武汉市江汉区2018-2019学年度上学期期末考试八年级数学试题
- 格式:doc
- 大小:168.50 KB
- 文档页数:5
2018-2019学年湖北省武汉市江汉区八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)下到各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.如图图形不是轴对称图形的是()A.B.C.D.2.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm3.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是()A.SSS B.SAS C.ASA D.AAS4.下列运算正确的是()A.a3•a4=a12B.(a3)﹣2=aC.(﹣3a2)﹣3=﹣27a6D.(﹣a2)3=﹣a65.下列各分式中,最简分式是()A.B.C.D.6.由线段a,b,c组成的三角形不是直角三角形的是()A.a=3,b=4,c=5B.a=12,b=13,c=5C.a=15,b=8,c=17D.a=13,b=14,c=157.若xy=x+y≠0,则分式=()A.B.x+y C.1D.﹣18.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=72°,那么∠DAC的大小是()A.30°B.36°C.18°D.40°9.用A,B两个机器人搬运化工原料,A机器人比B机器人每小时多搬运30kg,A机器人搬运900kg 所用时间与B机器人搬运600kg所用时间相等,设A机器人每小时搬运xkg化工原料,那么可列方程()A.=B.=C.=D.=10.如图,Rt△ABC中,∠ABC=90°,∠BAC=30°,AC=2,分别以三边为直径画半圆,则两个月形图案的面积之和(阴影部分的面积)是()A.B.πC.D.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答题卷指定的位置.11.五边形的内角和为度.12.0.0000064用科学记数法表示为.13.x2+kx+9是完全平方式,则k=.14.如图,△ABC中,BO平分∠ABC,CO平分∠ACB,MN经过点O,与AB,AC相交于点M,N,且MN∥BC.若AB=7,AC=6,那么△AMN的周长是.15.直角三角形两条边的长度分别为3cm,4cm,那么第三条边的长度是cm.16.若m+2=3n,则3m•27﹣n的值是.三、解答题(共5小题,第17至20题,每小题10分,第21题12分,共52分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.17.(10分)(1)计算:(2a﹣3)2+(2a+3)(2a﹣3);(2)解方程:=18.(10分)如图,△ABC在平面直角坐标系中,A(﹣2,5),B(﹣3,2),C(﹣1,1).(1)请画出△ABC关于y轴的对称图形△A′B′C′,其中A点的对应点是A′,B点的对应点是B′,C点的对应点是C′,并写出A′,B′,C′三点的坐标.A′;B′;C′.(2)△A′B′C′的面积是.19.(10分)先化简,再求值:÷,其中x=﹣1.20.(10分)如图,OC平分∠MON,A、B分别为OM、ON上的点,且BO>AO,AC=BC,求证:∠OAC+∠OBC=180°.21.(12分)列方程解应用题:一辆汽车开往距离出发地180千米的目的地,出发后第1小时内按原计划的速度匀速行驶,1小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.求原计划的时间.四、填空题(共4小题,每小题4分,共16分)下列各题不需要写出解答过程,请将结果直接填在答题卷指定的位置.22.(4分)分解因式:x 3+x 2+x +1= .23.(4分)若x 2﹣y 2=8,x 2﹣z 2=5,则(x +y )(y +z )(z +x )(x ﹣y )(y ﹣z )(z ﹣x )= . 24.(4分)如图,四边形ABCD 沿直线AC 对折后重合,如果AC ,BD 交于O ,AB ∥CD ,则结论①AB =CD ,②AD ∥BC ,③AC ⊥BD ,④AO =CO ,⑤AB ⊥BC ,其中正确的结论是 (填序号).25.(4分)已知,点E 是△ABC 的内角∠ABC 与外角∠ACD 的角平分线交点,∠A =50°,则∠E = °.五、解答题(共3小题,第26题10分,第27题12分,第28题12分共34分)下列各题需要在答题卷指定位置写出文宇说明、证明过程、计算步骤或作出图形.26.(10分)已知,等腰△ABC 和等腰△ADE 中,∠BAC =∠DAE =90°.(1)如图1,求证:DB =CE ;(2)如图2.求证:S △ACD =S △ABE .27.(12分)已知,关于x 的分式方程﹣=1.(1)当m =﹣1时,请判断这个方程是否有解并说明理由;(2)若这个分式方程有实数解,求m 的取值范围.28.(12分)在平面直角坐标系中,点A (0,4),B (m ,0)在坐标轴上,点C ,O 关于直线AB 对称,点D 在线段AB 上.(1)如图1,若m=8,求AB的长;(2)如图2,若m=4,连接OD,在y轴上取一点E,使OD=DE,求证:CE=DE;(3)如图3,若m=4,在射线AO上裁取AF,使AF=BD,当CD+CF的值最小时,请在图中画出点D的位置,并直接写出这个最小值.2018-2019学年湖北省武汉市江汉区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下到各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.4.【分析】直接利用积的乘方运算法则以及同底数幂的乘法运算法则、负指数幂的性质分别计算得【解答】解:A、a3•a4=a7,故此选项错误;B、(a3)﹣2=,故此选项错误;C、(﹣3a2)﹣3=﹣,故此选项错误;D、(﹣a2)3=﹣a6,正确;故选:D.【点评】此题主要考查了积的乘方运算和同底数幂的乘法运算、负指数幂的性质,正确掌握相关运算法则是解题关键.5.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选:C.【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.6.【分析】根据判断三条线段是否能构成直角三角形的三边,需验证两小边的平方和是否等于最长边的平方,分别对每一项进行分析,即可得出答案.【解答】解:A、32+42=52,符合勾股定理的逆定理,是直角三角形;B、52+122=132,符合勾股定理的逆定理,是直角三角形;C、152+82=172,符合勾股定理的逆定理,是直角三角形;D、132+142≠152,不符合勾股定理的逆定理,不是直角三角形.故选:D.【点评】本题主要考查了勾股定理的逆定理:用到的知识点是已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.7.【分析】先进行分式的加减计算进行解答即可.【解答】解:因为,把xy=x+y≠0代入可得:,【点评】此题考查分式的计算,关键是根据分式的加减计算解答.8.【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD中,AB=AD,∠B=72°,∴∠B=∠ADB=72°,∴∠ADC=180°﹣∠ADB=108°,∵AD=CD,∴∠C=∠DAC=(180°﹣∠ADC)÷2=(180°﹣108°)÷2=36°.故选:B.【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.9.【分析】设A种机器人每小时搬运x千克化工原料,则B种机器人每小时搬运(x﹣30)千克化工原料,根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等建立方程.【解答】解:设A机器人每小时搬运xkg化工原料,则B种机器人每小时搬运(x﹣30)千克化工原料,那么可列方程=.故选:A.【点评】本题考查了由实际问题抽象出分式方程,解答时根据A型机器人搬运900kg原料所用时间与B型机器人搬运600kg原料所用时间相等建立方程是关键.10.【分析】根据直角三角形的性质求出BC,根据勾股定理求出AB,根据扇形面积公式计算即可.【解答】解:∵∠ABC=90°,∠BAC=30°,AC=2,∴BC=AC=1,由勾股定理得,AB==,∴两个月形图案的面积之和=×π×()2+×π×()2+×1×﹣×π×12=,故选:A.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答题卷指定的位置.11.【分析】n边形内角和公式为(n﹣2)180°,把n=5代入可求五边形内角和.【解答】解:五边形的内角和为(5﹣2)×180°=540°.故答案为:540.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.12.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000064=6.4×10﹣6,故答案为:6.4×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.【分析】这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3的积的2倍,故k=±6.【解答】解:中间一项为加上或减去x和3的积的2倍,故k=±6.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.14.【分析】根据BO平分∠ABC,CO平分∠ACB,且MN∥BC,可得出MO=MB,NO=NC,所以三角形AMN的周长是AB+AC.【解答】解:∵BO平分∠ABC,CO平分∠ACB,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠NCO,∴MO=MB,NO=NC,∵AB=7,AC=6,∴△AMN的周长=AM+MN+AN=AB+AC=6+7=13.故答案为:13.【点评】本题考查了等腰三角形的判定和性质以及平行线的性质,关键是根据等腰三角形的判定和性质以及平行线的性质得出三角形AMN的周长是AB+AC.15.【分析】利用分类讨论的思想可知,此题有两种情况:一是当这个直角三角形的两直角边分别为3cm,4cm时;二是当这个直角三角形的一条直角边为3cm,斜边为4cm时.然后利用勾股定理即可求得答案.【解答】解:当这个直角三角形的两直角边分别为3cm,4cm时,则该三角形的斜边的长为:=5(cm).当这个直角三角形的一条直角边为3cm,斜边为4cm时,则该三角形的另一条直角边的长为:=(cm).故答案为:5或.【点评】此题主要考查学生对勾股定理的理解和掌握,注意分类讨论得出是解题关键.16.【分析】直接利用幂的乘方运算法则再结合同底数幂的乘法运算法则计算得出答案.【解答】解:∵m+2=3n,∴m﹣3n=﹣2,∴3m•27﹣n=3m•3﹣3n=3m﹣3n=3﹣2=.故答案为:.【点评】此题主要考查了幂的乘方运算和同底数幂的乘法运算,正确掌握相关运算法则是解题关键.三、解答题(共5小题,第17至20题,每小题10分,第21题12分,共52分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.17.【分析】(1)根据整式的混合计算解答即可;(2)根据解分式方程的步骤解答即可.【解答】解:(1)(2a﹣3)2+(2a+3)(2a﹣3)=4a2﹣12a+9+4a2﹣9=8a2﹣12a,(2)化为整式方程为:2x=3x﹣6,解得:x=6,经检验x=6是原方程的解.【点评】此题考查分式方程和整式的混合计算问题,关键是根据解分式方程的步骤解答.18.【分析】(1)依据轴对称的性质,即可画出△ABC关于y轴的对称图形△A′B′C′,即可得到A′,B′,C′三点的坐标.(2)依据割补法即可得到△A′B′C′的面积.【解答】解:(1)如图所示,△A′B′C′即为所求,A'(2,5),B'(3,2),C'(1,1).故答案为:(2,5),(3,2),(1,1).(2)△A′B′C′的面积为:2×4﹣×1×2﹣×1×3﹣×1×4=8﹣1﹣1.5﹣2=3.5.故答案为:3.5.【点评】本题考查了利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.19.【分析】先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=÷=•=﹣,当x=﹣1时,原式=1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.20.【分析】如图,作CE⊥ON于E,CF⊥OM于F.由Rt△CFA≌Rt△CEB,推出∠ACF=∠ECB,推出∠ACB=∠ECF,由∠ECF+∠MON=360°﹣90°﹣90°=180°,可得∠ACB+∠AOB=180°,推出∠OAC+∠OBC=180°.【解答】解:如图,作CE⊥ON于E,CF⊥OM于F.∵OC平分∠MON,CE⊥ON于E,CF⊥OM于F.∴CE=CF,∵AC=BC,∠CEB=∠CFA=90°,∴Rt△CFA≌Rt△CEB(HL),∴∠ACF=∠ECB,∴∠ACB=∠ECF,∵∠ECF+∠MON=360°﹣90°﹣90°=180°,∴∠ACB+∠AOB=180°,∴∠OAC+∠OBC=180°.【点评】本题考查全等三角形的判定和性质,四边形内角和定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.21.【分析】根据路程为180千米,一定是根据时间来列等量关系.本题的关键描述语是:“比原计划提前40分钟到达目的地”;进而得出等量关系列方程.【解答】解:设原来的速度为x千米/时,依题意,得=+1+,解之,得x=60,经检验,x=60是所列方程的解,且符合题意,==3(小时).答:原计划的时间为3小时.【点评】此题主要考查了分式方程的应用,分析题意,找到关键描述语,利用时间得出等量关系是解题关键.四、填空题(共4小题,每小题4分,共16分)下列各题不需要写出解答过程,请将结果直接填在答题卷指定的位置.22.【分析】前两项结合,后两项结合,提取公因式即可得到结果.【解答】解:原式=(x3+x2)+(x+1)=x2(x+1)+(x+1)=(x+1)(x2+1).故答案为:(x+1)(x2+1)【点评】此题考查了因式分解﹣分组分解法,原式进行适当的分组是分解的关键.23.【分析】根据平方差公式计算即可.【解答】解:∵x2﹣y2=8,x2﹣z2=5,∴y2﹣z2=﹣3,∴(x+y)(y+z)(z+x)(x﹣y)(y﹣z)(z﹣x)=(x2﹣y2)(z2﹣x2)(y2﹣z2)=8×(﹣5)×(﹣3)=120,故答案为:120.【点评】本题考查了平方差公式,熟练掌握平方差公式是解题的关键.24.【分析】由翻折的性质可知;AD=AB,DC=BC,∠DAC=∠BCA,由平行线的性质可知∠BAC =∠DCA,从而得到∠ACB=∠BAC,故此AB=BC,从而可知四边形ABCD为菱形,最后依据菱形的性质判断即可.【解答】解:由翻折的性质可知;AD=AB,DC=BC,∠DAC=∠BCA.∵AB∥DC,∴∠BAC=∠DCA.∴∠BCA=∠BAC.∴AB=BC.∴AB=BC=CD=AD.∴四边形ABCD为菱形.∴AD∥BC,AB=CD,AC⊥BD,AO=CO.