基于遗传蚁群混合算法的孔群加工路径优化
- 格式:pdf
- 大小:286.02 KB
- 文档页数:4
《基于遗传—蚁群融合算法的聚类算法研究》篇一基于遗传-蚁群融合算法的聚类算法研究一、引言随着大数据时代的到来,聚类算法在数据处理和模式识别领域的重要性日益凸显。
传统的聚类算法如K-means、层次聚类等在处理复杂数据时,往往面临着诸如收敛速度慢、聚类效果不理想等问题。
近年来,多种优化聚类算法应运而生,其中遗传算法和蚁群算法以其优秀的全局搜索能力和局部优化能力,被广泛应用于各种优化问题中。
本文提出了一种基于遗传-蚁群融合算法的聚类算法,旨在解决传统聚类算法在处理复杂数据时所面临的问题。
二、遗传算法与蚁群算法概述遗传算法是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传学机制进行搜索和优化。
其优点在于能够搜索到全局最优解,但也可能陷入局部最优解。
蚁群算法则是一种模拟蚂蚁觅食行为的优化算法,通过模拟蚂蚁的信息素传递过程进行寻优。
其优点在于能够处理离散优化问题,且具有较强的鲁棒性。
三、基于遗传-蚁群融合算法的聚类算法设计本文提出的基于遗传-蚁群融合算法的聚类算法,结合了遗传算法的全局搜索能力和蚁群算法的局部优化能力。
算法流程如下:1. 初始化:随机生成初始种群,每个个体表示一种聚类方案。
2. 遗传操作:对种群进行选择、交叉和变异操作,生成新一代种群。
在选择操作中,根据个体适应度选择优秀个体;在交叉操作中,通过交换个体部分信息生成新个体;在变异操作中,随机改变个体某些基因的值。
3. 蚁群优化:将经过遗传操作后的种群作为蚁群算法的输入,通过模拟蚂蚁的信息素传递过程,对聚类方案进行局部优化。
4. 评估与选择:根据聚类效果评估标准,如轮廓系数、DB 指数等,对优化后的聚类方案进行评价,并选择优秀方案进入下一代。
5. 迭代终止条件:设定最大迭代次数或聚类效果改进阈值作为迭代终止条件。
当满足终止条件时,输出当前最优聚类方案。
四、实验与分析为了验证基于遗传-蚁群融合算法的聚类算法的有效性,本文进行了多组实验。
实验数据包括人工合成数据和真实世界数据集,如UCI机器学习库中的数据集。
基于蚁群算法的工艺路线生成及优化
刘伟;王太勇;周明;饶俊
【期刊名称】《计算机集成制造系统》
【年(卷),期】2010(16)7
【摘要】针对计算机辅助工艺规划中的工艺路线的决策问题,提出了一种基于蚁群算法的工艺路线生成及优化算法.该算法将被加工零件划分为若干特征元,并由各个特征元的加工链得到该零件的加工元;根据加工元的属性,用加权海明距离表示加工元之间的相似度;根据加工元之间的约束条件,确定其优先加工关系并得到各自的前趋加工元;对基本蚁群算法进行改进,在禁忌准则和约束条件的限制下对解空间进行搜索,从而得到优化的零件加工工艺路线.通过实例验证了该算法的可行性和有效性.【总页数】5页(P1378-1382)
【作者】刘伟;王太勇;周明;饶俊
【作者单位】天津大学天津市先进制造技术与装备重点实验室,天津,300072;天津大学天津市先进制造技术与装备重点实验室,天津,300072;天津大学天津市先进制造技术与装备重点实验室,天津,300072;天津大学天津市先进制造技术与装备重点实验室,天津,300072
【正文语种】中文
【中图分类】TP162
【相关文献】
1.基于蚁群算法的FMS工艺路线的优化配置 [J], 成勇;韩江;夏链;姜晓林
2.基于蚁群算法的工艺路线优化决策 [J], 国蓉;于高耀;孟详众;张文培
3.基于改进蚁群算法的FMS工艺路线优化配置 [J], 白明;李建勇
4.基于细菌觅食和蚁群算法的工艺路线优化 [J], 成彬;景冰雪
5.基于自适应蚁群算法的工艺路线优化 [J], 常智勇;杨建新;赵杰;卫海峰
因版权原因,仅展示原文概要,查看原文内容请购买。
基于遗传算法的混合蚁群算法
肖宏峰;谭冠政
【期刊名称】《计算机工程与应用》
【年(卷),期】2008(044)016
【摘要】提出了一种新的求连续空间最优值的蚁群算法.结合遗传算法和蚁群算法各自的优点以及两种算法融合基础,提出了遗传算法融入到蚁群算法融合中的两种新策略,第一种策略是先利用遗传算法具有比较强的全局搜索能力,在大范围内寻找一组解,然后以此为基础,用蚁群算法快速寻找最优解 X*best另一种策略是利用遗传算法交叉操作产生蚁群算法中的新旅行路径,以此提高蚁群算法的全局搜索能力.用上述策略构造两个基于遗传算法的混合遗传算法.用测试函数Rosenbrock和测试函数Shubert验证了混合蚁群算法的正确性.
