遗传算法与蚁群算法简介
- 格式:ppt
- 大小:739.00 KB
- 文档页数:45
简单蚁群算法的实现-遗传算法-瞎整技术简单蚁群算法的实现 很久没有写博客了,⼀直都在忙着⽹站和论⽂的事,最近看了⼏篇蚁群算法的论⽂挺有意思的,总结了⼀下写成⼀篇论⽂附上重要部分的代码,顺便也完成了遗传算法的课程报告,有兴趣的朋友可以看看。
⼀引⾔蚁群算法(ant colony optimization,ACO),⼜称蚂蚁算法,是⼀种⽤来在图中寻找优化路径的机率型技术。
它由Marco Dorigo于1992年在他的博⼠论⽂中引⼊,其灵感来源于蚂蚁在寻找⾷物过程中发现路径的⾏为。
蚁群算法是⼀种模拟进化算法。
初步的研究表明该算法具有许多优良的性质。
针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进⾏了⽐较,数值仿真结果表明,蚁群算法具有⼀种新的模拟进化优化⽅法的有效性和应⽤价值。
蚁群算法是⼀种求解组合最优化问题的新型通⽤启发式⽅法,该⽅法具有正反馈、分布式计算和富于建设性的贪婪启发式搜索的特点。
正因为蚁群算法有这些优点,很多研究者都在致⼒研究和改过它,本⽂的⽬的正是为了介绍蚁群算法,学习如何编写蚁群算法。
⼆蚁群算法的介绍昆⾍世界中,蚂蚁的组成是⼀种群居的世袭⼤家庭,我们称之为蚁群。
蚂蚁分为世袭制的蚁王(后)和⼯蚁两种,它们具有⾼度组织的社会性,彼此沟通不仅可以借助触觉和视觉的联系,在⼤规模的协调⾏动中还可以借助外激素(有些书称信息素)之类的信息介质。
⾸先我们要理解蚂蚁是如何觅⾷的,蚂蚁平时在巢⽳附近作⽆规则⾏⾛,⼀量发现⾷物并不⽴即进⾷⽽是将之搬回蚁⽳与其它蚂蚁分享,在⾷物⼩时则独⾃搬回蚁⽳,否则就回蚁⽳搬兵,⼀路上会留下外激素,⾷物越⼤外激素的浓度就越⼤,越能吸引其它的蚂蚁过去⼀起搬去⾷物,这样最终就能将⾷物全部搬回蚁⽳。
这个过程⽤程序实现看似⾮常复杂,要编写⼀个“智能”的蚂蚁也看似不太可能,事实上每个蚂蚁只做了⾮常简单的⼯作:检查某个范围内有⽆⾷物,并逐渐向外激素浓的⽅向运动。
遗传算法与蚁群算法结合遗传算法1、基本思想2、算法原理3、代码实现4、结果截图5、总结1·基本思想吸取两个算法的优点,优缺互补,克服两个算法的缺点,利⽤了遗传算法的快速时间效率,优于蚂蚁算法的时间效率。
并且求解精度效率优于遗传算法。
这样就提⾼了两个算法结合的算法时间效率和求解精度。
2、算法原理这个算法的原理是先利⽤遗传算法的快速性、全局收敛性和随机性求出结果,结果产⽣有关问题的初始信息素分布,遗传算法执⾏完在运⽤蚁群算法,在⼀定初始信息素分布的情况下,充分利⽤蚁群算法并⾏性、正反馈性、求解精度效率⾼的特点。
3、代码实现%mainclear;clc;%%%%%%%%%%%%%%%输⼊参数%%%%%%%%N=50; %%城市的个数M=100; %%种群的个数ITER=500; %%迭代次数%C_old=C;m=2; %%适应值归⼀化淘汰加速指数Pc=0.8; %%交叉概率Pmutation=0.05; %%变异概率%%⽣成城市的坐标pos=randn(N,2);%%⽣成城市之间距离矩阵D=zeros(N,N);for i=1:Nfor j=i+1:Ndis=(pos(i,1)-pos(j,1)).^2+(pos(i,2)-pos(j,2)).^2;D(i,j)=dis^(0.5);D(j,i)=D(i,j);endend%%⽣成初始群体popm=zeros(M,N);for i=1:Mpopm(i,:)=randperm(N);%随机排列,⽐如[2 4 5 6 1 3]end%%随机选择⼀个种群R=popm(1,:);figure(1);scatter(pos(:,1),pos(:,2),'rx');%画出所有城市坐标axis([-3 3 -3 3]);figure(2);plot_route(pos,R); %%画出初始种群对应各城市之间的连线axis([-3 3 -3 3]);%%初始化种群及其适应函数fitness=zeros(M,1);len=zeros(M,1);for i=1:M%计算每个染⾊体对应的总长度len(i,1)=myLength(D,popm(i,:));endmaxlen=max(len);%最⼤回路minlen=min(len);%最⼩回路fitness=fit(len,m,maxlen,minlen);rr=find(len==minlen);%找到最⼩值的下标,赋值为rrR=popm(rr(1,1),:);%提取该染⾊体,赋值为Rfor i=1:Nfprintf('%d ',R(i));%把R顺序打印出来endfprintf('\n');fitness=fitness/sum(fitness);distance_min=zeros(ITER+1,1); %%各次迭代的最⼩的种群的路径总长nn=M;iter=0;while iter<=ITERfprintf('迭代第%d次\n',iter);%%选择操作p=fitness./sum(fitness);q=cumsum(p);%累加for i=1:(M-1)len_1(i,1)=myLength(D,popm(i,:));r=rand;tmp=find(r<=q);popm_sel(i,:)=popm(tmp(1),:);end[fmax,indmax]=max(fitness);%求当代最佳个体popm_sel(M,:)=popm(indmax,:);%%交叉操作nnper=randperm(M);% A=popm_sel(nnper(1),:);% B=popm_sel(nnper(2),:);%%for