故答案为:①②③④【点评】本题主要考查的是翻折的性质、菱形的性质和判定、等腰三角形的判定、平行线的性质,证得四边形ABCD为菱形是解题的关键.25.【分析】由题中角平分线可得∠E=∠ECD﹣∠EBC=∠ACD﹣∠ABC,进而得出∠A=∠ACD﹣∠ABC,即可得出结论.【解答】解:如图,∵EB、EC是∠ABC与∠ACD的平分线,∴∠ECD=∠ACD=∠E+∠EBC=∠E+∠ABC,∠E=∠ECD﹣∠EBC=∠ACD﹣∠ABC,∠A=∠ACD﹣∠ABC,又∵∠E=∠ACD﹣∠ABC,∴∠E=∠A=25°,故答案为:25.【点评】本题考查的是三角形内角和定理,角平分线的性质等知识,熟知三角形内角和是180°是解答此题的关键.五、解答题(共3小题,第26题10分,第27题12分,第28题12分共34分)下列各题需要在答题卷指定位置写出文宇说明、证明过程、计算步骤或作出图形.26.【分析】(1)根据SAS证明△BAD≌△CAE即可解决问题;(2)如图2中,取CD的中点M,连接AM,延长AM到N,使得MN=AM,连接DN,CN.首先证明四边形ACND是平行四边形,再证明△BAE≌△ACN即可;【解答】(1)证明:如图1中,∵等腰△ABC和等腰△ADE中,∠BAC=∠DAE=90°,∴AB=AC,AD=AD,∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=CE.(2)证明:如图2中,取CD的中点M,连接AM,延长AM到N,使得MN=AM,连接DN,CN.∵AM=MN,DM=CM,∴四边形ACND 是平行四边形,∴AD =CN ,AD ∥CN ,∴∠DAC +∠ACN =180°,∵∠BAC =∠EAD =90°,∴∠BAE +∠DAC =180°,∴∠BAE =∠ACN ,∵AB =AC ,AE =AD =CN ,∴△BAE ≌△ACN (SAS ),∴S △BAE =S △ACN ,∵DN ∥AC ,∴S △ADC =S △ACN ,∴S △BAE =S △ADC .【点评】本题考查全等三角形的判定和性质,等腰直角三角形的性质,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.27.【分析】(1)当m =﹣1时,方程变为﹣=1,化成整式方程得x 2﹣x ﹣2+2x =x 2+x ,于是得到结论;(2)原方程化为整式方程得到2(m +1)x =m ﹣1,根据这个分式方程有实数解,得到m ≠﹣1,由于当x =0或﹣1时,这个分式方程无实数解,于是得到结论.【解答】解:(1)这个方程有解,理由:当m =﹣1时,方程变为﹣=1, 去分母得,x 2﹣x ﹣2+2x =x 2+x ,∴当m =﹣1时,请这个方程无解;(2)﹣=1, 化为整式方程得,2(m +1)x =m ﹣1,∵这个分式方程有实数解,∴m ≠﹣1,∵当x =0或﹣1时,这个分式方程无实数解,∴m =1或﹣,∴m的取值范围是m≠±1或﹣.【点评】本题考查了分式方程的解,正确的解分式方程是解题的关键.28.【分析】(1)根据勾股定理可求AB的长;(2)过点D作DF⊥AO,根据等腰三角形的性质可得OF=EF,根据轴对称的性质等腰直角三角形的性质可得AF=DF,设OF=EF=x,AE=4﹣2x,根据勾股定理用参数x表示DE,CE的长,即可证CE=DE;(3)过点B作BM⊥OB,在BM上截取BM=AO,过点C作CN⊥BM,交MB的延长线于点N,根据锐角三角函数可得∠ABO=30°,根据轴对称的性质可得AC=AO=4,BO=BC=4,∠ABO=∠ABC=30°,∠OAB=∠CAB=60°,根据“SAS”可证△ACF≌△BMD,可得CF=DM,则当点D在CM上时,CF+CD的值最小,根据直角三角形的性质可求CN,BN的长,根据勾股定理可求CM的长,即可得CF+CD的最小值.【解答】解:(1)∵点A(0,4),B(m,0),且m=8,∴AO=4,BO=8,在Rt△ABO中,AB==4(2)如图,过点D作DF⊥AO,∵DE=DO,DF⊥AO,∴EF=FO,∵m=4,∴AO=BO=4,∴∠ABO=∠OAB=45°,∵点C,O关于直线AB对称,∴∠CAB=∠CBA=45°,AO=AC=OB=BC=4,∴∠CAO=∠CBO=90°,∵DF⊥AO,∠BAO=45°,∴∠DAF=∠ADF=45°,∴AF=DF,设OF=EF=x,AE=4﹣2x,∴AF=DF=4﹣x,在Rt△DEF中,DE===在Rt△ACE中,CE===∴CE=DE,(3)如图,过点B作BM⊥OB,在BM上截取BM=AO,过点C作CN⊥BM,交MB的延长线于点N,∵m=4,∴OB=4,∴tan∠ABO===,∴∠ABO=30°∵点C,O关于直线AB对称,∴AC=AO=4,BO=BC=4,∠ABO=∠ABC=30°,∠OAB=∠CAB=60°,∴∠CAF=120°,∠CBO=60°∵BM⊥OB,∠ABO=30°,∴∠ABM=120°,∴∠CAF=∠ABM,且DB=AF,BM=AO=AC=4,∴△ACF≌△BMD(SAS)∴CF=DM,∵CF+CD=CD+DM,∴当点D在CM上时,CF+CD的值最小,即CF+CD的最小值为CM的长,∵∠CBO=60°,BM⊥OB,∴∠CBN=30°,且BM⊥OB,BC=4,∴CN=2,BN=CN=6,∴MN=BM+BN=4+6=10,在Rt△CMN中,CM==4,∴CD+CF的最小值为4【点评】本题是三角形综合题,考查了等腰三角形的性质,勾股定理,轴对称的性质,全等三角形的判定和性质,最短路径问题等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.。
湖北省武汉大学附属中学2018-2019学年度(上)八年级数学期末复习卷一、选择题1.以下图形中对称轴的数量小于3的是( D )2.一种新型病毒的直径约为0.000043毫米,用科学记数法表示为( D )米.A.0.43×10﹣4B.0.43×10﹣5C.4.3×10﹣5D.4.3×10﹣83.已知△ABC≌△DEF,BC=EF=6cm,△ABC面积为18cm2,则EF边上的高是( D ).A.3cm B.4cm C.5cm D.6cm4.现有两根木棒,它们的长分别是40 cm 和50 cm,若要钉成一个三角形木架,则下列四根木棒应选取( D )A.10 cm的木棒 B.40 cm的木棒C.90 cm的木棒 D.100 cm的木棒5.下列计算正确的是( C )A.x4+x4=2x8 B.x3·x2=x6C.(x2y)3=x6y3 D.(x-y)(y-x)=x2-y26.下列说法:①线段AB、CD互相垂直平分,则AB是CD的对称轴,CD是AB的对称轴;②如果两条线段相等,那么这两条线段关于直线对称;③角是轴对称图形,对称轴是这个角的平分线.其中错误的个数有( D )A.0个B.1个C.2个D.3个4.下列算式中,你认为正确的是( D )8.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有( C )A.1对B.2对C.3对D.4对9.如图12,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是( A )图12A.AC是△ABC的高B.DE是△BCD的高C.DE是△ABE的高D.AD是△ACD的高10.李老师做了个长方形教具,其中一边长为2a+b,另一边长为a-b,则该长方形的面积为( B )A.6a+b B.2a2-ab-b2 C.3a D.10a-b二、填空题11.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F.(1)若△AEF的周长为10cm,则BC的长为10 cm.(2)若∠EAF=100°,则∠BAC 140°.12.小数0.00000108用科学记数法可表示为___1.08×10﹣6___.13.当x= 1 时,分式无意义;当x ≠±3.时,分式有意义.14.如图,已知∠1=∠2,AC=AD,请增加一个条件,使△ABC≌△AED,你添加的条件是AE=AB .15.一个多边形的内角和等于1 080°,这个多边形是_7_ __边形.16.已知a+b=ab,则(a-1)(b-1)=__ 1 __.三、解答题17.化简: 18化简:原式=. 原式.19.解方程:答案:x=-120.解方程: =.解:去分母得:x 2+2x ﹣x 2+4=8,移项合并得:2x=4,解得:x=2,经检验x=2是增根,分式方程无解21.如图,已知△ABC 和△ADE 均为等边三角形,BD 、CE 交于点F .(1)求证:BD=CE ;(2)求锐角∠BFC 的度数.2512112x x +=--(1)证明:∵△ABC和△ADE均为等边三角形,∴AE=AD、AB=AC,又∵∠EAD=∠BAC=60°,∠EAD+∠DAC=∠BAC+∠DAC,即∠DAB=∠EAC,在△EAC和△DAB中,,∴△EAC≌△DAB,即可得出BD=CE.(2)解:由(1)△EAC≌△DAB,可得∠ECA=∠DBA,又∵∠DBA+∠DBC=60°,在△BFC中,∠ECA+∠DBC=60°,∠ACB=60°,则∠BFC=180°﹣∠ACB﹣(∠ECA+∠DBC)=180°﹣60°﹣60°=60°.22.已知:如图18,△ABC中,M为BC的中点,DM⊥ME,MD交AB 于D,ME交AC于E.求证:BD+CE>DE.图18答案略23.为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?解:(1)设甲种套房每套提升费用为x万元,依题意,得解得:x=25经检验:x=25符合题意,x+3=28答:甲,乙两种套房每套提升费用分别为25万元,28万元.(2)设甲种套房提升m套,那么乙种套房提升(80﹣m)套,依题意,得解得:48≤m≤50即m=48或49或50,所以有三种方案分别是:方案一:甲种套房提升48套,乙种套房提升32套.方案二:甲种套房提升49套,乙种套房提升31套,方案三:甲种套房提升50套,乙种套房提升30套.设提升两种套房所需要的费用为W元.则W=25m+28×(80﹣m)=﹣3m+2240,∵k=﹣3<0,∴W随m的增大而减小,∴当m=50时,W最少=2090元,即第三种方案费用最少.(3)在(2)的基础上有:W=(25+a)m+28×(80﹣m)=(a﹣3)m+2240当a=3时,三种方案的费用一样,都是2240万元.当a>3时,k=a﹣3>0,∴W随m的增大而增大,∴m=48时,费用W最小.当0<a<3时,k=a﹣3<0,∴W随m的增大而减小,∴m=50时,W最小,费用最省.。
2018-2019学年八年级(上)期末数学试卷一、选择题(10×3分=30分)1.(3分)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形2.(3分)一个正多边形,它的每一个外角都是45°,则该正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形3.(3分)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 4.(3分)在Rt△ABC中,已知AB=5,AC=4,BC=3,∠ACB=90°,若△ABC内有一点P到△ABC的三边距离相等,则这个距离是()A.1B.C.D.25.(3分)如图,在等腰△ABC中,顶角∠A=40°,AB的垂直平分线MN交AC于点D,若AB=m,BC=n,则△DBC的周长是()A.m+2n B.2m+n C.2m+2n D.m+n6.(3分)计算(﹣a)2n•(﹣a n)3的结果是()A.a5n B.﹣a5n C.a D.﹣6a7.(3分)把(a2+1)2﹣4a2分解因式得()A.(a2+1﹣4a)2B.(a2+1+2a)(a2+1﹣2a)C.(a+1)2(a﹣1)2D.(a2﹣1)28.(3分)若分式的值为0,则x的值为()A.3B.3或﹣3C.﹣3D.09.(3分)计算的结果是()A.B.C.a﹣b D.a+b10.(3分)如图,在四边形ABCD中,∠A=∠C=90°,∠B=α,在AB、BC上分别找一点E、F,使△DEF的周长最小.此时,∠EDF=()A.αB.90°﹣αC.D.180°﹣2α二、填空题(6×3分=18分.)11.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.12.(3分)如图,已知在锐角△ABC中,AB、AC的中垂线交于点O,则∠ABO+∠ACB =.13.(3分)如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“”.14.(3分)已知:x2﹣8x﹣3=0,则(x﹣1)(x﹣3)(x﹣5)(x﹣7)的值是.15.(3分)已知x2+y2+z2﹣2x+4y﹣6z+14=0,则x+y+z=.16.(3分)在△ABC中,已知∠CAB=60°,D、E分别是边AB、AC上的点,且∠AED =60°,ED+DB=CE,∠CDB=2∠CDE,则∠DCB等于.三、解答题(共72分)17.(8分)如图,AB⊥BC,DC⊥BC,若∠DBC=45°,∠A=70°,求∠D,∠AED,∠BFE的度数.18.(8分)已知如图∠B=∠C,∠1=∠2,∠BAD=40°,求∠EDC度数.19.(8分)如图,在△ABC中,AD是∠BAC的平分线,M是BC的中点,过M作MP∥AD交AC于P,求证:AB+AP=PC.20.(10分)如图,在△ABC中,∠BAC=60°,∠C=40°,P,Q分别在BC,CA上,AP,BQ分别是∠BAC,∠ABC的角平分线.求证:BQ+AQ=AB+BP.21.(8分)(1)计算:(x﹣y)(y﹣x)2[(x﹣y)n]2;(2)解不等式:(1﹣3y)2+(2y﹣1)2>13(y+1)(y﹣1)22.(8分)(1)因式分解:x3﹣4x;(2)x2﹣4x﹣1223.(10分)(1)已知3x=2y=5z≠0,求的值;(2)某市政工程计划将安装的路灯交给甲、乙两家灯饰厂完成,已知甲厂生产100个路灯与乙厂生产150个路灯所用时间相同,且甲厂比乙厂每天少生产10个路灯,问甲、乙两家工厂每天各生产路灯多少个?24.(12分)如图1,在平面直角坐标系中,A(﹣3,0)、B(0,7)、C(7,0),∠ABC+∠ADC=180°,BC⊥CD.(1)求证:∠ABO=∠CAD;(2)求四边形ABCD的面积;(3)如图2,E为∠BCO的邻补角的平分线上的一点,且∠BEO=45°,OE交BC于点F,求BF的长.参考答案与试题解析一、选择题(10×3分=30分)1.(3分)如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形【分析】直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;作出一个直角三角形的高线进行判断,就可以得到.【解答】解:一个三角形的三条高的交点恰是三角形的一个顶点,这个三角形是直角三角形.故选:C.【点评】本题主要考查了三角形的高的概念,钝角三角形的三条高所在的直线的交点在三角形的外部;锐角三角形的三条高所在的直线的交点在三角形的内部;直角三角形的三条高所在的直线的交点是三角形的直角顶点.2.(3分)一个正多边形,它的每一个外角都是45°,则该正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形【分析】多边形的外角和是360度,因为是正多边形,所以每一个外角都是45°,即可得到外角的个数,从而确定多边形的边数.【解答】解:360÷45=8,所以这个正多边形是正八边形.故选:C.【点评】本题主要考查了多边形的外角和定理.已知外角求边数的这种方法是需要熟记的内容.