【总页数】5页(P42-45,134)
【作者】肖宏峰;谭冠政
【作者单位】湖南师范大学,计算机教学部,长沙,410081;中南大学,信息科学与工程学院,机器人研究所,长沙,410083;中南大学,信息科学与工程学院,机器人研究所,长沙,410083
【正文语种】中文
【中图分类】TP18
【相关文献】
1.融入遗传算法的混合蚁群算法 [J], 刘立东;蔡淮
2.混合遗传算法和蚁群算法在HP模型中的应用 [J], 李晚霞;莫忠息;曾涛
3.一种基于遗传算法与蚁群算法混合算法的r无线传感器网络定位算法 [J], 李杰;李振波;陈佳品
4.基于蚁群算法和遗传算法RGV动态调度研究 [J], 周自力;吴福珍;张心怡
5.基于TSP问题的遗传算法和蚁群算法研究 [J], 李金;付春龍
因版权原因,仅展示原文概要,查看原文内容请购买。
一种求解TSP问题的蚁群遗传混合算法摘要:提出了一种蚁群算法与遗传算法相混合的算法。
将遗传算法加入到蚁群算法的每一次迭代的过程中,利用遗传算法全局快速收敛的特点,来加快蚁群算法的收敛速度。
并且遗传算法中的变异机制,帮助提高了蚁群算法取不到局部最优解的能力。
不仅阐述了新算法的原理,而且以TSP问题的求解为例进行了相关的实验,实验结果表明新算法即蚁群遗传混合算法(ACGA)在求解时间和求解质量上都取得了很好的效果。
关键词:蚁群算法;遗传算法;蚁群遗传混合算法;TSP问题引言TSP由美国RAND公司于1948年引入,该公司的声誉以及线性规划这一新方法的出现使得TSP成为一个知名且流行的问题,最早的描述是1759年欧拉研究的骑士周游问题,即对于国际象棋棋盘中的64个方格,走访64个方格一次且仅一次,并且最终返回到起始点。
TSP(Travelling Salesman Problem))问题,即旅行商问题是领域中著名问题之一,是一个典型的组合优化问题,并且是一个NP难问题,其可能的路径数目与城市数目 n是成指数型增长的,所以一般很难精确地求出其最优解。
字面的的理解是:有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路经的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。
路径的选择目标是要求得到的路径路程为所有路径之中的最小值。
TSP 问题可以细分为对称和非对称距离两大类问题。
本文所指的对称TSP问题是给定一组N个城市和它们两两之间的直达距离,寻求一条闭合的旅程,使得每个城市刚好经过一次且总的旅行距离最短。
用图论[2]的术语说,就是在一个赋权完全图中,找出一个有最小权的Hamilton圈C,使得该回路C的总权值最小。
目前,对TSP问题的研究主要是通过一些启发式算法,如遗传算法、禁忌搜索算法、模拟退火算法、蚁群算法等等,且都取得了一定的效果,本文主要讲解用遗传算法和蚁群算法的混合算法来求解TSP问题。
《基于遗传—蚁群融合算法的聚类算法研究》篇一基于遗传-蚁群融合算法的聚类算法研究一、引言随着大数据时代的到来,聚类算法在数据分析和处理中扮演着越来越重要的角色。
遗传算法和蚁群算法作为两种经典的优化算法,各自在聚类问题中表现出良好的性能。
然而,传统的聚类算法往往在处理复杂数据时存在局限性。
因此,本文提出了一种基于遗传-蚁群融合算法的聚类算法,旨在提高聚类的准确性和效率。
二、相关研究概述遗传算法是一种模拟自然进化过程的优化算法,具有较强的全局搜索能力。
蚁群算法则是一种模拟蚂蚁觅食行为的优化算法,具有较强的局部搜索能力和自适应性。
这两种算法在聚类问题中均有所应用,但各自存在局限性。
遗传-蚁群融合算法则是将这两种算法的优势结合起来,以提高聚类的效果。
三、遗传-蚁群融合算法的聚类算法设计1. 算法框架本文提出的基于遗传-蚁群融合算法的聚类算法主要包括三个步骤:初始化、遗传操作和蚁群操作。
在初始化阶段,算法随机生成初始聚类中心;在遗传操作阶段,通过遗传算法优化聚类中心;在蚁群操作阶段,利用蚁群算法优化聚类结果。
2. 遗传操作遗传操作包括选择、交叉和变异三个步骤。
在选择阶段,根据适应度函数选择优秀的个体;在交叉阶段,对选中的个体进行交叉操作,生成新的个体;在变异阶段,对个体进行随机变异,增加种群的多样性。
通过遗传操作,算法可以全局地搜索最优的聚类中心。
3. 蚁群操作蚁群操作主要利用蚁群算法的局部搜索能力和自适应性。
在蚁群操作阶段,每个蚂蚁根据当前的信息素和启发式信息选择下一个聚类中心,并通过信息素的更新机制逐步优化聚类结果。
蚁群操作可以在局部范围内搜索更优的聚类结果。
四、实验与分析为了验证本文提出的基于遗传-蚁群融合算法的聚类算法的有效性,我们进行了多组实验。
实验结果表明,该算法在处理复杂数据时具有较高的准确性和效率。
与传统的聚类算法相比,该算法在聚类效果和稳定性方面均有所提高。
此外,我们还对算法的参数进行了敏感性分析,以确定最佳参数组合。
利用蚁群算法求解机械加工路径规划问题
张鹏程;王文成;宫翔;贾新立
【期刊名称】《河北水利电力学院学报》
【年(卷),期】2022(32)3
【摘要】针对机械加工中孔群加工刀具路径规划问题,采用蚁群算法,通过多目标搜索和并行计算,快速从众多可行加工路线中找到一条最短路径作为刀具运动的轨迹,该路径可以最大限度的节省加工过程中的空行程时间,提高整体加工效率。
采用控制变量法和正交试验法,结合算例,分析研究算法实现过程中需优化取值的蚂蚁的数量、信息素重要程度因子、启发函数重要程度因子、信息素挥发因子、总信息量等5个重要参数对于最优解质量的影响,探究其作用规律,为进一步提高算法优化结果和改进算法提供参考依据。
【总页数】6页(P70-75)
【作者】张鹏程;王文成;宫翔;贾新立
【作者单位】河北省工业机械手控制与可靠性技术创新中心;沧州市工业机械手控制与可靠性技术创新中心;河北水利电力学院机械工程系;河北水利电力学院电力工程系
【正文语种】中文
【中图分类】TH16;TG659;TP18
【相关文献】
1.利用蚁群算法求解机器人路径规划问题
2.优化多步长蚁群算法求解机器人路径规划问题
3.基于蚁群算法求解VRPTW路径规划问题研究
4.改进的蚁群算法求解居家养老服务调度与路径规划问题
5.变异扩散蚁群算法求解战区潜艇三维路径规划问题