i=1:M*Pc*0.5A=popm_sel(nnper(i),:);B=popm_sel(nnper(i+1),:);[A,B]=cross(A,B);% popm_sel(nnper(1),:)=A;% popm_sel(nnper(2),:)=B;popm_sel(nnper(i),:)=A;popm_sel(nnper(i+1),:)=B;end%%变异操作for i=1:Mpick=rand;while pick==0pick=rand;endif pick<=Pmutationpopm_sel(i,:)=Mutation(popm_sel(i,:));endend%%求适应度函数NN=size(popm_sel,1);len=zeros(NN,1);for i=1:NNlen(i,1)=myLength(D,popm_sel(i,:));endmaxlen=max(len);minlen=min(len);distance_min(iter+1,1)=minlen;fitness=fit(len,m,maxlen,minlen);rr=find(len==minlen);fprintf('minlen=%d\n',minlen);R=popm_sel(rr(1,1),:);for i=1:Nfprintf('%d ',R(i));endfprintf('\n');popm=[];popm=popm_sel;iter=iter+1;%pause(1);end%end of whilefigure(3)plot_route(pos,R);axis([-3 3 -3 3]);figure(4)plot(distance_min);%交叉操作函数 cross.mfunction [A,B]=cross(A,B)L=length(A);if L<10W=L;elseif ((L/10)-floor(L/10))>=rand&&L>10W=ceil(L/10)+8;elseW=floor(L/10)+8;end%%W为需要交叉的位数p=unidrnd(L-W+1);%随机产⽣⼀个交叉位置%fprintf('p=%d ',p);%交叉位置for i=1:Wx=find(A==B(1,p+i-1));y=find(B==A(1,p+i-1));[A(1,p+i-1),B(1,p+i-1)]=exchange(A(1,p+i-1),B(1,p+i-1));[A(1,x),B(1,y)]=exchange(A(1,x),B(1,y));endend%连点画图函数 plot_route.mfunction plot_route(a,R)scatter(a(:,1),a(:,2),'rx');hold on;plot([a(R(1),1),a(R(length(R)),1)],[a(R(1),2),a(R(length(R)),2)]);hold on;for i=2:length(R)x0=a(R(i-1),1);y0=a(R(i-1),2);x1=a(R(i),1);y1=a(R(i),2);xx=[x0,x1];yy=[y0,y1];plot(xx,yy);hold on;endend%染⾊体的路程代价函数 mylength.mfunction len=myLength(D,p)%p是⼀个排列[N,NN]=size(D);len=D(p(1,N),p(1,1));for i=1:(N-1)len=len+D(p(1,i),p(1,i+1));endend%变异函数 Mutation.mfunction a=Mutation(A)index1=0;index2=0;nnper=randperm(size(A,2));index1=nnper(1);index2=nnper(2);%fprintf('index1=%d ',index1);%fprintf('index2=%d ',index2);temp=0;temp=A(index1);A(index1)=A(index2);A(index2)=temp;a=A;end%适应度函数fit.m,每次迭代都要计算每个染⾊体在本种群内部的优先级别,类似归⼀化参数。
简单对⽐遗传算法与蚁群算法求解旅⾏商问题简单对⽐遗传算法与蚁群算法求解旅⾏商问题简单对⽐遗传算法与蚁群算法求解旅⾏商问题1、旅⾏商1.1 旅⾏商问题简介旅⾏商问题(Traveling Saleman Problem)⼜称作旅⾏推销员问题、货郎担问题等,简称为TSP问题,是最基本的路线问题,该问题是在寻求单⼀旅⾏者由起点出发,通过所有给定的需求点之后,最后再回到原点的最⼩路径成本。
最早的旅⾏商问题的数学规划是由Dantzig(1959)等⼈提出,规则虽然简单,但在地点数⽬增多后求解却极为复杂。
TSP问题最简单的求解⽅法是枚举法。
它的解是多维的、多局部极值的、趋于⽆穷⼤的复杂解的空间,搜索空间是n个点的所有排列的集合,⼤⼩为(n-1)!。
有研究者形象地把解空间⽐喻为⼀个⽆穷⼤的丘陵地带,各⼭峰或⼭⾕的⾼度即是问题的极值。
求解TSP,则是在此不能穷尽的丘陵地带中攀登以达到⼭顶或⾕底的过程。
1.2 求解TSP⽅法简介旅⾏推销员的问题属于NP-Complete的问题,所以旅⾏商问题⼤多集中在启发式解法。
