蚁群混合遗传算法的研究及应用
- 格式:pdf
- 大小:852.02 KB
- 文档页数:4
遗传算法与蚁群算法结合遗传算法1、基本思想2、算法原理3、代码实现4、结果截图5、总结1·基本思想吸取两个算法的优点,优缺互补,克服两个算法的缺点,利⽤了遗传算法的快速时间效率,优于蚂蚁算法的时间效率。
并且求解精度效率优于遗传算法。
这样就提⾼了两个算法结合的算法时间效率和求解精度。
2、算法原理这个算法的原理是先利⽤遗传算法的快速性、全局收敛性和随机性求出结果,结果产⽣有关问题的初始信息素分布,遗传算法执⾏完在运⽤蚁群算法,在⼀定初始信息素分布的情况下,充分利⽤蚁群算法并⾏性、正反馈性、求解精度效率⾼的特点。
3、代码实现%mainclear;clc;%%%%%%%%%%%%%%%输⼊参数%%%%%%%%N=50; %%城市的个数M=100; %%种群的个数ITER=500; %%迭代次数%C_old=C;m=2; %%适应值归⼀化淘汰加速指数Pc=0.8; %%交叉概率Pmutation=0.05; %%变异概率%%⽣成城市的坐标pos=randn(N,2);%%⽣成城市之间距离矩阵D=zeros(N,N);for i=1:Nfor j=i+1:Ndis=(pos(i,1)-pos(j,1)).^2+(pos(i,2)-pos(j,2)).^2;D(i,j)=dis^(0.5);D(j,i)=D(i,j);endend%%⽣成初始群体popm=zeros(M,N);for i=1:Mpopm(i,:)=randperm(N);%随机排列,⽐如[2 4 5 6 1 3]end%%随机选择⼀个种群R=popm(1,:);figure(1);scatter(pos(:,1),pos(:,2),'rx');%画出所有城市坐标axis([-3 3 -3 3]);figure(2);plot_route(pos,R); %%画出初始种群对应各城市之间的连线axis([-3 3 -3 3]);%%初始化种群及其适应函数fitness=zeros(M,1);len=zeros(M,1);for i=1:M%计算每个染⾊体对应的总长度len(i,1)=myLength(D,popm(i,:));endmaxlen=max(len);%最⼤回路minlen=min(len);%最⼩回路fitness=fit(len,m,maxlen,minlen);rr=find(len==minlen);%找到最⼩值的下标,赋值为rrR=popm(rr(1,1),:);%提取该染⾊体,赋值为Rfor i=1:Nfprintf('%d ',R(i));%把R顺序打印出来endfprintf('\n');fitness=fitness/sum(fitness);distance_min=zeros(ITER+1,1); %%各次迭代的最⼩的种群的路径总长nn=M;iter=0;while iter<=ITERfprintf('迭代第%d次\n',iter);%%选择操作p=fitness./sum(fitness);q=cumsum(p);%累加for i=1:(M-1)len_1(i,1)=myLength(D,popm(i,:));r=rand;tmp=find(r<=q);popm_sel(i,:)=popm(tmp(1),:);end[fmax,indmax]=max(fitness);%求当代最佳个体popm_sel(M,:)=popm(indmax,:);%%交叉操作nnper=randperm(M);% A=popm_sel(nnper(1),:);% B=popm_sel(nnper(2),:);%%for i=1:M*Pc*0.5A=popm_sel(nnper(i),:);B=popm_sel(nnper(i+1),:);[A,B]=cross(A,B);% popm_sel(nnper(1),:)=A;% popm_sel(nnper(2),:)=B;popm_sel(nnper(i),:)=A;popm_sel(nnper(i+1),:)=B;end%%变异操作for i=1:Mpick=rand;while pick==0pick=rand;endif pick<=Pmutationpopm_sel(i,:)=Mutation(popm_sel(i,:));endend%%求适应度函数NN=size(popm_sel,1);len=zeros(NN,1);for i=1:NNlen(i,1)=myLength(D,popm_sel(i,:));endmaxlen=max(len);minlen=min(len);distance_min(iter+1,1)=minlen;fitness=fit(len,m,maxlen,minlen);rr=find(len==minlen);fprintf('minlen=%d\n',minlen);R=popm_sel(rr(1,1),:);for i=1:Nfprintf('%d ',R(i));endfprintf('\n');popm=[];popm=popm_sel;iter=iter+1;%pause(1);end%end of whilefigure(3)plot_route(pos,R);axis([-3 3 -3 3]);figure(4)plot(distance_min);%交叉操作函数 cross.mfunction [A,B]=cross(A,B)L=length(A);if L<10W=L;elseif ((L/10)-floor(L/10))>=rand&&L>10W=ceil(L/10)+8;elseW=floor(L/10)+8;end%%W为需要交叉的位数p=unidrnd(L-W+1);%随机产⽣⼀个交叉位置%fprintf('p=%d ',p);%交叉位置for