因版权原因,仅展示原文概要,查看原文内容请购买。
Solving Path Planning Problem by an ACO-PSOHybrid AlgorithmChunxue Shi1 Yingyong Bu1 Ziguang Li2 Jun Tan11School of Mechanical and Electronical Engineering, Center South University, Changsha 410083, China 2School of Mechanical and Electronical Engineering, Changsha Science & Technology University, Changsha410076, ChinaAbstractAn ACO-PSO Hybrid Algorithm Solving Path Planning Problem based on Swarm Intelligence (SI) is proposed. The problem first is described and some corresponding definitions are presented. Ant colony optimization (ACO) is used to establish the corresponding solution, and some material algorithm steps are set out. Particle swarm optimization (PSO) is applied to optimize the parameters in ACO, and parameters can be selected self- adaptively. Through the steps above, algorithm performance can be greatly enhanced and the reliability of parameters selecting can be guaranteed. At last simulation experiments are carried out, and the results prove the veracity of the algorithm. Keywords: Ant colony optimization (ACO), Particle swarm optimization (PSO), Hybrid algorithm, Robot path planning problem1.IntroductionThe concept of Swarm Intelligence (SI) [1] was first proposed by the Beni, Hackwood and Wang in Self-organization of Sensors. Here, Swarm can be portrayed as a set of some interactive neighboring individuals, in which a single individual capacity is limited, but multi- individuals as Swarm have the extremely strong survivability. That may regard as Swarm Intelligence. Ant colony optimization (ACO) [2]-[4] is a intelligent optimization algorithm which is subject to the inspiration of ants’ behavior of seeking for food, and is proposed by Italian scholar Dorigo. Moving ants can release a kind of pheromone in the passing path, and between the two locations which ants have passed by, more shorter path concentrate more stronger pheromone. Because the shorter path has higher probability to be selected, the pheromone concentration has been constantly strengthened. Other ants can sense pheromone concentration, and thus guide their selection of path: The path with high pheromone concentration has greater probability to be chosen. ACO is widely applied in Traveling Salesman Problem (TSP) [5], Network Routing Problem(NRP) [6], Job-shop Scheduling Problem(JSP) [7], Quadratic Assignment Problem(QAP) [8], Graph Coloring Problem(GCP) [9], Vehicle Routing Problem(VRP) [10], and gains satisfying effect. However, the algorithm is a typical probability algorithm, the algorithm parameters are usually given by experiments, that makes the performance of the algorithm relate to individual