正多边形的各个内角相等,各个外角也相等.3.(3分)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 【分析】利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.【解答】解:A 、∵∠1=∠2,AD 为公共边,若AB =AC ,则△ABD ≌△ACD (SAS );故A 不符合题意;B 、∵∠1=∠2,AD 为公共边,若BD =CD ,不符合全等三角形判定定理,不能判定△ABD ≌△ACD ;故B 符合题意;C 、∵∠1=∠2,AD 为公共边,若∠B =∠C ,则△ABD ≌△ACD (AAS );故C 不符合题意;D 、∵∠1=∠2,AD 为公共边,若∠BDA =∠CDA ,则△ABD ≌△ACD (ASA );故D 不符合题意.故选:B .【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.4.(3分)在Rt △ABC 中,已知AB =5,AC =4,BC =3,∠ACB =90°,若△ABC 内有一点P 到△ABC 的三边距离相等,则这个距离是( )A .1B .C .D .2【分析】根据三角形的面积公式计算即可.【解答】解:连接PC 、PB 、PA ,作PD ⊥AB 于D ,PE ⊥AC 于E ,PF ⊥BC 于F ,由题意得,PE =PD =PF ,S △APC +S △APB +S △BPC =S △ACB ,∴AB •PD +AB •PD +AB •PD =AC •BC ,即×5•PD +×4•PD +×3•PD =×3×4,解得,PD =1,故选:A .【点评】本题考查的是三角形的面积计算,掌握三角形的面积公式是解题的关键.5.(3分)如图,在等腰△ABC中,顶角∠A=40°,AB的垂直平分线MN交AC于点D,若AB=m,BC=n,则△DBC的周长是()A.m+2n B.2m+n C.2m+2n D.m+n【分析】根据线段垂直平分线性质得出AD=BD,推出∠A=∠ABD=40°,求出∠ABC =∠C,推出AC=AB=m,求出△DBC的周长是DB+BC+CD=BC+AD+DC=AC+BC,代入求出即可.【解答】解:∵AB的垂直平分线MN交AC于点D,∠A=40°,∴AD=BD,∴∠A=∠ABD=40°,∵∠DBC=30°,∴∠ABC=40°+30°=70°,∠C=180°﹣40°﹣40°﹣30°=70°,∴∠ABC=∠C,∴AC=AB=m,∴△DBC的周长是DB+BC+CD=BC+AD+DC=AC+BC=m+n,故选:D.【点评】本题考查了三角形内角和定理,线段垂直平分线性质,等腰三角形的性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.6.(3分)计算(﹣a)2n•(﹣a n)3的结果是()A.a5n B.﹣a5n C.a D.﹣6a【分析】直接利用幂的乘方运算法则以及结合同底数幂的乘法运算法则计算得出答案.【解答】解:(﹣a)2n•(﹣a n)3=a2n•(﹣a3n)=﹣a5n.故选:B.【点评】此题主要考查了幂的乘方运算以及结合同底数幂的乘法运算,正确掌握相关运算法则是解题关键.7.(3分)把(a2+1)2﹣4a2分解因式得()A.(a2+1﹣4a)2B.(a2+1+2a)(a2+1﹣2a)C.(a+1)2(a﹣1)2D.(a2﹣1)2【分析】原式利用平方差公式,以及完全平方公式分解即可.【解答】解:原式=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2,故选:C.【点评】此题考查了因式分解﹣运用公式法,熟练掌握因式分解的方法是解本题的关键.8.(3分)若分式的值为0,则x的值为()A.3B.3或﹣3C.﹣3D.0【分析】分式值为0,则要求分子为0,分母不为0,解出x.【解答】解:∵x2﹣9=0,∴x=±3,当x=3时,x2﹣4x+3=0,∴x=3不满足条件.当x=﹣3时,x2﹣4x+3≠0,∴当x=﹣3时分式的值是0.故选:C.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.9.(3分)计算的结果是()A.B.C.a﹣b D.a+b【分析】先算小括号里的,再算乘法,约分化简即可.【解答】解:==,故选B.【点评】考查分式的化简,分式的化简关键在于通过通分、合并同类项、因式分解、约分转化为最简分式.10.(3分)如图,在四边形ABCD中,∠A=∠C=90°,∠B=α,在AB、BC上分别找一点E、F,使△DEF的周长最小.此时,∠EDF=()A.αB.90°﹣αC.D.180°﹣2α【分析】根据要使△DEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出D关于AB和BC的对称点P,Q,即可得出∠EDB=∠ADB,∠FDB=∠CDB,结合四边形的内角和即可得出答案.【解答】解:如图,作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E,交BC于F,则点E,F即为所求.∵四边形ABCD中,∠A=∠C=90°,∠B=α,∴∠ADC=180°﹣α,由作图知∠EDB=∠ADB,∠FDB=∠CDB,则∠EDF=∠EDB+∠FDB=∠ADB+∠CDB=∠ADC,∴∠EDF=(180°﹣α)=90°﹣α,故选:B.【点评】本题考查的是轴对称﹣最短路线问题,涉及到平面内最短路线问题求法以及四边形的内角和定理等知识,根据已知得出E,F的位置是解题关键.二、填空题(6×3分=18分.)11.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.【点评】本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.12.(3分)如图,已知在锐角△ABC中,AB、AC的中垂线交于点O,则∠ABO+∠ACB =90°.【分析】根据线段的垂直平分线的性质得到BA=BC,BE⊥AC,根据等腰三角形的性质得到∠ACB=∠A,根据三角形内角和定理计算即可.【解答】解:∵BE是AC的垂直平分线,∴BA=BC,BE⊥AC,∴∠ACB=∠A,∵∠ABO+∠A=90°,∴∠ABO+∠ACB=90°,故答案为:90°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.13.(3分)如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“HL”.【分析】需证△BCD和△CBE是直角三角形,可证△BCD≌△CBE的依据是HL.【解答】解:∵BE、CD是△ABC的高,∴∠CDB=∠BEC=90°,在Rt△BCD和Rt△CBE中,BD=EC,BC=CB,∴Rt△BCD≌Rt△CBE(HL),故答案为:HL.【点评】本题考查全等三角形判定定理中的判定直角三角形全等的HL定理.14.(3分)已知:x2﹣8x﹣3=0,则(x﹣1)(x﹣3)(x﹣5)(x﹣7)的值是180.【分析】根据x2﹣8x﹣3=0,可以得到x2﹣8x=3,对所求的式子进行化简,第一个式子与最后一个相乘,中间的两个相乘,然后把x2﹣8x=3代入求解即可.【解答】解:∵x2﹣8x﹣3=0,∴x2﹣8x=3(x﹣1)(x﹣3)(x﹣5)(x﹣7)=(x2﹣8x+7)(x2﹣8x+15),把x2﹣8x=3代入得:原式=(3+7)(3+15)=180.故答案是:180.【点评】本题考查了整式的混合运算,正确理解乘法公式,对所求的式子进行变形是关键.15.(3分)已知x2+y2+z2﹣2x+4y﹣6z+14=0,则x+y+z=2.【分析】把14分成1+4+9,与剩余的项构成3个完全平方式,从而出现三个非负数的和等于0的情况,则每一个非负数等于0,解即可.【解答】解:∵x2+y2+z2﹣2x+4y﹣6z+14=0,∴x2﹣2x+1+y2+4y+4+z2﹣6z+9=0,∴(x﹣1)2+(y+2)2+(z﹣3)2=0,∴x﹣1=0,y+2=0,z﹣3=0,∴x=1,y=﹣2,z=3,故x+y+z=1﹣2+3=2.故答案为:2.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.16.(3分)在△ABC中,已知∠CAB=60°,D、E分别是边AB、AC上的点,且∠AED=60°,ED+DB=CE,∠CDB=2∠CDE,则∠DCB等于20°.【分析】延长AB到F使BF=AD,连接CF,如图,先判断△ADE为等边三角形得到AD =DE=AE,∠ADE=60°,再利用∠CDB=2∠CDE得到∠CDE=40°,∠CDB=80°,接着证明AF=AC,从而可判断△AFC为等边三角形,则有CF=AC,∠F=60°,然后证明△ACD≌△FCB得到CB=CD,最后根据等腰三角形的性质和三角形内角和计算∠DCB的度数.【解答】解:延长AB到F使BF=AD,连接CF,如图,∵∠CAD=60°,∠AED=60°,∴△ADE为等边三角形,∴AD=DE=AE,∠ADE=60°,∴∠BDE=180°﹣∠ADE=120°,∵∠CDB=2∠CDE,∴3∠CDE=120°,解得∠CDE=40°,∴∠CDB=2∠CDE=80°,∵BF=AD,∴BF=DE,∵DE+BD=CE,∴BF+BD=CE,即DF=CE,∵AF=AD+DF,AC=AE+CE,∴AF=AC,而∠BAC=60°,∴△AFC为等边三角形,∴CF=AC,∠F=60°,在△ACD和△FCB中,∴△ACD≌△FCB(SAS),∴CB=CD,∴∠CBD=∠CDB=80°,∴∠DCB=180﹣(∠CBD+∠CDB)=20°.【点评】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.解决本题的关键是延长AB到F使BF=AD,构建△FCB与△ACD全等.三、解答题(共72分)17.(8分)如图,AB⊥BC,DC⊥BC,若∠DBC=45°,∠A=70°,求∠D,∠AED,∠BFE的度数.【分析】根据直角三角形两锐角互余列式求解即可得到∠D,根据在同一平面内垂直于同一直线的两直线互相平行可得AB∥CD,再根据两直线平行,内错角相等可得∠AED=∠A,然后根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BFE=∠D+∠AED.【解答】解:∵DC⊥BC,∠DBC=45°,∴∠D=90°﹣∠DBC=90°﹣45°=45°;∵AB⊥BC,DC⊥BC,∴AB∥CD,∴∠AED=∠A=70°;在△DEF中,∠BFE=∠D+∠AED,=45°+70°,=115°.【点评】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记定理与性质并准确识图是解题的关键.18.(8分)已知如图∠B=∠C,∠1=∠2,∠BAD=40°,求∠EDC度数.【分析】首先在△ABD中,由三角形的外角性质得到∠EDC+∠1=∠B+40°,同理可得到∠2=∠EDC+∠C,联立两个式子,结合∠B=∠C,∠1=∠2的已知条件,即可求出∠EDC的度数.【解答】解:△ABD中,由三角形的外角性质知:∠ADC=∠B+∠BAD,即∠EDC+∠1=∠B+40°;①同理,得:∠2=∠EDC+∠C,已知∠1=∠2,∠B=∠C,∴∠1=∠EDC+∠B,②②代入①得:2∠EDC+∠B=∠B+40°,即∠EDC=20°.【点评】此题主要考查的是三角形的外角性质,理清图形中各角之间的关系是解题的关键.19.(8分)如图,在△ABC中,AD是∠BAC的平分线,M是BC的中点,过M作MP∥AD交AC于P,求证:AB+AP=PC.【分析】延长BA交MP的延长线于点E,过点B作BF∥AC,交PM的延长线于点F,由平行线的性质和角平分线的性质可得∠E=∠APE,即AP=AE,由“ASA”可证△BMF ≌△CMP,可得BF=CP,BF=BE,则可得结论.【解答】证明:如图,延长BA交MP的延长线于点E,过点B作BF∥AC,交PM的延长线于点F,∵AD是∠BAC的平分线,∴∠BAD=∠CAD∵AD∥PM∴∠BAD=∠E,∠CAD=∠APE=∠CPM∴∠E=∠APE∴AP=AE,∵M是BC的中点,∴BM=MC∵BF∥AC∴∠ACB=∠CBF,且BM=MC,∠BMF=∠CMP∴△BMF≌△CMP(ASA)∴PC=BF,∠F=∠CPM,∴∠F=∠E∴BE=BF∴PC=BE=BA+AE=BA+AP【点评】本题考查了全等三角形的判定和性质,平行线的性质,添加恰当的辅助线构造全等三角形是本题的关键.20.(10分)如图,在△ABC中,∠BAC=60°,∠C=40°,P,Q分别在BC,CA上,AP,BQ分别是∠BAC,∠ABC的角平分线.求证:BQ+AQ=AB+BP.【分析】延长AB到D,使BD=BP,连接PD.则∠D=∠5.由已知条件不难算出:∠1=∠2=30°,∠3=∠4=40°=∠C.于是QB=QC.又∠D+∠5=∠3+∠4=80°,故∠D=40°.于是△APD≌△APC(AAS),所以AD=AC.即AB+BD=AQ+QC,等量代换即可得证.【解答】证明:延长AB到D,使BD=BP,连接PD,则∠D=∠5.∵AP,BQ分别是∠BAC,∠ABC的平分线,∠BAC=60°,∠ACB=40°,∴∠1=∠2=30°,∠ABC=180°﹣60°﹣40°=80°,∠3=∠4=40°=∠C,∴QB=QC,又∠D+∠5=∠3+∠4=80°,∴∠D=40°.在△APD与△APC中,∴△APD≌△APC(AAS),∴AD=AC.即AB+BD=AQ+QC,∴AB+BP=BQ+AQ.【点评】本题考查了全等三角形的性质和判定,三角形的内角和定理的应用,正确作好辅助线,构造全等三角形是解此题的关键,主要考查学生的推理能力,难度偏大.21.(8分)(1)计算:(x﹣y)(y﹣x)2[(x﹣y)n]2;(2)解不等式:(1﹣3y)2+(2y﹣1)2>13(y+1)(y﹣1)【分析】(1)先将(y﹣x)2变形为(x﹣y)2,再利用幂的乘方以及同底数幂的乘法法则计算即可;(2)先利用完全平方公式和整式的乘法法则计算,再移项合并同类项,整理为一般形式,然后利用不等式的性质求得不等式的解集即可.【解答】解:(1)(x﹣y)(y﹣x)2[(x﹣y)n]2=(x﹣y)(x﹣y)2(x﹣y)2n=(x﹣y)2n+3;(2)1﹣6y+9y2+4y2﹣4y+1>13y2﹣13,﹣10y>﹣15,y<1.5.【点评】此题考查整式的混合运算,解一元一次不等式,掌握计算方法与运算顺序是解决问题的关键.22.(8分)(1)因式分解:x3﹣4x;(2)x2﹣4x﹣12【分析】(1)原式提取x,再利用平方差公式分解即可;(2)因为﹣4=2﹣6,﹣12=(﹣6)×2,所以利用十字相乘法进行因式分解.【解答】解:(1)x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2);(2)x2﹣4x﹣12=(x+2)(x﹣6).【点评】本题考查了因式分解﹣十字相乘法.运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程23.(10分)(1)已知3x=2y=5z≠0,求的值;(2)某市政工程计划将安装的路灯交给甲、乙两家灯饰厂完成,已知甲厂生产100个路灯与乙厂生产150个路灯所用时间相同,且甲厂比乙厂每天少生产10个路灯,问甲、乙两家工厂每天各生产路灯多少个?