i=1:Wx=find(A==B(1,p+i-1));y=find(B==A(1,p+i-1));[A(1,p+i-1),B(1,p+i-1)]=exchange(A(1,p+i-1),B(1,p+i-1));[A(1,x),B(1,y)]=exchange(A(1,x),B(1,y));endend%连点画图函数 plot_route.mfunction plot_route(a,R)scatter(a(:,1),a(:,2),'rx');hold on;plot([a(R(1),1),a(R(length(R)),1)],[a(R(1),2),a(R(length(R)),2)]);hold on;for i=2:length(R)x0=a(R(i-1),1);y0=a(R(i-1),2);x1=a(R(i),1);y1=a(R(i),2);xx=[x0,x1];yy=[y0,y1];plot(xx,yy);hold on;endend%染⾊体的路程代价函数 mylength.mfunction len=myLength(D,p)%p是⼀个排列[N,NN]=size(D);len=D(p(1,N),p(1,1));for i=1:(N-1)len=len+D(p(1,i),p(1,i+1));endend%变异函数 Mutation.mfunction a=Mutation(A)index1=0;index2=0;nnper=randperm(size(A,2));index1=nnper(1);index2=nnper(2);%fprintf('index1=%d ',index1);%fprintf('index2=%d ',index2);temp=0;temp=A(index1);A(index1)=A(index2);A(index2)=temp;a=A;end%适应度函数fit.m,每次迭代都要计算每个染⾊体在本种群内部的优先级别,类似归⼀化参数。
蚁群算法与遗传算法的混合算法蚁群算法(Ant Colony Optimization,ACO)和遗传算法(Genetic Algorithm,GA)都属于启发式算法的范畴,它们分别从不同的角度对问题进行建模和求解。
蚁群算法以模拟蚁群觅食行为为基础,通过信息素和启发式规则指导蚂蚁解空间;而遗传算法通过模拟进化过程,利用交叉和变异运算生成新的个体,并适应性地选择个体进行下一代的繁衍。
两者在解决问题时有各自的局限性,因此将两种算法相结合,形成混合算法,可以克服各自的缺点,实现更有效的求解。
蚁群算法具有较强的全局能力,但其速度较慢,且可能会陷入局部最优解。
而遗传算法能够在过程中较快地收敛到局部最优解,但有可能会陷入局部最优解无法跳出。
因此,将两者结合起来,可以同时利用蚁群算法的全局和遗传算法的局部特性。
混合算法的基本思想是,将蚁群算法作为全局策略,用于生成一组较优的解,然后利用遗传算法在这组解中进行局部优化,以寻找最优解。
整个混合算法的流程如下:1.初始化蚁群相关参数和遗传算法的相关参数,包括蚁群大小、信息素更新速率、遗传算法的种群大小、交叉和变异的概率等;2.使用蚁群算法生成一组初始解,并计算每个解的适应度;3.利用遗传算法从初始解中选择适应度较高的一部分个体,作为种群;4.对种群进行交叉和变异操作,生成下一代个体;5.计算下一代个体的适应度;6.如果满足停止条件(如达到指定迭代次数或找到满意解),则输出结果;否则,返回第3步,继续优化。
在混合算法中,蚁群算法和遗传算法的相互作用可以通过以下几种方式实现:1. 优选策略(Elitism):将蚁群算法生成的一组解合并到遗传算法的种群中,在遗传算法的选择过程中保留一些蚁群算法生成的优秀个体,以避免遗传算法陷入局部最优解。
2.信息素启发式规则:将蚁群算法的信息素启发式规则应用于遗传算法的交叉和变异操作中,以指导交叉和变异过程中的方向,增加遗传算法的全局能力。
第一章绪论1。
1选题的背景和意义受社会性昆虫行为的启发,计算机工作者通过对社会性昆虫的模拟产生了一系列对于传统问题的新的解决方法,这些研究就是群体智能的研究。
群体智能作为一个新兴领域自从20世纪80年代出现以来引起了多个学科领域研究人员的关注,已经成为人工智能以及经济社会生物等交叉学科的热点和前沿领域。
群体智能(Swarm Intelligence)中的群体(Swarm)指的是“一组相互之间可以进行直接通信或者间接通信(通过改变局部环境)的主体,这组主体能够合作进行分布问题求解,群体智能指的是无智能或者仅具有相对简单智能的主体通过合作表现出更高智能行为的特性;其中的个体并非绝对的无智能或只具有简单智能,而是与群体表现出来的智能相对而言的。
当一群个体相互合作或竞争时,一些以前不存在于任何单独个体的智慧和行为会很快出现。
群体智能的提出由来已久,人们很早以前就发现,在自然界中,有的生物依靠其个体的智慧得以生存,有的生物却能依靠群体的力量获得优势。
在这些群体生物中,单个个体没有很高的智能,但个体之间可以分工合作、相互协调,完成复杂的任务,表现出比较高的智能。
它们具有高度的自组织、自适应性,并表现出非线性、涌现的系统特征。
群体中相互合作的个体是分布式的,这样更能够适应当前网络环境下的工作状态;没有中心的控制与数据,这样的系统更具有鲁棒性,不会由于某一个或者某几个个体的故障而影响整个问题的求解。
可以不通过个体之间直接通信而是通过非直接通信进行合作,这样的系统具有更好的可扩充性。
由于系统中个体的增加而增加的系统的通信开销在这里十分小.系统中每个个体的能力十分简单,这样每个个体的执行时间比较短,并且实现也比较简单,具有简单性。
因为具有这些优点,虽说群集智能的研究还处于初级阶段,并且存在许多困难,但是可以预言群集智能的研究代表了以后计算机研究发展的一个重要方向。
随着计算机技术的飞速发展,智能计算方法的应用领域也越来越广泛,当前存在的一些群体智能算法有人工神经网络,遗传算法,模拟退火算法,群集智能,蚁群算法,粒子群算等等。