1=1m >0m ≠1,解得m =2.2.答案:C解析:由题意f (-2)=-2+3=1,∴f (f (-2))=f (1)=2. 3.答案:B解析:因为函数f (x )=(12a -1)·a x 是指数函数,所以12a -1=1,即a =4,所以f (x )=4x,那么f (12)=412=2.4.答案:C解析:由于函数y =(2a -1)x(x 是自变量)是指数函数,则2a -1>0且2a -1≠1,解得a >12且a ≠1.5.答案:C解析:设现在成本为x 元,因为某产品计划每年成本降低p %,且三年后成本为a 元, 所以(1-p %)3x =a , 所以x =a(1-p %)3.6.答案:ABD解析:因指数函数f (x )=a x(a >0,且a ≠1),则有: 对于A,f (x +y )=ax +y=a x ·a y=f (x )f (y ),A 中的等式正确;对于B,f (x -y )=a x -y=a x·a -y=a x a y =f (x )f (y ),B 中的等式正确;对于C,f (x y )=a x y ,f (x )-f (y )=a x -a y ,显然,a xy≠a x -a y,C 中的等式错误;对于D,n ∈Q ,f (nx )=a nx =(a x )n =[f (x )]n,D 中的等式正确. 7.答案:a (1+7%)4解析:2018年产值为a ,增长率为7%. 2019年产值为a +a ×7%=a (1+7%)(万元).2020年产值为a (1+7%)+a (1+7%)×7%=a (1+7%)2(万元). ……2022年的产值为a (1+7%)4万元. 8.答案:-1 2解析:根据指数函数的定义,得⎩⎪⎨⎪⎧k +2=1,2-b =0,解得⎩⎪⎨⎪⎧k =-1,b =2.9.解析:(1)f (0)=a 0=1. (2)f (2)=a 2=9,∴a =3.10.解析:(1)由a 2+a -5=1,可得a =2或a =-3(舍去), ∴f (x )=2x.(2)F (x )=2x -2-x,定义域为R , ∴F (-x )=2-x-2x=-F (x ), ∴F (x )是奇函数.核心素养升级练1.答案:D解析:不妨设现在乡镇人口总数为a ,则现在乡镇粮食总量为360a ,故经过x 年后,乡镇人口总数为a (1+0.012)x ,乡镇粮食总量为360a (1+0.04)x, 故经过x 年后,人均占有粮食y =360a (1+0.04)xa (1+0.012)x =360(1.041.012)x. 2.答案:2解析:由已知,得f (2)=9; 又当x >0时,f (x )=3x, 所以当a >0时,f (a )=3a, 所以3a-9=0,所以a =2. 当x <0时,f (x )=2x -3, 所以当a <0时,f (a )=2a -3, 所以2a -3-9=0,所以a =6, 又因为a <0,所以a ≠6. 综上可知a =2.3.解析:(1)2018年年底的人口数为130万;经过1年,2019年年底的人口数为130+130×3‰=130(1+3‰)(万);经过2年,2020年年底的人口数为130(1+3‰)+130(1+3‰)×3‰=130(1+3‰)2(万);经过3年,2021年年底的人口数为130(1+3‰)2+130(1+3‰)2×3‰=130(1+3‰)3(万).……所以经过的年数与(1+3‰)的指数相同,所以经过x年后的人口数为130(1+3‰)x(万).即y=f(x)=130(1+3‰)x(x∈N*).(2)2029年年底,经过了11年,过2029年底的人口数为130(1+3‰)11≈134(万).(3)由(2)可知,2029年年底的人口数为130(1+3‰)11≈134<135.2030年年底的人口数为130(1+3‰)12≈134.8(万),2031年年底的人口数为130(1+3‰)13≈135.2(万).所以2031年年底的人口数将达到135万.。
高中数学 14种函数图像和性质知识解析新人教A版必修1高中数学中,函数是一个非常重要的概念,是数学的基础。