Bodin(1983)等⼈将旅⾏推销员问题的启发式解法分成三种:1.2.1 途程建构法(Tour Construction Procedures)从距离矩阵中产⽣⼀个近似最佳解的途径,有以下⼏种解法:(1)最近邻点法(Nearest Neighbor Procedure):⼀开始以寻找离场站最近的需求点为起始路线的第⼀个顾客,此后寻找离最后加⼊路线的顾客最近的需求点,直到最后。
(2)节省法(Clark and Wright Saving):以服务每⼀个节点为起始解,根据三⾓不等式两边之和⼤于第三边之性质,其起始状况为每服务⼀个顾客后便回场站,⽽后计算路线间合并节省量,将节省量以降序排序⽽依次合并路线,直到最后。
(3)插⼊法(Insertion procedures):如最近插⼊法、最省插⼊法、随意插⼊法、最远插⼊法、最⼤⾓度插⼊法等。
⼈⼯智能结课作业-遗传算法粒⼦群寻优蚁群算法解决TSP问题代码已经发布到了github:如果帮到你了,希望给个star⿎励⼀下1 遗传算法1.1算法介绍遗传算法是模仿⾃然界⽣物进化机制发展起来的随机全局搜索和优化⽅法,它借鉴了达尔⽂的进化论和孟德尔的遗传学说。
其本质是⼀种⾼效、并⾏、全局搜索的⽅法,它能在搜索过程中⾃动获取和积累有关搜索空间的知识,并⾃适应的控制搜索过程以求得最优解。
遗传算法操作使⽤适者⽣存的原则,在潜在的解决⽅案种群中逐次产⽣⼀个近似最优解的⽅案,在遗传算法的每⼀代中,根据个体在问题域中的适应度值和从⾃然遗传学中借鉴来的再造⽅法进⾏个体选择,产⽣⼀个新的近似解。
这个过程导致种群中个体的进化,得到的新个体⽐原来个体更能适应环境,就像⾃然界中的改造⼀样。
遗传算法具体步骤:(1)初始化:设置进化代数计数器t=0、设置最⼤进化代数T、交叉概率、变异概率、随机⽣成M个个体作为初始种群P(2)个体评价:计算种群P中各个个体的适应度(3)选择运算:将选择算⼦作⽤于群体。
以个体适应度为基础,选择最优个体直接遗传到下⼀代或通过配对交叉产⽣新的个体再遗传到下⼀代(4)交叉运算:在交叉概率的控制下,对群体中的个体两两进⾏交叉(5)变异运算:在变异概率的控制下,对群体中的个体进⾏变异,即对某⼀个体的基因进⾏随机调整(6)经过选择、交叉、变异运算之后得到下⼀代群体P1。
重复以上(1)-(6),直到遗传代数为 T,以进化过程中所得到的具有最优适应度个体作为最优解输出,终⽌计算。
旅⾏推销员问题(Travelling Salesman Problem, TSP):有n个城市,⼀个推销员要从其中某⼀个城市出发,唯⼀⾛遍所有的城市,再回到他出发的城市,求最短的路线。
应⽤遗传算法求解TSP问题时需要进⾏⼀些约定,基因是⼀组城市序列,适应度是按照这个基因的城市顺序的距离和分之⼀。
1.2实验代码import randomimport mathimport matplotlib.pyplot as plt#读取数据f=open("test.txt")data=f.readlines()#将cities初始化为字典,防⽌下⾯被当成列表cities={}for line in data:#原始数据以\n换⾏,将其替换掉line=line.replace("\n","")#最后⼀⾏以EOF为标志,如果读到就证明读完了,退出循环if(line=="EOF"):break#空格分割城市编号和城市的坐标city=line.split("")map(int,city)#将城市数据添加到cities中cities[eval(city[0])]=[eval(city[1]),eval(city[2])]#计算适应度,也就是距离分之⼀,这⾥⽤伪欧⽒距离def calcfit(gene):sum=0#最后要回到初始城市所以从-1,也就是最后⼀个城市绕⼀圈到最后⼀个城市for i in range(-1,len(gene)-1):nowcity=gene[i]nextcity=gene[i+1]nowloc=cities[nowcity]nextloc=cities[nextcity]sum+=math.sqrt(((nowloc[0]-nextloc[0])**2+(nowloc[1]-nextloc[1])**2)/10)return 1/sum#每个个体的类,⽅便根据基因计算适应度class Person:def__init__(self,gene):self.gene=geneself.fit=calcfit(gene)class Group:def__init__(self):self.GroupSize=100 #种群规模self.GeneSize=48 #基因数量,也就是城市数量self.initGroup()self.upDate()#初始化种群,随机⽣成若⼲个体def initGroup(self):self.group=[]i=0while(i<self.GroupSize):i+=1#gene如果在for以外⽣成只会shuffle⼀次gene=[i+1 for i in range(self.GeneSize)]random.shuffle(gene)tmpPerson=Person(gene)self.group.append(tmpPerson)#获取种群中适应度最⾼的个体def getBest(self):bestFit=self.group[0].fitbest=self.group[0]for