【分析】(1)设3x=2y=5z=30a(a≠0),则x=10a,y=15a,z=6a,将其代入原分式中即可求出结论;(2)设甲工厂每天生产x个路灯,则乙工厂每天生产(x+10)个路灯,根据工作时间=工作总量÷工作效率结合甲厂生产100个路灯与乙厂生产150个路灯所用时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:(1)∵3x=2y=5z≠0,∴设3x=2y=5z=30a(a≠0),∴x=10a,y=15a,z=6a,∴==58.(2)设甲工厂每天生产x个路灯,则乙工厂每天生产(x+10)个路灯,依题意,得:=,解得:x=20,经检验,x=20是所列分式方程的解,且符合题意,∴x+10=30.答:甲工厂每天生产20个路灯,乙工厂每天生产30个路灯.【点评】本题考查了分式方程的应用以及分式的值,解题的关键是:(1)根据x,y,z 之间的关系,设x=10a,y=15a,z=6a;(2)找准等量关系,正确列出分式方程.24.(12分)如图1,在平面直角坐标系中,A(﹣3,0)、B(0,7)、C(7,0),∠ABC+∠ADC=180°,BC⊥CD.(1)求证:∠ABO=∠CAD;(2)求四边形ABCD的面积;(3)如图2,E为∠BCO的邻补角的平分线上的一点,且∠BEO=45°,OE交BC于点F,求BF的长.【分析】(1)根据四边形的内角和定理、直角三角形的性质证明;(2)过点A作AF⊥BC于点F,作AE⊥CD的延长线于点E,作DG⊥x轴于点G,证明△ABF≌△ADE、△ABO≌△DAG,得到D点的坐标为(4,﹣3),根据三角形的面积公式计算;(3)作EH⊥BC于点H,作EG⊥x轴于点G,根据角平分线的性质得到EH=EG,证明△EBH≌△EOG,得到EB=EO,根据等腰三角形的判定定理解答.【解答】解:(1)在四边形ABCD中,∵∠ABC+∠ADC=180°,∴∠BAD+∠BCD=180°,∵BC⊥CD,∴∠BCD=90°,∴∠BAD=90°,∴∠BAC+∠CAD=90°,∵∠BAC+∠ABO=90°,∴∠ABO=∠CAD;(2)过点A作AF⊥BC于点F,作AE⊥CD的延长线于点E,作DG⊥x轴于点G,∵B(0,7),C(7,0),∴OB=OC,∴∠BCO=45°,∵BC⊥CD,∴∠BCO=∠DCO=45°,∵AF⊥BC,AE⊥CD,∴AF=AE,∠FAE=90°,∴∠BAF=∠DAE,在△ABF和△ADE中,,∴△ABF≌△ADE(AAS),∴AB=AD,同理,△ABO≌△DAG,∴DG=AO,BO=AG,∵A(﹣3,0)B(0,7),∴D(4,﹣3),S=AC•(BO+DG)=50;四ABCD(3)过点E作EH⊥BC于点H,作EG⊥x轴于点G,∵E点在∠BCO的邻补角的平分线上,∴EH=EG,∵∠BCO=∠BEO=45°,∴∠EBC=∠EOC,在△EBH和△EOG中,,∴△EBH≌△EOG(AAS),∴EB=EO,∵∠BEO=45°,∴∠EBO=∠EOB=67.5°,又∠OBC=45°,∴∠BOE=∠BFO=67.5°,∴BF=BO=7.【点评】本题考查的是全等三角形的判定和性质、角平分线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.。
2018-2019学年湖北省武汉市江汉区八年级(下)期末数学试卷2018-2019学年湖北省武汉市江汉区八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)二次根式有意义时,x的取值范围是()A.x≥﹣3B.x>﹣3C.x≤﹣3D.x≠﹣32.(3分)下列各曲线中,表示y是x的函数的是()A.B.C.D.3.(3分)下列运算正确的是()A.+=B.×=15C.3﹣=3D.÷=2 4.(3分)如图,在△ABC中,点D、E、F分别是BC、AB、AC的中点,如果△ABC的周长为20,那么△DEF的周长是()A.5B.10C.15D.205.(3分)甲、乙、丙、丁四人进行100m短跑训练,统计近期10次测试的平均成绩都是13.2s,10次测试成绩的方差如下表则这四人中发挥最稳定的是()选手甲乙丙丁方差(s2)0.0200.0190.0210.022 A.甲B.乙C.丙D.丁6.(3分)一次函数y=﹣2x+5不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形8.(3分)△ABC的三边长分别为a,b,c.下列条件:①∠A=∠B﹣∠C;②a2=(b+c)(b﹣c);③∠A:∠B:∠C=3:4:5;④a:b:c=5:12:13.其中能判断△ABC是直角三角形的个数有()A.1个B.2个C.3个D.4个9.(3分)已知A(﹣1,y1),B(﹣2,y2),C(1,y3)是一次函数y=1﹣3x的图象上三点,则y1,y2,y3的大小关系为()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y2<y1<y3 10.(3分)如图,购买一种苹果,付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次每次购买1千克这种苹果可节省()A.4 元B.5 元C.6 元D.7 元二、填空题(共6小题,每小题3分,共18分)11.(3分)﹣=.12.(3分)直线y=kx+2与直线y=﹣2x+3平行,则k=.13.(3分)统计学校排球队队员的年龄,发现有12岁、13岁、14岁、15岁等四种年龄,统计结果如下表,则根据表中信息可以判断该排球队队员的平均年龄是岁.年龄/岁12131415人数/个2468 14.(3分)如图,在正方形ABCD的外侧,作等边△DCE,则∠AEC的度数是.15.(3分)如图,直线y=kx+b与直线y=mx交于点P,则不等式mx<kx+b的解集是.16.(3分)如图,正方形OMNP的顶点与正方形ABCD的对角线交点O重合,正方形ABCD 和正方形OMNP的边长都是2cm,则图中重叠部分的面积是cm2.三、解答题(共5小题第17至20题,每小题10分,第21题12分,共52分)17.(10分)计算下列各题:(1)×4÷(2)+﹣2a18.(10分)如图,矩形ABCD的对角线AC,BD相交于点O,DE∥AC,CE∥BD.(1)判断四边形OCED的形状,并进行证明;(2)若AB=4,∠ACB=30°,求四边形OCED的面积.19.(10分)如图,A城气象台测得台风中心在A城正西方向240km的O处,以每小时30km 的速度向南偏东60°的OB方向移动,距台风中心150km的范围内是受台风影响的区域(1)求A城与台风中心之间的最小距离;(2)求A城受台风影响的时间有多长?20.(10分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.(1)本次共抽查学生人,并将条形图补充完整;(2)捐款金额的众数是,平均数是,中位数为.(3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?21.(12分)已知函数y=|x﹣4|(1)在平面直角坐标系中画出函数图象;(2)函数图象与x轴交于点A,与y轴交于点B.已知P(x,y)是图象上一个动点,若△OP A的面积为6,求P点坐标;(3)已知直线y=kx+1(k≠0)与该函数图象有两个交点,求k 的取值范围.四、选择题(共4小题,每小题0分,共16分下列各题不需要写出解答过程,请将结果直接填在答卷指定的位蜜22.已知xy=2,x+y=4,则+=.23.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车:④当甲、乙两车相距50千米时,或.其中不正确的结论是(填序号)24.在正方形ABCD中,点E在边CD上,点P在线段AE上,且P A=,PB=2,PD=6则∠APD=度,四边形BCDP的面积=.25.如图,已知矩形ABCD的边AB=6,BC=8将矩形的一部分沿EF折叠,使D点与B 点重合,C点的对应点为G则EF的长是.将△BEF绕着点B顺时针旋转角度a (0°<a<180°),得到△BE1F1,直线E1F1分别与射线EF,射线ED交于点M,N,当EN=MN时,FM 的长是.五、解答题(共3小题第26题10分,第27题12分,第28题12分共34分)26.(10分)某体育用品商场采购员要到厂家批发购买篮球和排球共100个,篮球个数不少于排球个数,付款总额不得超过11200元,已知两种球厂家的批发价和商场的零售价如下表.设该商场采购x个篮球.品名厂家批发价元/个商场零售价元/个篮球120150排球100120(1)求该商场采购费用y(单位:元)与x(单位:个)的函数关系式,并写出自变量x 的取值范围;(2)该商场把这100个球全部以零售价售出,求商场能获得的最大利润;(3)受原材料和工艺调整等因素影响,采购员实际采购时,篮球的批发价上调了3m(m >0)元/个,同时排球批发价下调了2m元/个.该体育用品商场决定不调整商场零售价,发现将100个球全部卖出获得的最低利润是2300元,求m的值.27.(12分)如图,正方形ABCD,点E在边BC上,△AEF为等腰直角三角形.(1)如图1,当∠AEF=90°,求证:∠DCF=45°;(2)如图2,当∠EAF=90°,取EF的中点P,连接PD,求证:EC=PD.28.(12分)在平面直角坐标系中,已知点A(﹣3,0),B(0,4).(1)求直线AB的解析式;(2)将点B沿直线y=3x的方向平移t个单位长度得到点C,若点C刚好落在∠BAO的平分线上,求t的值;(3)直线y=mx+10分别与x轴,直线y=﹣x+4相交于点D,E,若DE=DB,求m的值.。
2018-2019学年湖北省武汉市江岸区八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)使分式有意义的条件是()A.x=2B.x≠0C.x≠2D.x=﹣22.(3分)下列计算正确的是()A.a4+a4=2a8B.a3•a4=a12C.a8÷a2=a6D.(2ab)2=4ab23.(3分)数0.000013用科学记数法表示为()A.0.013×10﹣3B.1.3×105C.13×10﹣4D.1.3×10﹣54.(3分)在平面直角坐标系中,点P(2,﹣3)关于y轴对称的点的坐标是()A.(﹣2,﹣3)B.(﹣2,3)C.(2,3)D.(2,﹣3)5.(3分)已知a m=4,则a2m的值为()A.2B.4C.8D.166.(3分)把分式中的x、y的值同时扩大为原来的10倍,则分式的值()A.缩小为原来的B.不变C.扩大为原来的10倍D.扩大为原来的100倍7.(3分)下列式子从左到右变形正确的是()A.(a+b)2=a2+b2B.=C.a2﹣b2=(a﹣b)2D.a﹣2=(a≠0)8.(3分)如图,有一张边长为b的正方形纸板,在它的四角各剪去边长为a的正方形,然后将四周突出的部分折起,制成一个无盖的长方体纸盒,则这个纸盒的容积为()A.b2﹣4a2B.ab2﹣4a3C.ab2﹣4a2b+4a3D.a2b+4a39.(3分)一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A.+=t B.+=tC.•+•=t D.+10.(3分)如图,已知△ABC中,∠ACB=90°,∠BAC=30°,AB=4,点D为直线AB上一动点,将线段CD绕点C逆时针旋转60°得到线段CE,连接ED、BE,当BE最小时,线段AD的值为()A.3B.4C.5D.6二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)2﹣2=.12.(3分)分式和的最简公分母为:.13.(3分)若多项式x2﹣mx+9是一个完全平方式,那么m=.14.(3分)把下面四个图形拼成一个大长方形,并据此写出一个多项式的因式分解.15.(3分)关于x的分式方程无解,则m=.16.(3分)如图,已知∠AOB=α(0°<α<60°),射线OA上一点M,以OM为边在OA下方作等边△OMN,点P为射线OB上一点,若∠MNP=α,则∠OMP=.三、解答题(本大题共8小题,共72分)17.(8分)计算:(1)(x﹣3y)(﹣6x);(2)(6x4﹣8x2y)÷(﹣2x2).18.(8分)分解因式:(1)8a3b2﹣12ab3c;(2)(a+b)2﹣12(a+b)+36.19.(8分)解分式方程:20.(8分)化简求值:,其中:a=2,b=﹣3.21.(8分)一辆汽车开往距离出发地180km的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地,求前一小时的行驶速度.22.(10分)我们已学完全平方公式:a2±2ab+b2=(a±b)2,观察下列式子:x2+4x+2=(x+2)2﹣2≥﹣2;﹣x2+2x﹣3=﹣(x﹣1)2﹣2≤﹣2,并完成下列问题(1)﹣2x2﹣4x+1=﹣2(x+m)2+n≤n,则m=;n=;(2)解决实际问题:在紧靠围墙的空地上,利用围墙及一段长为60米的木栅栏围成一个长方形花圃,为了设计一个面积尽可能大的花圃,如图设长方形一边长度为x米,完成下列任务:①列式:用含x的式子表示花圃的面积:;②请说明当x取何值时,花圃的最大面积时多少平方米?23.(10分)如图1,已知等边三角形ABC,点P为AB的中点,点D、E分别为边AC、BC上的点,∠APD+∠BPE=60°.(1)①若PD⊥AC,PE⊥BC,直接写出PD、PE的数量关系:;②如图1,证明:AP=AD+BE.(2)如图2,点F、H分别在线段BC、AC上,连接线段PH、PF,若PD⊥PF且PD=PF,HP⊥EP.①求∠FHP的度数;②如图3,连接DE,直接写出=.24.(12分)已知,平面直角坐标系中,A(0,4),B(b,0)(﹣4<b<0),将线段AB绕点A逆时针旋转90°得到线段AC,连接BC.(1)如图1,直接写出C点的坐标:;(用b表示)(2)如图2,取线段BC的中点D,在x轴取一点E使∠DEB=45°,作CF⊥x轴于点F.①求证:EF=OB;②如图3,连接AE,作DH∥y轴交AE于点H,当OE=EF时,求线段DH的长度.2018-2019学年湖北省武汉市江岸区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)使分式有意义的条件是()A.x=2B.x≠0C.x≠2D.x=﹣2【分析】根据分式有意义的条件:分母不等于0,即可求解.【解答】解:根据题意得:x﹣2≠0,解得:x≠2.故选:C.2.(3分)下列计算正确的是()A.a4+a4=2a8B.a3•a4=a12C.a8÷a2=a6D.(2ab)2=4ab2【分析】分别根据合并同类项的法则,同底数幂的乘法,同底数幂的除法以及积的乘方法则逐一判断即可.【解答】解:a4+a4=2a4,故选项A不合题意;a3•a4=a7,故选项B不合题意;a8÷a2=a6,正确,故选项C符合题意;(2ab)2=4a2b2,故选项D不合题意.故选:C.3.(3分)数0.000013用科学记数法表示为()A.0.013×10﹣3B.1.3×105C.13×10﹣4D.1.3×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000013=1.3×10﹣5.故选:D.4.(3分)在平面直角坐标系中,点P(2,﹣3)关于y轴对称的点的坐标是()A.(﹣2,﹣3)B.(﹣2,3)C.(2,3)D.(2,﹣3)【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:点P(2,﹣3)关于y轴对称的点的坐标是(﹣2,﹣3),故选:A.5.(3分)已知a m=4,则a2m的值为()A.2B.4C.8D.16【分析】根据幂的乘方法则计算即可.【解答】解:∵a m=4,∴a2m=(a m)2=42=16.故选:D.6.(3分)把分式中的x、y的值同时扩大为原来的10倍,则分式的值()A.缩小为原来的B.