函数不仅在数学上有很多应用,而且在实际生活中也有广泛的应用。
函数的图像和性质是我们学习函数的重要内容之一。
下面我将详细介绍高中数学中的14种函数图像和性质。
一、常数函数图像和性质:常数函数是指对于任何定义域内的自变量,其函数值都是一个固定的常数。
常数函数的图像是一个平行于x轴的直线,也可以看作是y轴上的一个点。
常数函数的性质包括:定义域是全体实数,值域是{常数},奇偶性是偶函数。
二、一次函数图像和性质:一次函数是指函数的表达式为y=kx+b,其中k和b是常数。
一次函数的图像是一条直线,具有斜率k,截距b。
一次函数的性质包括:定义域是全体实数,值域是全体实数,当且仅当k=0时,为常数函数,奇偶性是奇函数。
三、二次函数图像和性质:二次函数是指函数的表达式为y=ax²+bx+c,其中a、b、c是常数,且a≠0。
二次函数的图像是一个开口向上或开口向下的抛物线。
二次函数的性质包括:定义域是全体实数,值域受a的正负号和抛物线的开口方向影响,奇偶性当且仅当a=0时,为一次函数。
四、基本初等函数图像和性质:基本初等函数包括幂函数、指数函数、对数函数、三角函数和反三角函数。
它们都有各自的图像和性质。
1. 幂函数图像和性质:幂函数是指函数的表达式为y=xⁿ,其中n是一个实数,且n≠0。
幂函数的图像随着n的不同而变化,当n>0时,函数的图像是递增的曲线,当n<0时,函数的图像是递减的曲线。
幂函数的性质包括:定义域是正实数或负实数,值域受n的正负号影响,奇偶性当且仅当n为偶数时,函数关于y轴对称。
2. 指数函数图像和性质:指数函数是指函数的表达式为y=aⁿ,其中a是一个正实数,且a≠1,n是一个实数。
指数函数的图像随着a和n的取值不同而变化,当0<a<1时,函数的图像是递减的曲线,当a>1时,函数的图像是递增的曲线。
第四章 指数函数与对数函数4.1 指数 A 级必备知识基础练1.(天津滨海新区高一期中)下列运算正确的是( ) A.a 2·a 3=a 6 B.(3a)3=9a 3 C.√a 88=aD.(-2a 2)3=-8a 62.(多选题)下列运算错误的是( ) A.a 34·a 43=a(a>0) B.a 34·a -34=0(a>0) C.(a 23)2=a 49(a>0)D.a 13÷a -23=a(a>0)3.(福建福州三中高一期中)已知x 2+x -2=3,则x+x -1的值为( ) A.√5B.1C.±√5D.±14.(112)0-(1-0.5-2)÷(278)23的值为( )A.-13B.13C.43D.735.化简:(√3+√2)2 022·(√3−√2)2 022= .6.若α,β是方程5x 2+10x+1=0的两个根,则2α·2β= ,(2α)β= .7.化简求值:(1)(94)12-(9.6)0-(278)-23+(23)2; (2)(a 12·√b 23)-3÷√b -4·√a -2(a>0,b>0).B 级关键能力提升练8.(河北张家口张垣联盟高一联考)将根式√a √a √aa 化简为指数式是( )A.a -18B.a 18C.a -78D.a -349.(河南开封高一期中)已知正数x 满足x 12+x -12=√5,则x 2+x -2=( )A.6B.7C.8D.910.(多选题)(河北唐山一中高一期中)下列计算正确的是( )A.√(-3)412=√-33B.(a 23b 12)(-3a 12b 13)÷13a 16b 56=-9a(a>0,b>0)C.√√93=√33D.√-2√23=-21311.已知x 2+x -2=2√2,且x>1,则x 2-x -2的值为( ) A.2或-2 B.-2C.√6D.212.若a>0,b>0,则化简√b 3a√a 2b6的结果为 .13.化简:(2-a)[(a-2)-2(-a )12]12= . 14.化简求值:(1)0.125-13−(98)0+[(-2)2]32+(√2×√33)6;(2)(5116)0.5+√(-10)2-2√3×√276-4π0÷(34)-1.15.