person in self.group:if(person.fit>bestFit):bestFit=person.fitbest=personreturn best#计算种群中所有个体的平均距离def getAvg(self):sum=0for p in self.group:sum+=1/p.fitreturn sum/len(self.group)#根据适应度,使⽤轮盘赌返回⼀个个体,⽤于遗传交叉def getOne(self):#section的简称,区间sec=[0]sumsec=0for person in self.group:sumsec+=person.fitsec.append(sumsec)p=random.random()*sumsecfor i in range(len(sec)):if(p>sec[i] and p<sec[i+1]):#这⾥注意区间是⽐个体多⼀个0的return self.group[i]#更新种群相关信息def upDate(self):self.best=self.getBest()#遗传算法的类,定义了遗传、交叉、变异等操作class GA:def__init__(self):self.group=Group()self.pCross=0.35 #交叉率self.pChange=0.1 #变异率self.Gen=1 #代数#变异操作def change(self,gene):#把列表随机的⼀段取出然后再随机插⼊某个位置#length是取出基因的长度,postake是取出的位置,posins是插⼊的位置geneLenght=len(gene)index1 = random.randint(0, geneLenght - 1)index2 = random.randint(0, geneLenght - 1)newGene = gene[:] # 产⽣⼀个新的基因序列,以免变异的时候影响⽗种群 newGene[index1], newGene[index2] = newGene[index2], newGene[index1] return newGene#交叉操作def cross(self,p1,p2):geneLenght=len(p1.gene)index1 = random.randint(0, geneLenght - 1)index2 = random.randint(index1, geneLenght - 1)tempGene = p2.gene[index1:index2] # 交叉的基因⽚段newGene = []p1len = 0for g in p1.gene:if p1len == index1:newGene.extend(tempGene) # 插⼊基因⽚段p1len += 1if g not in tempGene:newGene.append(g)p1len += 1return newGene#获取下⼀代def nextGen(self):self.Gen+=1#nextGen代表下⼀代的所有基因nextGen=[]#将最优秀的基因直接传递给下⼀代nextGen.append(self.group.getBest().gene[:])while(len(nextGen)<self.group.GroupSize):pChange=random.random()pCross=random.random()p1=self.group.getOne()if(pCross<self.pCross):p2=self.group.getOne()newGene=self.cross(p1,p2)else:newGene=p1.gene[:]if(pChange<self.pChange):newGene=self.change(newGene)nextGen.append(newGene)self.group.group=[]for gene in nextGen:self.group.group.append(Person(gene))self.group.upDate()#打印当前种群的最优个体信息def showBest(self):print("第{}代\t当前最优{}\t当前平均{}\t".format(self.Gen,1/self.group.getBest().fit,self.group.getAvg())) #n代表代数,遗传算法的⼊⼝def run(self,n):Gen=[] #代数dist=[] #每⼀代的最优距离avgDist=[] #每⼀代的平均距离#上⾯三个列表是为了画图i=1while(i<n):self.nextGen()self.showBest()i+=1Gen.append(i)dist.append(1/self.group.getBest().fit)avgDist.append(self.group.getAvg())#绘制进化曲线plt.plot(Gen,dist,'-r')plt.plot(Gen,avgDist,'-b')plt.show()ga=GA()ga.run(3000)print("进⾏3000代后最优解:",1/ga.group.getBest().fit)1.3实验结果下图是进⾏⼀次实验的结果截图,求出的最优解是11271为避免实验的偶然性,进⾏10次重复实验,并求平均值,结果如下。