不变C.扩大为原来的10倍D.扩大为原来的100倍【分析】根据分式的基本性质,把分式中的x、y的值同时扩大为原来的10倍得:==,即可得到答案.【解答】解:把分式中的x、y的值同时扩大为原来的10倍得:==,即分式的值扩大为原来的10倍,故选:C.7.(3分)下列式子从左到右变形正确的是()A.(a+b)2=a2+b2B.=C.a2﹣b2=(a﹣b)2D.a﹣2=(a≠0)【分析】根据完全平方公式,分式的基本性质,负整数指数幂的定义,依次分析各个选项,选出正确的选项即可.【解答】解:A.根据完全平方公式,(a+b)2=a2+2ab+b2,即A项不合题意,B.若c=0,则无意义,即B项不合题意,C.根据完全平方公式,a2﹣2ab+b2=(a﹣b)2,即C项不合题意,D.根据负整数指数幂的定义,a﹣2=(a≠0),即D项符合题意,故选:D.8.(3分)如图,有一张边长为b的正方形纸板,在它的四角各剪去边长为a的正方形,然后将四周突出的部分折起,制成一个无盖的长方体纸盒,则这个纸盒的容积为()A.b2﹣4a2B.ab2﹣4a3C.ab2﹣4a2b+4a3D.a2b+4a3【分析】直接利用已知结合纸盒的容积为底面积乘以高进而得出答案.【解答】解:由题意可得,这个纸盒的容积为:(b﹣2a)2×a=ab2﹣4a2b+4a3.故选:C.9.(3分)一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A.+=t B.+=tC.•+•=t D.+【分析】根据题意列出方程解答即可.【解答】解:设小水管的注水速度为x立方米/分钟,可得:,故选:C.10.(3分)如图,已知△ABC中,∠ACB=90°,∠BAC=30°,AB=4,点D为直线AB上一动点,将线段CD绕点C逆时针旋转60°得到线段CE,连接ED、BE,当BE最小时,线段AD的值为()A.3B.4C.5D.6【分析】以BC为边作等边△BCF,连接DF,可证△BCE≌△FCD,可得BE=DF,则DF⊥AB时,DF的长最小,即BE的长最小,即可求解.【解答】解:如图,以BC为边作等边△BCF,连接DF,∵∠ACB=90°,∠BAC=30°,AB=4,∴∠ABC=60°,BC=2,∵将线段CD绕点C逆时针旋转60°得到线段CE,∴CD=CE,∠DCE=60°,∵△BCF是等边三角形,∴CF=BC=BF=2,∠BCF=60°=∠DCE,∴∠BCE=∠DCF,且BC=CF,DC=CE,∴△BCE≌△FCD(SAS)∴BE=DF,∴DF⊥AB时,DF的长最小,即BE的长最小,∵∠FBD'=180°﹣60°﹣60°=60°,D'F⊥AB,∴BD'=BF=1,∴AD'=AB+BD'=5,故选:C.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)2﹣2=.【分析】根据负整数指数幂的运算法则直接进行计算即可.【解答】解:2﹣2==.故答案为:.12.(3分)分式和的最简公分母为:2a2b.【分析】先将各分母分解因式,然后确定最简公分母,是各个分母最高次幂的乘积.【解答】解:分式和的最简公分母为2a2b.故答案为2a2b.13.(3分)若多项式x2﹣mx+9是一个完全平方式,那么m=±6.【分析】根据首末两项是x和3的平方可得,中间一项为加上或减去它们乘积的2倍.【解答】解:∵多项式x2﹣mx+9是一个完全平方式,∴mx=±2•x•3,∴m=±6.14.(3分)把下面四个图形拼成一个大长方形,并据此写出一个多项式的因式分解x2+3x+2=(x+2)(x+1).【分析】一个正方形和三个长方形拼成一个大长方形,长方形的面积为:x2+3x+2,拼成长方形的长为(x+2),宽为(x+1),由此画图解决问题.【解答】解:拼接如图:长方形的面积为:x2+3x+2,还可以表示面积为:(x+2)(x+1),∴我们得到了可以进行因式分解的公式:x2+3x+2=(x+2)(x+1).故答案是:x2+3x+2=(x+2)(x+1).15.(3分)关于x的分式方程无解,则m=2或4.【分析】先将原分式方程去分母,化为整式方程,根据一元一次方程无解的情况及分式方程取增根的情况,可得相应的m值,使得原分式方程无解.【解答】解:分式方程两边同时乘以x(x﹣2)得:mx﹣8=2(x﹣2)∴(m﹣2)x=4∴①当m﹣2=0时,方程无解,此时m=2;②当m﹣2≠0时,x=,由x(x﹣2)=0,可知当x=0或x=2时,原方程有增根,从而无解∴当m﹣2=2时,x=2∴m=4时,原分式方程无解.故答案为:2或4.16.(3分)如图,已知∠AOB=α(0°<α<60°),射线OA上一点M,以OM为边在OA下方作等边△OMN,点P为射线OB上一点,若∠MNP=α,则∠OMP=30°或120°﹣α..【分析】分两种情况讨论P点的位置.点P位于MN左侧.点P位于MN右侧,分别画出相应的图形,根据全等三角形和等腰三角形的性质可求出∠OMP的度数,【解答】解:(1)当P位于MN左侧时,如图1,∵△OMN是等边三角形,∴MN=MO=ON,∠MON=∠MNO=60°,∵∠MNP=∠AOB=α,∴∠PON=∠PNO,∴PO=PN,△MPO≌△MPN,(SAS)∴∠OMP=∠NMP=∠OMN=×60°=30°(2)当P位于MN右侧时,如图2,将△MNP绕着点M顺时针旋转60°得到△MOQ,此时△MPQ是等边三角形,∴∠MPQ=60°,∴∠OMP=180°﹣∠MPQ﹣∠MOP=180°﹣60°﹣α=120°﹣α,故答案为:30°或120°﹣α.三、解答题(本大题共8小题,共72分)17.(8分)计算:(1)(x﹣3y)(﹣6x);(2)(6x4﹣8x2y)÷(﹣2x2).【分析】(1)直接利用单项式乘以多项式运算法则计算得出答案;(2)直接利用整式的除法运算法则计算得出答案.【解答】解:(1)原式=﹣6x2+18xy;(2)原式=﹣3x2+4y.18.(8分)分解因式:(1)8a3b2﹣12ab3c;(2)(a+b)2﹣12(a+b)+36.【分析】(1)原式提取公因式即可;(2)原式利用完全平方公式分解即可.【解答】解:(1)原式=4ab2(2a2﹣3bc);(2)原式=(a+b﹣6)2.19.(8分)解分式方程:【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x2+4x﹣7=2(x﹣1)(x+2),整理得:2x2+4x﹣7=2x2+2x﹣4,解得:x=1.5,经检验x=1.5是分式方程的解.20.(8分)化简求值:,其中:a=2,b=﹣3.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a、b的值代入计算可得.【解答】解:原式=﹣•=﹣=,当a=2,b=﹣3时,原式==﹣9.21.(8分)一辆汽车开往距离出发地180km的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地,求前一小时的行驶速度.【分析】直接根据题意表示出变化前后的速度,进而利用所用时间得出等式求出答案.【解答】解:设前一小时的行驶速度为xkm/h,根据题意可得:+1=﹣,解得:x=60,检验得:x=60是原方程的根,答:前一小时的行驶速度为60km/h.22.(10分)我们已学完全平方公式:a2±2ab+b2=(a±b)2,观察下列式子:x2+4x+2=(x+2)2﹣2≥﹣2;﹣x2+2x﹣3=﹣(x﹣1)2﹣2≤﹣2,并完成下列问题(1)﹣2x2﹣4x+1=﹣2(x+m)2+n≤n,则m=1;n=3;(2)解决实际问题:在紧靠围墙的空地上,利用围墙及一段长为60米的木栅栏围成一个长方形花圃,为了设计一个面积尽可能大的花圃,如图设长方形一边长度为x米,完成下列任务:①列式:用含x的式子表示花圃的面积:x(60﹣2x);②请说明当x取何值时,花圃的最大面积时多少平方米?【分析】(1)将代数式﹣2x2﹣4x+1配方可得m和n的值;(2)①利用长方形的面积=长×宽可得结论;②利用配方法即可解决问题.【解答】解:(1)﹣2x2﹣4x+1=﹣2(x2+2x+1﹣1)+1=﹣2(x+1)2+3,∵﹣2x2﹣4x+1=﹣2(x+m)2+n≤n,∴m=1,n=3;故答案为:1,3;(2)①花圃的面积:x(60﹣2x);故答案为:x(60﹣2x);②由①可知:x(60﹣2x)=﹣2(x﹣15)2+450,当x=15时,花圃的最大面积为450平方米.23.(10分)如图1,已知等边三角形ABC,点P为AB的中点,点D、E分别为边AC、BC上的点,∠APD+∠BPE=60°.(1)①若PD⊥AC,PE⊥BC,直接写出PD、PE的数量关系:PD=PE;②如图1,证明:AP=AD+BE.(2)如图2,点F、H分别在线段BC、AC上,连接线段PH、PF,若PD⊥PF且PD=PF,HP⊥EP.①求∠FHP的度数;②如图3,连接DE,直接写出=2.【分析】(1)①结论:PD=PE.如图1中,连接CP.理由角平分线的性质定理解决问题即可.②如图1中,作PM∥BC交AC于M.△ABC为等边三角形,则△APM为等边三角形.证明△DPM≌△EPB(SAS)即可解决问题.(2)①如图2中,作PK⊥PH交CA于点K,作PM⊥AC于M,PN⊥BC于N.首先证明PD=PF=PE,∠PHK=∠PKH=45°,再证明△PKD≌△PHF(SAS)即可解决问题.②如图3中,作PM⊥DE,作FN⊥PH,设PM=a.证明△PME≌△PNF(AAS),推出FN=EM,PN=PM=a,想办法用a表示PF+DE,PH即可解决问题.【解答】(1)①解:结论:PD=PE.理由:如图1中,连接CP.∵△ABC是等边三角形,∴CA=CB,∵AP=PB,∴CP平分∠ACB,∵PD⊥CA,PE⊥CB,∴PD=PE.故答案为PD=PE.②证明:如图1中,作PM∥BC交AC于M.△ABC为等边三角形,则△APM为等边三角形.∵∠DPM+∠DP A=60°,∠APD+∠BPE=60°,∴∠DPM=∠EPB,∵PD=PE,PM=P A=PB,∴△DPM≌△EPB(SAS)∴DM=EB∴AP=AM=AD+DM=AD+BE.(2)①解:如图2中,作PK⊥PH交CA于点K,作PM⊥AC于M,PN⊥BC于N.由(1)可知PM=PN,∵∠DPE=120°,∠DCE=60°,∴∠CDP+∠PEC=180°,∵∠PDM+∠CDP=180°,∴∠PDM=∠PEN,∵∠PMD=∠PNE=90°,∴△PMD≌△PNE(AAS),∴PD=PE,∵PF=PE,∴PD=PE=PF,∵∠DPF=∠HPE=90°,∠DPE=120°∴∠DPH=∠FPE=30°,∠PEF=∠PFE=∠PDA=75°,∴∠AHP=∠PKH=45°,∴PH=PK,∵∠KPH=∠DPF=90°,∴∠KPM=∠HPF,∵PK=PH,PD=PF,∴△PKD≌△PHF(SAS),∴∠FHP=∠K=45°.②如图3中,作PM⊥DE,作FN⊥PH,设PM=a.由①可知:∠DPH=∠FPE=30°,∠DPE=120°,∴∠FPN=∠EPM=60°,∵PD=PE,PD=PF,∴PE=PF,∵∠PME=∠FNP=90°,∴△PME≌△PNF(AAS),∴FN=EM,PN=PM=a,∵PF=PE=2PM=2a,EM=DM=a,∴DE=2a,∴PF+DE=2a+2a,∵∠FHN=∠HFN=45°,∴HN=HF=a,∴PH=a+a,∴==2.故答案为2.24.(12分)已知,平面直角坐标系中,A(0,4),B(b,0)(﹣4<b<0),将线段AB绕点A逆时针旋转90°得到线段AC,连接BC.(1)如图1,直接写出C点的坐标:(4,b+4);(用b表示)(2)如图2,取线段BC的中点D,在x轴取一点E使∠DEB=45°,作CF⊥x轴于点F.①求证:EF=OB;②如图3,连接AE,作DH∥y轴交AE于点H,当OE=EF时,求线段DH的长度.【分析】(1)过点C作CM⊥AO于M,由“AAS”可证△ABO≌△CAM,可得CM=OA=4,AM=OB =﹣b,即可求解;(2)①如图2,连接AD,OD,由等腰直角三角形的性质可得AD=BD,∠ABC=45°,∠ADB=90°,由外角性质,可得∠DAO=∠DBO,∠ABC=∠AOD=45°=∠DEB,可证△ADO≌△BDE,可得AO =BE=OF,可得EF=OB;②如图3,延长HD交BF于N,由平行线分线段成比例可得DN=CF=,BN=NF=BF=,可求b=﹣2,可得DN=NE=1,由三角形中位线定理可得HN==2,即可求解.【解答】解:(1)如图1,过点C作CM⊥AO于M,∵A(0,4),B(b,0),∴OA=4,OB=﹣b,∵将线段AB绕点A逆时针旋转90°得到线段AC,∴AB=AC,∠BAC=90°,∴∠BAO+∠CAO=90°,且∠CAO+∠ACM=90°,∴∠ACM=∠BAO,且AB=AC,∠AOB=∠AMC=90°,∴△ABO≌△CAM(AAS)∴CM=OA=4,AM=OB=﹣b,∴OM=AO﹣AM=4+b,∴点C(4,b+4)(2)①如图2,连接AD,OD,过点D作DN⊥AO,DM⊥OF,∵AB=AC,∠BAC=90°,点D是BC中点,∴AD=BD,∠ABC=45°,∠ADB=90°∵∠ADB=∠AOB=90°,且∠DAO+∠ADB=∠DBO+∠AOB,∴∠DAO=∠DBO,且∠AND=∠BMD=90°,AD=BD,∴△ADN≌△BDM(AAS)∴DN=DM,且DN⊥AO,DM⊥OF,∴OD平分∠AOF,∴∠AOD=∠DOM=45°=∠DEB,且BD=AD,∠DAO=∠DBO,∴△ADO≌△BDE(AAS)∴AO=BE=4,∵CF⊥x轴于点F,∴OF=4,∴BE=OF=4,∴BO=EF,②如图3,延长HD交BF于N,∵DH∥y轴,CF∥y轴,∴DH∥OA∥CF,且点D是BC中点,∴∴DN=CF=,BN=NF=BF=,∵OE=EF,OF=4,∴OE=EF=2,∴NE=∵∠DEB=45°,DN⊥BF,∴DN=NE,∴∴b=﹣2∴DN=NE=1,∴ON=NE=1,且DH∥y轴,∴HN=AO=2∴DH=HN﹣DN=1。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.一个多边形截去一个角后,形成另一个多边形的内角和为900︒,那么原多边形的边数为( ) A .5B .5或6C .6或7或8D .7或8或9【答案】C【分析】利用多边形内角和公式:()1802n ︒⨯-,得出截后的是几边形,分以下三种情况进行讨论:(1)不经过顶点,(2)经过一个顶点,(3)经过2个顶点,即可得出结果.【详解】解:设截后的多边形为n 边形 ()1802=900n ︒⨯-︒解得:7n =(1)顶点剪,则比原来边数多1(2)过一个顶点剪,则和原来的边数相同(3)过两个顶点剪,则比原来的边数少1则原多边形的边数为6或7或8故选:C .【点睛】本题主要考查的是多边形的内角和公式,正确的掌握多边形的内角和公式以及分情况进行讨论是解题的关键.2.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD 从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有( )A .3个B .4个C .5个D .无数个【答案】C 【分析】结合正方形的特征,可知平移的方向只有5个,向上,下,右,右上45°,右下45°方向,否则两个图形不轴对称.【详解】因为正方形是轴对称图形,有四条对称轴,因此只要沿着正方形的对称轴进行平移,平移前后的两个图形组成的图形一定是轴对称图形,观察图形可知,向上平移,向上平移、向右平移、向右上45°、向右下45°平移时,平移前后的两个图形组成的图形都是轴对称图形,故选C.【点睛】本题考查了图形的平移、轴对称图形等知识,熟练掌握正方形的结构特征是解本题的关键.3.