experience, difficult achieve optimization. Particle Swarm Optimization (PSO) [11] is proposed most early by psychology researcher Dr. Kennedy and the computation intelligence Researcher Dr. Eberhart in 1995 and is originated from the simulation flock movement. The system is initialize to be a series of stochastic solutions, and search optimal value through iterations. particles in the solution space carry out search by following the optimal particle. PSO is quite fast speed to approach optimal solutions, so that it can optimize the parameter of ACO [12]. Therefore ACO and PSO can combine to a Hybrid Algorithm to solve the robot path planning problem.2.Problem descriptionsThe robot path planning problem is that in two- dimensional limited space with obstacles, finding a integrity path which can make the robot move from the start point S to the goal point G avoiding collisions.Fig.1: Sketch map of Environment model.The figure above is the sketch map of environment model. The method of environment modeling is Bitmap method and a number of pixels are in uniform distribution. In order to standardize the description of the problem, now the following definitions are listed:Definition 1 It is supposed that PS is two-dimensional limited space for robots, and p i is one of the pixels in the space, and P is the set of all pixels, thus p ∀, has corresponding coordinates in 0Σ,such as: (),i i i p x y ; {}12,,,k M S s s s s =……, is the set of all of the obstacles, and k s S ∈ is one of the obstacles in S , then M is amount of the obstacles; {}12,,,k N O o o o o =……,is the set of pixels which are covered by obstacles, and k o O ∈ is one of the pixels in O , then N is amount of the covered pixels. Definition 2 The line segment between two pixels (i j p p P ∈、,i j ≠) become one edge in PS , which is called ij L , and,i j d p p , as the length of ij L , is(),i j d p p = (1) Definition 3()ij t τ is the remained pheromone amount on ijL at t time; {}1,2,,,agroup k m =…… is the set of all ants in ant group agroup, and k agroup ∈ is one of the ant in agroup , and m is the amount of ants. Definition 4 If ,p P pO ∀∈∉, p is called “transit pixel”, and the set of p is called “transit space” W ; The pixels in O is covered by obstacles, where ants can’t pass, so that O (){},,i i h Bp p p P d p p =∈ is called neighbor space of ant k at i Fig.1);()()(){}0,1,,k tabu p p p t =… is the set of pixels where ant k has passed from o time to t time, and k tabu is called taboo list as it can’t be passed twice;{},,i i k Wp p p Bp p tabu p O =∈∉∉, is called“transit space” for ant k at i p , in the other words, when ant k comes to i p , the pixels in this