已知a 2x=√2+1,求a 3x +a -3x a x +a -x的值.C级学科素养创新练16.(黑龙江大庆实验中学高一期末)已知实数x满足3×16x+2×81x=5×36x,则x的值为.4.1 指数1.D a 2·a 3=a 5,故A 错误;(3a)3=27a 3,故B 错误;√a 88=|a|={a ,a ≥0,-a ,a <0,故C错误;(-2a 2)3=-8a 6,故D 正确.故选D.2.ABC 由指数幂运算性质可得只有D 正确,故选ABC.3.C 由(x+x -1)2=x 2+x -2+2=5,可得x+x -1=±√5.故选C.4.D 原式=1-(1-22)÷(32)2=1-(-3)×49=73.故选D.5.1 (√3+√2)(√3−√2)=[(√3+√2)(√3−√2)]=1=1.6.14 215利用一元二次方程根与系数的关系,得α+β=-2,αβ=15,则2α·2β=2α+β=2-2=14,(2α)β=2αβ=215.7.解(1)原式=[(32)2]12-1-[(23)3]23+(23)2=32-1-49+49=12;(2)原式=a -32·b -2÷b -2·a-12=a -1·b 0=1a.8.A√a √a √aa =a12+14+18-1=a -18,故选A.9.B 因为正数x 满足x 12+x-12=√5,所以(x 12+x -12)2=5,即x+x -1+2=5,则x+x -1=3,所以(x +x -1)2=9,即x 2+x -2+2=9,因此x 2+x -2=7.故选B.10.BC √(-3)412=√3412=√33,故A 错误;(a 23b 12)(-3a 12b 13)÷13a 16b56=-9a23+12-16b12+13-56=-9a,故B 正确;√√93=916=(32)16=313=√33,故C 正确;√-2√23=(-2√2)13=(-2×212)13=(-232)13=-212,故D 错误.故选BC. 11.D (方法1)∵x>1,∴x 2>1. 由x -2+x 2=2√2,可得x 2=√2+1, ∴x 2-x -2=√2+1-√2+1=√2+1-(√2-1)=2.(方法2)令x 2-x -2=t, ① ∵x -2+x 2=2√2, ②∴由①2-②2,得t 2=4. ∵x>1,∴x 2>x -2,∴t>0,于是t=2,即x 2-x -2=2,故选D. 12.1 √b 3a√a 2b 6=√b 3a(a 2b 6)12=√b 3a ab 3=1. 13.(-a )14由已知条件知a≤0, 则(a-2)-2=(2-a)-2,所以原式=(2-a)[(2-a)-2·(-a )12]12=(2-a)(2-a)-1(-a )14=(-a )14.14.解(1)根据指数幂与根式的运算,化简可得0.125-13−(98)0+[(-2)2]32+(√2×√33)6=[(2)-3]-13−(98)0+(22)32+(212×313)6=2-1+8+(212)6(313)6=2-1+8+8×9=81.(2)由分数指数幂及根式的运算,化简可得(5116)0.5+√(-10)2-2√3×√276-4π0÷(34)-1=[(32)4]0.5+10-2√3×(33)16-4×34=94+10-2√3×√3-3=94+10-6-3=134.15.解∵a 2x=√2+1,∴a -2x=√2+1=√2-1,即a 2x+a -2x=2√2,∴a 3x +a -3x a x +a -x=(a x +a -x )(a 2x +a -2x -1)a x +a -x =a 2x +a -2x -1=2√2-1.16.0或12因为3×16x +2×81x =5×36x ,所以3×24x +2×34x =5×(2×3)2x ,则3×24x +2×34x =5×22x ×32x ,所以3×24x +2×34x -5×22x ×32x =0,即(3×22x -2×32x )(22x -32x )=0,所以3×22x -2×32x =0,或22x -32x =0,解得x=12或x=0.。