某班40名同学一周参加体育锻炼时间统计如表所示:那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( )A .17,8.5B .17,9C .8,9D .8,8.5 【答案】D【解析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为898.52+=; 故选:D .【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.4.在实数π,196,3-,303•• ) A .1个B .2个C .3个D .4个【答案】B【分析】根据无理数的三种形式:①开方开不尽的数,②无线不循环小数,③含有π的数,找出无理数的个数即可.=2=,无理数有:π共2个,故选:B .【点睛】本题考查的是无理数的知识,掌握无理数的形式是解题的关键.5.如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么△ABC 中BC 边上的高是( )A 10B 10C 10D 5【答案】A【解析】先用勾股定理耱出三角形的三边,再根据勾股定理的逆定理判断出△ABC 是直角三角形,最后设BC 边上的高为h ,利用三角形面积公式建立方程即可得出答案.解:由勾股定理得:22125AC =+=22125AB =+=221310BC , 222(5)5)10)+= ,即222AB AC BC +=∴△ABC 是直角三角形,设BC 边上的高为h ,则1122ABC S AB AC h BC =⋅=⋅, ∴5510210AB AC h BC ⋅===. 故选A.点睛:本题主要考查勾股理及其逆定理.借助网格利用勾股定理求边长,并用勾股定理的逆定理来判断三角形是否是直角三角形是解题的关键.6.将0.000000517用科学记数法可表示为( )A .75.1710-⨯B .551710-⨯C .85.1710-⨯D .65.1710-⨯ 【答案】A【分析】由题意根据科学记数法的表示方法,进行分析表示即可.【详解】解:0.000000517=75.1710-⨯.故选:A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 7.下列约分正确的有( )(1)22a 2a 33 a 2a 11a a ---=+++;(2) ()()33a m n 1b n m -=-;(3) 2xy 0xy 2+=+;(4) a m a b m b +=+ A .0个 B .1个 C .2个 D .3个【答案】B【分析】原式各项约分得到结果,即可做出判断.【详解】(1)()() ()2a-3a+1a-3a+1a+1=,故此项正确;(2)()()()()3333a m n a m n a=bb n m b m n--=----,故此项错误;(3)2xy xy21xy2xy2++==++,故此项错误;(4)a mb m++不能约分,故此项错误;综上所述答案选B【点睛】此题考查了约分,约分的关键是找出分子分母的公因式.8.如图,90ACB∠=︒,AC CD=,过D作AB的垂线,交AB的延长线于E,若2AB DE=,则BAC∠的度数为()A.45°B.30°C.22.5°D.15°【答案】C【分析】连接AD,延长AC、DE交于M,求出∠CAB=∠CDM,根据全等三角形的判定得出△ACB≌△DCM,求出AB=DM,求出AD=AM,根据等腰三角形的性质得出即可.【详解】解:连接AD,延长AC、DE交于M,∵∠ACB=90°,AC=CD,∴∠DAC=∠ADC=45°,∵∠ACB=90°,DE⊥AB,∴∠DEB=90°=∠ACB=∠DCM,∵∠ABC=∠DBE,∴∠CAB=∠CDM,在△ACB 和△DCM 中CAB CDM AC CDACB DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACB ≌△DCM (ASA ),∴AB=DM ,∵AB=2DE ,∴DM=2DE ,∴DE=EM ,∵DE ⊥AB ,∴AD=AM , 114522.522BAC DAE DAC ︒︒∴∠=∠=∠=⨯= 故选:C .【点睛】本题考查了全等三角形的性质和判定,等腰直角三角形,等腰三角形的性质和判定等知识点,能根据全等求出AB=DM 是解此题的关键.9.下列数据不能确定物体位置的是( )A .6排10座B .东北方向C .中山北路30号D .东经118°,北纬40° 【答案】B【分析】平面内要确定点的位置,必须知道两个数据才可以准确确定该点的位置.【详解】解:A 、6 排10座能确定物体位置,此选项不符合题意;B 、东北方向不能确定物体位置,此选项符合题意;C 、中山北路 30 号能确定物体位置,此选项不符合题意;D 、东经 118°,北纬 40°能确定物体位置,此选项不符合题意;故选:B .【点睛】本题考查了坐标确定位置:直角坐标平面内点的位置由有序实数对确定,有序实数对与点一一对应. 10.如图,在六边形ABCDEF 中,若520A B C D ∠+∠+∠+∠=︒,DEF ∠与AFE ∠的平分线交于点G ,则G ∠等于( )A .55︒B .65︒C .70︒D .80︒【答案】D【分析】先根据六边形的内角和,求出∠DEF 与∠AFE 的度数和,进而求出∠GEF 与∠GFE 的度数和,然后在△GEF 中,根据三角形的内角和定理,求出∠G 的度数,即可.【详解】∵六边形ABCDEF 的内角和=(6−2)×180°=720°,又∵∠A+∠B+∠C+∠D=520°,∴∠DEF+∠AFE=720°−520°=200°,∵GE 平分∠DEF ,GF 平分∠AFE ,∴∠GEF+∠GFE=12(∠DEF+∠AFE)= 12×200°=100°, ∴∠G=180°−100°=80°.故选:D .【点睛】本题主要考查多边形的内角和公式,三角形内角和定理以及角平分线的定义,掌握多边形的内角和公式,是解题的关键.二、填空题11.如图,四边形ABCD ,已知∠A=90°,AB=3,BC=13,CD=12,DA=4,则四边形ABCD 的面积为___________.【答案】36【分析】连接BD ,先根据勾股定理求出BD 的长,再根据勾股定理的逆定理判断出△BCD 的形状,根据S ABCD 四边形=ABD+BCD S S ∆∆即可得出结论.【详解】连接BD.∵∠A=90°,AB=3,DA=4,∴2234+在△BCD 中,∵BD=5,CD=12,BC=13, 2225+12=13,即222+CD =BC BD ,∴△BCD 是直角三角形,∴S ABCD 四边形=ABD+BCD S S ∆∆=1134+512=6+30=3622⨯⨯⨯⨯, 故答案为:36.【点睛】 此题考查勾股定理的逆定理、勾股定理,解题关键在于作辅助线BD.12.若3,2m n a a ==,则2m n a +=_________【答案】18【分析】根据同底数幂的乘法的逆运算、幂的乘方的逆运算求解即可.【详解】222()m n m n m n aa a a a +=⋅=⋅ 将3,2m na a ==代入得:原式23218=⨯=.【点睛】本题考查了同底数幂的乘法的逆运算、幂的乘方的逆运算,熟记运算法则是解题关键.13.如图,直线a ∥b ,∠1=45°,∠2=30°,则∠P=_______°.【答案】1.【详解】解:过P 作PM ∥直线a ,∵直线a ∥b ,∴直线a ∥b ∥PM ,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=1°,故答案为1.【点睛】本题考查平行线的性质,正确添加辅助线是解题关键.14.在菱形ABCD 中,对角线AC 、BD 交于点O ,若△ABC 的周长为32,BD=16,则菱形ABCD 的面积为_____【答案】1.【解析】可设菱形ABCD 的边长为x ,则AC=32﹣2x ,根据菱形可得AO=16﹣x ,BO=8,根据勾股定理可求x ,进一步得到AC ,再根据菱形的面积公式即可求解.【详解】解:如图,设菱形ABCD 的边长为x ,则AC=32﹣2x ,AO=16﹣x ,BO=8,依题意有(16﹣x )2+82=x 2,解得x=10,AC=32﹣2x=12,则菱形ABCD 的面积为16×12÷2=1.故答案为1.【点睛】本题考查了菱形的性质、勾股定理,解答本题的关键掌握菱形四条边都相等,对角线互相垂直且平分的性质.15.分析下面式子的特征,找规律,三个括号内所填数的和是 ____________.415+,235+,7+( ),15+( ),( )120+,… 【答案】11.1【分析】分别找到这列算式中的整数部分的规律与分式部分的规律即可求解.【详解】这列算式中的整数部分:1,1,7,15…1×2+1=1;1×2+1=7;7×2+1=15;后一个整数是前一个整数的2倍加上1;∴括号内的整数为15×2+1=11,25÷2=15; 15÷2=110 验证:110÷2=120; 要填的三个数分别是:15,110,11,它们的和是:15+110+11=11310=11.1. 故答案为:11.1.【点睛】本题分出整数部分和分数部分,各自找出规律,再根据规律进行求解.16.如果关于x 的方程111ax x x+=--2无解,则a 的值为______.【答案】1或1.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于2.【详解】去分母得:ax ﹣1=1(x ﹣1)ax ﹣1x=﹣1,(a ﹣1)x=﹣1,当a ﹣1=2时,∴a=1,此时方程无解,满足题意,当a ﹣1≠2时,∴x 12a =--, 将x 12a =--代入x ﹣1=2, 解得:a=1,综上所述:a=1或a=1.故答案为:1或1.【点睛】本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型.17.如图,△ABC ≌△DEF ,请根据图中提供的信息,写出x= .【答案】1【解析】试题分析:如图,∠A=180°﹣50°﹣60°=70°,∵△ABC ≌△DEF ,∴EF=BC=1,即x=1. 三、解答题18.一辆汽车开往距离出发地150km 的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后速度提高20%匀速行驶,并比原计划提前20min 到达目的地,求前一小时的行驶速度.【答案】50/km h .【分析】设前一小时的行驶速度为x /km h ,则后来的速度为1.2x /km h ,根据他提前20分钟到达目的地,等量关系式为:加速后的时间+20分钟+1小时=原计划用的时间,列方程求解即可.【详解】设前一小时的行驶速度为x /km h ,则后来的速度为1.2x /km h ,由题意得,150201501 1.260x x x-++=, 解得:50x =,经检验:50x =是原方程的解且符合题意,答:前一小时的行驶速度为50/km h .故答案为:50/km h【点睛】通过设前一小时的行驶速度,根据加速前后时间的等量关系列出方程,求解即可得出答案,注意加速后行驶的路程为150千米-前一小时按原计划行驶的路程.19.为方便市民出行,减轻城市中心交通压力,青岛市掀起一轮城市基础设施建设高潮,动工修建贯穿东西、南北的地铁1、2、3、11号线.已知修建地铁2号线32千米和3号线66千米共投资581.6亿元,且3号线每千米的平均造价比2号线每千米的平均造价多0.2亿元.(1)求2号线、3号线每千米的平均造价分别是多少亿元?(2)除地铁1、2、3、11号线外,青岛市政府规划未来五年,还要再建182千米的地铁线网.据预算,这182千米地铁线网每千米的平均选价是2号线每千米的平均造价的1.2倍,则还需投资多少亿元?【答案】(1)2号线每千米的平均造价为5.8亿元,3号线每千米的平均造价为1亿元;(2)还需投资1211.72亿元【分析】(1)设2号线每千米的平均造价为x 亿元,则3号线每千米的平均造价为(x+0.2)亿元,根据修建地铁2号线32千米和3号线11千米共投资581.1亿元,即可得出关于x 的一元一次方程,解之即可得出结论;(2)根据总价=单价×数量,即可求出结论.【详解】解:(1)设2号线每千米的平均造价为x 亿元,则3号线每千米的平均造价为(x+0.2)亿元, 依题意,得:32x+11(x+0.2)=581.1,解得:x=5.8,∴x+0.2=1.答:2号线每千米的平均造价为5.8亿元,3号线每千米的平均造价为1亿元.(2)5.8×1.2×182=1211.72(亿元).答:还需投资1211.72亿元.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.20.如图,在ABC ∆中,AB AC =,20BAD ∠=︒,且AE AD =,求CDE ∠的度数.【答案】10︒【分析】设∠B =∠C =x ,∠EDC =y ,构建方程即可解决问题;。
学年度第一学期期末考试武汉市部分区八年级数学压轴题1.(硚口区)在平面直角坐标系中,已知A(-m,0),B(0,n),C(m,0)。
(1)如图1,若AC=AB,CM⊥AB于点M,MN∥y轴交AO于点N(-2,0),则m=__________。
(2)如图2,若m2-2mn+n2=0,∠ACB的平分线CD交AB于点D,过AC上一点E作EF∥CD,交AB于点F,AG是∆AEF的高,探究AG与EF的数量关系。
(3)如图3,在(1)的条件下,AC上一点H满足,直线MH交y轴于点Q,求点Q的坐标。
2.(东湖高新区)如图,在平面直角坐标系中,A(a,0),B(0,b),且|a+4|+ b2-8b+162=0。
(1)求a、b的值。
(2)如图1,C为y轴负半轴上一点,连接CA,过点C作CD⊥CA,使CD=CA,连接BD,求证:∠CBD=45°。
(3)如图2,若有一等腰Rt∆BMN,∠BMN=90°,连接AN,取AN中点P,连接PM、PO,试探究PM和PO的关系。
3.(江汉区)在平面直角坐标系中,点A (0,4),B (m,0)在坐标轴上,点C 与O 关于直线AB 对称,点D 在线段AB 上。
(1)如图1,若m=8,求AB 的长。
(2)如图2,若m=4,连接OD ,在y 轴上取一点E ,使OD=DE ,求证:CE= 。
(3)如图3,若m= ,在射线AO 上截取AF ,使AF=BD ,当CD+CF 的值最小时,请在图中画出点D 的位置,并直接写出这个最小值。
4.(江岸区)已知,平面直角坐标系中,A(0,4),B(b,0),(-4<b<0),将线段AB绕点A逆时针旋转90°得到线段AC,连接BC。
(1)如图1,直接写出点C的坐标:_______________________(用b表示)。
(2)如图2,取线段BC的中点D,在x轴取一点E使∠DEB=45°,作CF⊥x轴于点F。
每日一学:湖北省武汉市江岸区2018-2019学年八年级上学期数学期末考试试卷_压轴题解答
答案湖北省武汉市江岸区2018-2019学年八年级上学期数学期末考试试卷_压轴题
~~ 第1题 ~~
(2019江岸.八上期末) 如图1,已知等边三角形ABC,点P 为AB 的中点,点D 、
E 分别为边AC
、BC 上的点,∠APD +∠BPE =60°.
(1) ①若PD ⊥AC,PE ⊥BC,直接写出PD 、PE 的数量关系:;
②如图1,证明:AP =AD +BE
(2) 如图2,点F 、H 分别在线段BC 、AC 上,连接线段PH 、PF,若PD ⊥PF 且PD =PF,HP ⊥EP.求∠FHP 的度数;考点: 全等三角形的判定与性质;~~ 第2题 ~~
(2019江岸.八上期末) 如图,已知∠AOB =α( 0°<α<60° ),射线OA 上一点M,以OM 为边在OA 下方作等边△OMN,点
P 为射线OB 上一点,若∠MNP =α,则∠OMP =________.
~~ 第3题 ~~
(2019江岸.八上期末) 如图,已知△ABC 中,∠ACB =90°,∠BAC =30°,AB =4,点D 为直线AB 上一动点,将线段CD 绕点C 逆
时针旋转60°得到线段CE,连接ED 、BE,当BE 最小时,线段AD 的值为( )
A . 3
B . 4
C . 5
D . 6
湖北省武汉市江岸区2018-2019学年八年级上学期数学期末考试试卷_压轴题解答
~~ 第1题 ~~
答案:
解析:
~~ 第2题 ~~答案:
解析:
~~ 第3题 ~~
答案:C
解析:。
2018-2019学年八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)在平面直角坐标系中,点(﹣1,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)我国主要银行的商标设计基本上都融入了中国古代钱币的图案,如图是我国四个银行的商标图案,其中是轴对称图形的有()A.①②③B.①②④C.①③④D.②③④3.(3分)在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm4.(3分)点A(﹣3,2)关于x轴的对称点A′的坐标为()A.(﹣3,﹣2)B.(3,2)C.(3,﹣2)D.(2,﹣3)5.(3分)等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°6.(3分)已知P1(﹣3,y1),P2(2,y2)是一次函数y=2x﹣b的图象上的两个点,则y1,y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定7.(3分)如图,已知∠ADB=∠ADC,欲证△ABD≌△ACD,还必须从下列选项中选一个补充条件,其中错误的选项是()A.∠BAD=∠CAD B.AB=AC C.BD=CD D.∠B=∠C8.(3分)如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()A.cm B.2cm C.3cm D.4cm9.(3分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短10.(3分)如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面三个结论:①AS=AR②QP∥AR③△BRP≌△QSP.其中正确的是()A.①③B.②③C.①②D.①②③二、填空题(每小题3分,共24分)11.(3分)函数y=中,自变量x的取值范围是.12.(3分)将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是.13.(3分)如图,△ABC中,DE是AC的垂直平分线,AE=5,△ABC的周长是30,则△ABD的周长是.14.(3分)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第块.15.(3分)如图,线段AD与BC相交于点O,连接AB、CD,且OB=OD,要使△AOB≌△COD,应添加一个条件是(只填一个即可).16.(3分)写一个图象交y轴于点(0,﹣3),且y随x的增大而增大的一次函数关系式.17.(3分)如图,把两根钢条的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳).在图中,只要量出CD的长,就能求出工件内槽的宽,依据是.18.(3分)如图,已知△ABC的角平分线CD交AB于D,DE∥BC交AC于E,若DE=3,AE=4,则AC=.三.解答题(46分)19.(6分)△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△A1B1C1;并写出△A1B1C1各顶点的坐标;(2)将△ABC向右平移6个单位,再向下平移1个单位:作出平移后的△A2B2C220.(6分)已知:如图,∠1=∠2,∠C=∠D.求证:△ABC≌△ABD.21.(8分)为了保护学生的视力,课桌的高度m与椅子的高度xcm(不含靠背)都是按y是x的一次函数关系配套设计的,如表列出了两套符合条件课桌椅的高度:(1)请求出y与x的函数关系式(不要求写出x的取值范围);(2)现有一把高42.0cm的椅子和一张高78.2cm的课桌,它们是否配套?请通过计算说明理由.22.(8分)“佳园工艺店”打算制作一批有两边长分别是7分米,3分米,第三边长为奇数(单位:分米)的不同规格的三角形木框.(1)要制作满足上述条件的三角形木框共有种.(2)若每种规格的三角形木框只制作一个,制作这种木框的木条的售价为8元╱分米,问至少需要多少钱购买材料?(忽略接头)23.(8分)如图,AC是某座大桥的一部分,DC部分因受台风侵袭已垮塌,为了修补这座大桥,需要对DC的长进行测量,测量人员在没有垮塌的桥上选取两点A和D,在C处对岸立着的桥墩上选取一点B(BC⊥AC),然后测得∠A=30°,∠ADB=120°,AD=60m.求DC的长.24.(10分)已知:如图,AB,CD相交于点O,AC∥DB,OC=OD,E,F为AB上两点,且AE=BF.求证:CE∥DF.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)在平面直角坐标系中,点(﹣1,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据横纵坐标的符号可得相关象限.【解答】解:∵点的横纵坐标均为负数,∴点(﹣1,﹣2)所在的象限是第三象限.故选:C.【点评】考查点的坐标的相关知识;用到的知识点为:横纵坐标均为负数的点在第三象限.2.(3分)我国主要银行的商标设计基本上都融入了中国古代钱币的图案,如图是我国四个银行的商标图案,其中是轴对称图形的有()A.①②③B.①②④C.①③④D.②③④【分析】根据轴对称的定义,结合所给图形进行判断即可.【解答】解:①不是轴对称图形;②是轴对称图形;③是轴对称图形;④是轴对称图形;故是轴对称图形的是②③④.故选:D.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm【分析】易得第三边的取值范围,看选项中哪个在范围内即可.【解答】解:设第三边为c,则9+4>c>9﹣4,即13>c>5.只有9符合要求.故选:C.【点评】已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.4.(3分)点A(﹣3,2)关于x轴的对称点A′的坐标为()A.(﹣3,﹣2)B.(3,2)C.(3,﹣2)D.(2,﹣3)【分析】利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:∵点A(﹣3,2)关于x轴的对称点为A′,∴A′点的坐标为:(﹣3,﹣2).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.5.(3分)等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故选:D.【点评】此题主要考查了等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.6.(3分)已知P1(﹣3,y1),P2(2,y2)是一次函数y=2x﹣b的图象上的两个点,则y1,y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定【分析】利用一次函数图象上点的坐标特征求出y1、y2的值,比较后即可得出结论.【解答】解:∵P1(﹣3,y1)、P2(2,y2)是一次函数y=2x﹣b的图象上的两个点,∴y1=﹣6﹣b,y2=4﹣b.∵﹣6﹣b<4﹣b,∴y1<y2.故选:A.【点评】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.7.(3分)如图,已知∠ADB=∠ADC,欲证△ABD≌△ACD,还必须从下列选项中选一个补充条件,其中错误的选项是()A.∠BAD=∠CAD B.AB=AC C.BD=CD D.∠B=∠C【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:A、∵∠ADB=∠ADC,∠BAD=∠CAD,AD=AD,利用ASA可以证明△ABD ≌△ACD,正确;B、∵∠ADB=∠ADC,AD=AD,AB=AC,不能证明△ABD≌△ACD,错误;C、∵∠ADB=∠ADC,AD=AD,BD=CD,利用SAS能证明△ABD≌△ACD,正确;D、∵∠ADB=∠ADC,∠B=∠C,AD=AD,利用AAS可以证明△ABD≌△ACD,正确;故选:B.【点评】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.8.(3分)如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()A.cm B.2cm C.3cm D.4cm【分析】根据在直角三角形中,30度所对的直角边等于斜边的一半得出AE=2ED,求出ED,再根据角平分线到两边的距离相等得出ED=CE,即可得出CE的值.【解答】解:∵ED⊥AB,∠A=30°,∴AE=2ED,∵AE=6cm,∴ED=3cm,∵∠ACB=90°,BE平分∠ABC,∴ED=CE,∴CE=3cm;故选:C.【点评】此题考查了含30°角的直角三角形,用到的知识点是在直角三角形中,30度所对的直角边等于斜边的一半和角平分线的基本性质,关键是求出ED=CE.9.(3分)如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【点评】本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.10.(3分)如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面三个结论:①AS=AR②QP∥AR③△BRP≌△QSP.其中正确的是()A.①③B.②③C.①②D.①②③【分析】根据角平分线性质即可推出①,根据勾股定理即可推出AR=AS,根据等腰三角形性质推出∠QAP=∠QPA,推出∠QPA=∠BAP,根据平行线判定推出QP∥AB即可;在Rt△BRP和Rt△QSP中,只有PR=PS.无法判断△BRP≌△QSP.【解答】解:①∵PR⊥AB,PS⊥AC,PR=PS,∴点P在∠A的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2﹣PR2,AS2=AP2﹣PS2,∵AD=AD,PR=PS,∴AR=AS,∴①正确;②∵AQ=QP,∴∠QAP=∠QPA,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴②正确;③在Rt△BRP和Rt△QSP中,只有PR=PS,不满足三角形全等的条件,故③错误故选:C.【点评】本题考查了全等三角形的性质和判定,平行线的判定,角平分线性质的应用,熟练掌握全等三角形的判定和性质是解题的关键.二、填空题(每小题3分,共24分)11.(3分)函数y=中,自变量x的取值范围是x≤4.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:4﹣x≥0,解得:x≤4.故答案是:x≤4.【点评】本题考查了求函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.(3分)将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是(0,0).【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:原来点的横坐标是1,纵坐标是2,向左平移1个单位,再向下平移2个单位得到新点的横坐标是1﹣1=0,纵坐标为2﹣2=0.即对应点的坐标是(0,0).故答案填:(0,0).【点评】解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.13.(3分)如图,△ABC中,DE是AC的垂直平分线,AE=5,△ABC的周长是30,则△ABD的周长是20.【分析】根据线段的垂直平分线的性质得到DA=DC,AE=CE=5,而AB+BD+DC+AE+EC=30,代换即有AB+BD+DA=20,从而得到△ABD的周长.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,AE=CE=5,而△ABC的周长是30,即AB+BD+DC+AE+EC=30,∴AB+BD+DC=20,∴AB+BD+DA=20,即△ABD的周长是20.故答案为20.【点评】本题考查了线段的垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等.也考查了三角形周长的定义.14.(3分)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第2块.【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故答案为:2.【点评】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.15.(3分)如图,线段AD与BC相交于点O,连接AB、CD,且OB=OD,要使△AOB≌△COD,应添加一个条件是OA=OC(只填一个即可).【分析】观察图形可知:已有一角一边对应相等.根据三角形全等的判定方法解答.【解答】解:添加条件OA=OC,∵OB=OD,∠AOB=∠COD (对顶角相等),在△AOB和△COD中,,∴△AOB≌△COD(SAS),故答案为:OA=OC.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.(3分)写一个图象交y轴于点(0,﹣3),且y随x的增大而增大的一次函数关系式答案不唯一,如:y=x﹣3.【分析】根据题意得,一次函数的解析式为y=kx+b中的b=﹣3,k>0,符合条件的即可.【解答】解:设一次函数的解析式为y=kx+b,∵图象交y轴于点(0,﹣3),∴b=﹣3;∵y随x的增大而增大,∴k=2.(答案不唯一,k>0即可)【点评】此题利用的规律:在直线y=kx+b中,当k>0时,y随x的增大而增大;当k <0时,y随x的增大而减小.17.(3分)如图,把两根钢条的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳).在图中,只要量出CD的长,就能求出工件内槽的宽,依据是根据SAS证明△AOB≌△COD.【分析】本题让我们了解测量两点之间的距离,只要符合全等三角形全等的条件之一SAS,只需要测量易测量的边CD上.测量方案的操作性强.【解答】解:连接AB,CD,如图,∵点O分别是AC、BD的中点,∴OA=OC,OB=OD.在△AOB和△COD中,OA=OC,∠AOB=∠COD(对顶角相等),OB=OD,∴△AOB≌△COD(SAS).∴CD=AB.答:需要测量CD的长度,即为工件内槽宽AB.其依据是根据SAS证明△AOB≌△COD;故答案为:根据SAS证明△AOB≌△COD【点评】本题考查全等三角形的应用,根据已知条件可用边角边定理判断出全等.18.(3分)如图,已知△ABC的角平分线CD交AB于D,DE∥BC交AC于E,若DE=3,AE=4,则AC=7.【分析】根据角平分线的定义可得∠BCD=∠DCE,再根据两直线平行,内错角相等可得∠BCD=∠CDE,然后求出∠DCE=∠CDE,再根据等角对等边可得CE=DE,然后根据AC=AE+CE代入数据计算即可得解.【解答】解:∵CD是∠ACB的平分线,∴∠BCD=∠DCE,∵DE∥BC,∴∠BCD=∠CDE,∴∠DCE=∠CDE,∴CE=DE,∵DE=3,AE=4,∴AC=AE+CE=4+3=7.故答案为:7.【点评】本题考查了等腰三角形的判定与性质,角平分线的定义,平行线的性质,熟记性质并求出CE=DE是解题的关键.三.解答题(46分)19.(6分)△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△A1B1C1;并写出△A1B1C1各顶点的坐标;(2)将△ABC向右平移6个单位,再向下平移1个单位:作出平移后的△A2B2C2【分析】(1)利用关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)利用点平移的坐标规律写出A2、B2、C2的坐标,然后描点即可;【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作.【点评】本题考查了作图﹣轴对称变换:在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形.20.(6分)已知:如图,∠1=∠2,∠C=∠D.求证:△ABC≌△ABD.【分析】根据AAS定理可判定:△ABC≌△ABD.【解答】证明:在△ABD和△ABC中,∴△ABC≌△ABD(AAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.21.(8分)为了保护学生的视力,课桌的高度m与椅子的高度xcm(不含靠背)都是按y是x的一次函数关系配套设计的,如表列出了两套符合条件课桌椅的高度:(1)请求出y与x的函数关系式(不要求写出x的取值范围);(2)现有一把高42.0cm的椅子和一张高78.2cm的课桌,它们是否配套?请通过计算说明理由.【分析】(1)根据题意和表格中的数据可以计算出y与x的函数关系式;(2)将x=42.0代入(1)中的函数解析式,然后与78.2作比较,即可解答本题.【解答】解:(1)设y=kx+b,,得,即y与x的函数关系式是y=2.4x﹣21;(2)现有一把高42.0cm的椅子和一张高78.2cm的课桌,它们不配套,理由:当x=42.0时,y=2.4×42.0﹣21=79.8,∵78.2≠79.8,∴现有一把高42.0cm的椅子和一张高78.2cm的课桌,它们不配套.【点评】本题考查一次函数的应用,解答此类问题的关键是明确题意,求出相应的函数解析式.22.(8分)“佳园工艺店”打算制作一批有两边长分别是7分米,3分米,第三边长为奇数(单位:分米)的不同规格的三角形木框.(1)要制作满足上述条件的三角形木框共有3种.(2)若每种规格的三角形木框只制作一个,制作这种木框的木条的售价为8元╱分米,问至少需要多少钱购买材料?(忽略接头)【分析】(1)根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,确定第三边的取值范围,从而确定符合条件的三角形的个数.(2)求出各三角形的周长的和,再乘以售价为8元╱分米,可求其所需钱数.【解答】解:(1)三角形的第三边x满足:7﹣3<x<3+7,即4<x<10.因为第三边又为奇数,因而第三边可以为5、7或9.故要制作满足上述条件的三角形木框共有3种.(2)制作这种木框的木条的长为:3+5+7+3+7+7+3+7+9=51(分米),∴51×8=408(元).答:至少需要408元购买材料.【点评】本题主要考查三角形三边关系的应用,注意熟练运用在三角形中任意两边之和大于第三边,任意两边之差小于第三边.23.(8分)如图,AC是某座大桥的一部分,DC部分因受台风侵袭已垮塌,为了修补这座大桥,需要对DC的长进行测量,测量人员在没有垮塌的桥上选取两点A和D,在C处对岸立着的桥墩上选取一点B(BC⊥AC),然后测得∠A=30°,∠ADB=120°,AD=60m.求DC的长.【分析】由∠ADB的度数可求出∠BDC的度数,由三角形外角的性质结合∠A=30°可得出∠ABD=∠A,进而可得出AD=BD,再通过解含30°角的直角三角形即可求出CD的长度.【解答】解:∵∠ADB=120°,∴∠BDC=60°,∵∠A=30°,∴∠ABD=30°=∠A,∴AD=BD.在Rt△BCD中,∠BCD=90°,∠BDC=60°,BD=60m,∴∠CBD=30°,CD=BD=30m.【点评】本题考查了三角形的外角性质、等腰三角形的性质以及含30度角的直角三角形,根据三角形外角的性质结合等腰三角形的性质找出BD=AD是解题的关键.24.(10分)已知:如图,AB,CD相交于点O,AC∥DB,OC=OD,E,F为AB上两点,且AE=BF.求证:CE∥DF.【分析】根据平行线的性质得出∠A=∠B,根据全等三角形的判定得出△ACO≌△BDO,求出OA=OB,求出OE=OF,根据全等三角形的判定得出△COE≌△DOF,根据全等三角形的性质得出∠OEC=∠OFD即可.【解答】证明:∵AC∥BD,∴∠A=∠B,在△ACO和△BDO中∴△ACO≌△BDO∴OA=OB,∵AE=BF,∴OE=OF,在△COE和△DOF中∴△COE≌△DOF,∴∠OEC=∠OFD,∴CE∥DF.【点评】本题考查了平行线的性质和判定定理、全等三角形的性质和判定定理,能灵定理进行推理是解此题的关键.。
2018-2019学年湖北省武汉市江岸区八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)使分式有意义的条件是()A.x=2B.x≠0C.x≠2D.x=﹣22.(3分)下列计算正确的是()A.a4+a4=2a8B.a3•a4=a12C.a8÷a2=a6D.(2ab)2=4ab23.(3分)数0.000013用科学记数法表示为()A.0.013×10﹣3B.1.3×105C.13×10﹣4D.1.3×10﹣54.(3分)在平面直角坐标系中,点P(2,﹣3)关于y轴对称的点的坐标是()A.(﹣2,﹣3)B.(﹣2,3)C.(2,3)D.(2,﹣3)5.(3分)已知a m=4,则a2m的值为()A.2B.4C.8D.166.(3分)把分式中的x、y的值同时扩大为原来的10倍,则分式的值()A.缩小为原来的B.不变C.扩大为原来的10倍D.扩大为原来的100倍7.(3分)下列式子从左到右变形正确的是()A.(a+b)2=a2+b2B.=C.a2﹣b2=(a﹣b)2D.a﹣2=(a≠0)8.(3分)如图,有一张边长为b的正方形纸板,在它的四角各剪去边长为a的正方形,然后将四周突出的部分折起,制成一个无盖的长方体纸盒,则这个纸盒的容积为()A.b2﹣4a2B.ab2﹣4a3C.ab2﹣4a2b+4a3D.a2b+4a39.(3分)一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A.+=t B.+=tC.•+•=t D.+10.(3分)如图,已知△ABC中,∠ACB=90°,∠BAC=30°,AB=4,点D为直线AB上一动点,将线段CD 绕点C逆时针旋转60°得到线段CE,连接ED、BE,当BE最小时,线段AD的值为()A.3B.4C.5D.6二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)2﹣2=.12.(3分)分式和的最简公分母为:.13.(3分)若多项式x2﹣mx+9是一个完全平方式,那么m=.14.(3分)把下面四个图形拼成一个大长方形,并据此写出一个多项式的因式分解.15.(3分)关于x的分式方程无解,则m=.16.(3分)如图,已知∠AOB=α(0°<α<60°),射线OA上一点M,以OM为边在OA下方作等边△OMN,点P为射线OB上一点,若∠MNP=α,则∠OMP=.三、解答题(本大题共8小题,共72分)17.(8分)计算:(1)(x﹣3y)(﹣6x);(2)(6x4﹣8x2y)÷(﹣2x2).18.(8分)分解因式:(1)8a3b2﹣12ab3c;(2)(a+b)2﹣12(a+b)+36.19.(8分)解分式方程:20.(8分)化简求值:,其中:a=2,b=﹣3.21.(8分)一辆汽车开往距离出发地180km的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地,求前一小时的行驶速度.22.(10分)我们已学完全平方公式:a2±2ab+b2=(a±b)2,观察下列式子:x2+4x+2=(x+2)2﹣2≥﹣2;﹣x2+2x ﹣3=﹣(x﹣1)2﹣2≤﹣2,并完成下列问题(1)﹣2x2﹣4x+1=﹣2(x+m)2+n≤n,则m=;n=;(2)解决实际问题:在紧靠围墙的空地上,利用围墙及一段长为60米的木栅栏围成一个长方形花圃,为了设计一个面积尽可能大的花圃,如图设长方形一边长度为x米,完成下列任务:①列式:用含x的式子表示花圃的面积:;②请说明当x取何值时,花圃的最大面积时多少平方米?23.(10分)如图1,已知等边三角形ABC,点P为AB的中点,点D、E分别为边AC、BC上的点,∠APD+∠BPE =60°.(1)①若PD⊥AC,PE⊥BC,直接写出PD、PE的数量关系:;②如图1,证明:AP=AD+BE(2)如图2,点F、H分别在线段BC、AC上,连接线段PH、PF,若PD⊥PF且PD=PF,HP⊥EP.①求∠FHP的度数;②如图3,连接DE,直接写出=.24.(12分)已知,平面直角坐标系中,A(0,4),B(b,0)(﹣4<b<0),将线段AB绕点A逆时针旋转90°得到线段AC,连接BC.(1)如图1,直接写出C点的坐标:;(用b表示)(2)如图2,取线段BC的中点D,在x轴取一点E使∠DEB=45°,作CF⊥x轴于点F.①求证:EF=OB;②如图3,连接AE,作DH∥y轴交AE于点H,当OE=EF时,求线段DH的长度.2018-2019学年湖北省武汉市江岸区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.【解答】解:根据题意得:x﹣2≠0,解得:x≠2.故选:C.2.【解答】解:a4+a4=2a4,故选项A不合题意;a3•a4=a7,故选项B不合题意;a8÷a2=a6,正确,故选项C符合题意;(2ab)2=4a2b2,故选项D不合题意.故选:C.3.【解答】解:0.000013=1.3×10﹣5.故选:D.4.【解答】解:点P(2,﹣3)关于y轴对称的点的坐标是(﹣2,﹣3),故选:A.5.【解答】解:∵a m=4,∴a2m=(a m)2=42=16.故选:D.6.【解答】解:把分式中的x、y的值同时扩大为原来的10倍得:==,即分式的值扩大为原来的10倍,故选:C.7.【解答】解:A.根据完全平方公式,(a+b)2=a2+2ab+b2,即A项不合题意,B.若c=0,则无意义,即B项不合题意,C.根据完全平方公式,a2﹣2ab+b2=(a﹣b)2,即C项不合题意,D.根据负整数指数幂的定义,a﹣2=(a≠0),即D项符合题意,故选:D.8.【解答】解:由题意可得,这个纸盒的容积为:(b﹣2a)2×a=ab2﹣4a2b+4a3.故选:C.9.【解答】解:设小水管的注水速度为x立方米/分钟,可得:,故选:C.10.【解答】解:如图,以BC为边作等边△BCF,连接DF,∵∠ACB=90°,∠BAC=30°,AB=4,∴∠ABC=60°,BC=2,∵将线段CD绕点C逆时针旋转60°得到线段CE,∴CD=CE,∠DCE=60°,∵△BCF是等边三角形,∴CF=BC=BF=2,∠BCF=60°=∠DCE,∴∠BCE=∠DCF,且BC=CF,DC=CE,∴△BCE≌△FCD(SAS)∴BE=DF,∴DF⊥AB时,DF的长最小,即BE的长最小,∵∠FBD'=180°﹣60°﹣60°=60°,D'F⊥AB,∴BD'=BF=1,∴AD'=AB+BD'=5,故选:C.二、填空题(本大题共6小题,每小题3分,共18分)11.【解答】解:2﹣2==.故答案为:.12.【解答】解:分式和的最简公分母为2a2b.故答案为2a2b.13.【解答】解:∵多项式x2﹣mx+9是一个完全平方式,∴mx=±2•x•3,∴m=±6.14.【解答】解:拼接如图:长方形的面积为:x2+3x+2,还可以表示面积为:(x+2)(x+1),∴我们得到了可以进行因式分解的公式:x2+3x+2=(x+2)(x+1).故答案是:x2+3x+2=(x+2)(x+1).15.【解答】解:分式方程两边同时乘以x(x﹣2)得:mx﹣8=2(x﹣2)∴(m﹣2)x=4∴①当m﹣2=0时,方程无解,此时m=2;②当m﹣2≠0时,x=,由x(x﹣2)=0,可知当x=0或x=2时,原方程有增根,从而无解∴当m﹣2=2时,x=2∴m=4时,原分式方程无解.故答案为:2或4.16.【解答】解:(1)当P位于MN左侧时,如图1,∵△OMN是等边三角形,∴MN=MO=ON,∠MON=∠MNO=60°,∵∠MNP=∠AOB=α,∴∠PON=∠PNO,∴PO=PN,△MPO≌△MPN,(SAS)∴∠OMP=∠NMP=∠OMN=×60°=30°(2)当P位于MN右侧时,如图2,将△MNP绕着点M顺时针旋转60°得到△MOQ,此时△MPQ是等边三角形,∴∠MPQ=60°,∴∠OMP=180°﹣∠MPQ﹣∠MOP=180°﹣60°﹣α=120°﹣α,故答案为:30°或120°﹣α.三、解答题(本大题共8小题,共72分)17.【解答】解:(1)原式=﹣6x2+18xy;(2)原式=﹣3x2+4y.18.【解答】解:(1)原式=4ab2(2a2﹣3bc);(2)原式=(a+b﹣6)2.19.【解答】解:去分母得:2x2+4x﹣7=2(x﹣1)(x+2),整理得:2x2+4x﹣7=2x2+2x﹣4,解得:x=1.5,经检验x=1.5是分式方程的解.20.【解答】解:原式=﹣•=﹣=,当a=2,b=﹣3时,原式==﹣9.21.【解答】解:设前一小时的行驶速度为xkm/h,根据题意可得:+1=﹣,解得:x=60,检验得:x=60是原方程的根,答:前一小时的行驶速度为60km/h.22.【解答】解:(1)﹣2x2﹣4x+1=﹣2(x2+2x+1﹣1)+1=﹣2(x+1)2+3,∵﹣2x2﹣4x+1=﹣2(x+m)2+n≤n,∴m=1,n=3;故答案为:1,3;(2)①花圃的面积:x(60﹣2x);故答案为:x(60﹣2x);②由①可知:x(60﹣2x)=﹣2(x﹣15)2+450,当x=15时,花圃的最大面积为450平方米.23.【解答】(1)①解:结论:PD=PE.理由:如图1中,连接CP.∵△ABC是等边三角形,∴CA=CB,∵AP=PB,∴CP平分∠ACB,∵PD⊥CA,PE⊥CB,∴PD=PE.故答案为PD=PE.②证明:如图1中,作PM∥BC交AC于M.△ABC为等边三角形,则△APM为等边三角形.∵∠DPM+∠DP A=60°,∠APD+∠BPE=60°,∴∠DPM=∠EPB,∵PD=PE,PM=P A=PB,∴△DPM≌△EPB(SAS)∴DM=EB∴AP=AM=AD+DM=AD+BE.(2)①解:如图2中,作PK⊥PH交CA于点K,作PM⊥AC于M,PN⊥BC于N.由(1)可知PM=PN,∵∠DPE=120°,∠DCE=60°,∴∠CDP+∠PEC=180°,∵∠PDM+∠CDP=180°,∴∠PDM=∠PEN,∵∠PMD=∠PNE=90°,∴△PMD≌△PNE(AAS),∴PD=PE,∵PF=PE,∴PD=PE=PF,∵∠DPF=∠HPE=90°,∠DPE=120°∴∠DPH=∠FPE=30°,∠PEF=∠PFE=∠PDA=75°,∴∠AHP=∠PKH=45°,∴PH=PK,∵∠KPH=∠DPF=90°,∴∠KPM=∠HPF,∵KP=PK,PD=PF,∴△PKD≌△PHF(SAS),∴∠FHP=∠K=45°.②如图3中,作PM⊥DE,作FN⊥PH,设PM=a.由①可知:∠DPH=∠FPE=30°,∠DPE=120°,∴∠FPN=∠EPM=60°,∵∠PME=∠FNP=90°,PE=PF,∴△PME≌△PNF(AAS),∴FN=EM,PN=PM=a,∵PF=PE=2PM=2a,EM=DM=a,∴DE=2a,∴PF+DE=2a+2a,∵∠FHN=∠HFN=45°,∴HN=HF=a,∴PH=a+a,∴==2.故答案为2.24.【解答】解:(1)如图1,过点C作CM⊥AO于M,∵A(0,4),B(b,0),∴OA=4,OB=﹣b,∵将线段AB绕点A逆时针旋转90°得到线段AC,∴AB=AC,∠BAC=90°,∴∠BAO+∠CAO=90°,且∠CAO+∠ACM=90°,∴∠ACM=∠BAO,且AB=AC,∠AOB=∠AMC=90°,∴△ABO≌△CAM(AAS)∴CM=OA=4,AM=OB=﹣b,∴OM=AO﹣AM=4+b,∴点C(4,b+4)(2)①如图2,连接AD,OD,∵AB=AC,∠BAC=90°,点D是BC中点,∴AD=BD,∠ABC=45°,∠ADB=90°∵∠ADB=∠AOB=90°,∴点A,点B,点O,点D四点共圆,∴∠DAO=∠DBO,∠ABC=∠AOD=45°=∠DEB,且BD=AD,∴△ADO≌△BDE(AAS)∴AO=BE=4,∵CF⊥x轴于点F,∴OF=4,∴BE=OF=4,∴BO=EF,②如图3,延长HD交BF于N,∵DH∥y轴,CF∥y轴,∴DH∥OA∥CF,且点D是BC中点,∴∴DN=CF=,BN=NF=BF=,∵OE=EF,OF=4,∴OE=EF=2,∴NE=∵∠DEB=45°,DN⊥BF,∴DN=NE,∴∴b=﹣2∴DN=NE=1,∵DH∥AO,∴△AOE∽△HNE,∴∴HN==2,∴DH=HN﹣DN=1。
2018-2019学年度江汉区第一学期期末考试
八年级数学试题
(考试时间:120分钟 试卷总分:150分)
第Ⅰ卷(本卷满分100分)
一、选择题(共10小题,每小题3分,共30分)下到各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑. 1.下列图形不是轴对称图形的是( )
A .
B .
C .
D .
2.下列每组数据分别是三根小木棒的长度,用这三积小木棒摆出三角形的是( )
A .3cm ,4cm ,8cm
B .8cm ,7cm ,15cm
C . 13cm ,12cm ,20cm
D .5cm ,5cm ,11cm
3.如图,某同学书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么他画图的依据是( )
A .SSS
B .SAS
C .ASA
D .AAS
C D B
A
第3题图 第8题图
4.下列运算正确的是( )
A .a 3⋅a 4=a 12
B .(a 3)-
2=a C .(-3a 2)-
3 D .(-a 2)3=-a 6 5.下列各分式中,最简分式是( )
A .
()()
1215x y x y -+
B .22y x x y
-+
C .22
22x y x y xy ++ D .()
222
x y x y -+ 6.下列由线段a ,b ,c 组成的三角形不是直角三角形的是( )
A .a 7b 3c 10
B .a =13,b =14,c =15
C .a =15,b =8,c =17
D .a =6,b =8,c =10
7.若xy =x +y ≠0,则分式
11
x y
+的值是( ) A .
1
xy
B .x y +
C .1
D .-1
8.如图,在△ABC 中,点D 在BC 上,AB =AD =DC ,∠B =72°,那么∠DAC 的大小是( )
A .30°
B .36°
C .18°
D .40°
9.用A ,B 两个机器人搬运化工原料,A 机器人比B 机器人每小时多搬运30kg ,A 机器人搬运900kg 所用时间与B 机器人搬运600kg 所用时间相等,设A 机器人每小时搬运x kg 化工原料,那么可列方程( )
A .
90060030x x =- B .90060030x x =+ C .60090030x x =+ D .900600
30x x
=
- 10.如图,Rt △ABC 中,∠ABC =90°,∠BAC =30°,AC =2,分别以三边为直径画半圆,
则两个月形图案的面积之和(阴影部分的面积)是( )
A
B
C
D
A
B
O
N
M
A
B
第10题图 第14题图
二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答题卷指定的位置. 11.五边形的内角和为 度.
12.数0.0000064用科学记数法表示为 . 13.若x 2+ax +9是完全平方式,则a = .
14.如图,△ABC 中,BO 平分∠ABC ,CO 平分∠ACB ,MN 经过点O ,与AB ,AC 相交于点M ,N ,且MN ∥B C .若AB =7,AC =6,那么△AMN 的周长是 .
15.直角三角形两条边的长度分别为3cm ,4cm ,那么第三条边的长度是 cm . 16.若m +2=3n ,则327m n -⋅的值是 .
三、解答题(共5小题,第17至20题,每小题10分,第21题12分,共52分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形. 17.(本题10分)
(1)计算:(2a -3)2+(2a +3)(2a -3); (2)解方程:23
2x x
=-
18.(本题10分)如图,△ABC 在平面直角坐标系中,A (-2,5),B (-3,2),C (-1,1).
(1)请画出△ABC 关于y 轴的对称图形△A ′B ′C ′,其中A 点的对应点是A ′,B 点的对应点是B ′,C 点的对应点是C ′,并写出A ′,B ′,C ′三点的坐标. A ′ ;B ′ ;C ′ . (2)△A ′B ′C ′的面积是 .
19.(本题10分)先化简,再求值:
22
2
42
442
x x x
x x x
-+
÷
-+-
,其中x=-1.
20.(本题10分)如图,OC平分∠MON,A、B分别为OM、ON上的点,且BO>AO,AC =BC,求证:∠OAC+∠OBC=180°.
A
B
C
O
M N
21.(本题12分)一辆汽车开往距离180km的目的地,汽车出发后第一小时内按原计划的速度匀速行驶,1小时后以原计划速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地,求原计划多长时间到达目的地.
第Ⅱ卷(本卷满分50分)
四、填空题(共4小题,每小题4分,共16分)下列各题不需要写出解答过程,请将结果直接填在答题卷指定的位置.
22.因式分解:x 3+x 2+x +1= .
23.若x 2-y 2=8,x 2-z 2=5,则(x +y )(y +z )(z +x )(x -y )(y -z )(z -x )= . 24.如图,四边形ABCD 沿直线AC 对折后重合,如果AC ,BD 交于O ,AB ∥CD ,则结论①AB =CD ,②AD ∥BC ,③AC ⊥BD ,④AO =CO ,③AB ⊥BC ,其中正确的结论是 (填序号).
25.如图,等腰△ABC 中,顶角∠A =45°,点E ,F 是内角∠ABC 与外角∠ACD 三等分线的交点,连接EF ,则∠BFE = °.
O
A
B
C
D
第24题图 第25题图
五、解答题(共3小题,第26题10分,第27题12分,第28题12分共34分)下列各题需要在答题卷指定位置写出文宇说明、证明过程、计算步骤或作出图形. 26,(本题10分)已知,等腰△ABC 和等腰△ADE 中,∠BAC =∠DAE =90°. (1)如图1,求证:DB =CE ; (2)如图2.求证:S △ACD =S △ABE .
A
B
D
E
A
B
D
E
图1 图2
27.(本题12分)已知,关于x 的分式方程131
11
m x m x x +-+-=+. (1)当m =-1时,请判断这个方程是否有解并说明理由; (2)若这个分式方程有实数解,求m 的取值范图.
28.(本题12分)在平面直角坐标系中,点A(0,4),B(m,0)在坐标轴上,点C,O 关于直线AB对称,点D在线段AB上.
(1)如图1,若m=8,求AB的长;
(2)如图2,若m=4,连接OD,在y轴上取一点E,使OD=DE,求证:CE
DE;
(3)如图3,若m
=AO上裁取AF,使AF=BD,当CD+CF的值最小时,
请在图中画出点D的位置,并直接写出这个最小值.
图1图2图3。