set can bechosen next step.Algorithm process is that m ants in agroup was seton start point S , then each ant chose next pixel whichcould be passed by the strategy of nearest neighborchoice, and avoided obstacles, at last, moved close toaim point G .3. The solution process by ACO There are three core steps of ACO: walk rules, localupdating and overall updating. Focus on these threesteps, material algorithm is described as follows:Step 1:Initialization: The start point S was addedto ()1,2,,k tabu k m =…, and m ants were placedon S ; With setting ()00ij ττ=(0τ is a constant),0was set to the iteration counter(NC ) for seeking food, and the iteration maximum was Ncmax.Step 2:Walk rules: Each ant seek next pixel by the following rules, then walked between two station points:argmax[()()]ij j j t t p Xαβτη⎧⎪=⎨⎪⎩ 0()if q q else ≤ (2) ()()()()()r iij j k ijij j p Wp t t p t t t αβαβτητη∈=∑ (3) As to the two formulas above ,both have the same condition -j i p Wp ∈.In the two formulas :()(,)j j Et d p G η=(4)X is a stochastic variable, which correspond with acertain pixel; q is a stochastic numeral from 0 to 1; 0qis a critical value set through initialization; ()j t η isa elicitation function rest with formula (6); E αβ、、respectively are right constant; ()k ijp t represent theprobability for ant k passing from i p to j p at t time.k ∀ at current pixel i p , moved to the next pixel by principle of nearest neighbor choice. Step 3: Local updating: After each ant had passed by an edge, pheromone updated according to formula (5). 11(1)(1)()kij ij ij t t τρτρτ+=−+Δ (5) 10u k e ij Q d τ⎧⎪⎪Δ=⎨⎪⎪⎩∑:ij if L has been passed by ant k else In the formula above, 1Q is a constant; 1ρ islocal pheromone volatilization coefficient; e d is thelength of the edge ant k has passed by; u is the amountof edges which ant k has passed by in same iteration.When min (1)ij t ττ+p , set min (1)ij t ττ+= (min τ is a constant).Step 4:Iteration process: Ant group proceeded tosearch next pixel. when ant k found aimpoint(j g G =), a integrity path k L was gained. The length of the integrity path(u k k e d d =∑) was calculated and. When each ant in agroup reached G , each integrity path of each ant was compared, and the length of the shortest path(1min L ) was noted down. which was named 1min d .Step 5:Overall updating :When a iteration finished, the pheromone on 1min L needed to update in speeding up the convergence:122(1)Nc NcNcij ij ijτρτρτ+=−+Δ (6) 2min 0Nc Nc ijQ d τ⎧⎪Δ=⎨⎪⎩min :ij Nc if L is on L elseIn the formula above, 2Q is a constant; 2ρ isoverall pheromone volatilization coefficient; Ncij τ is the pheromone amount on ij L after NO. Nc iteration finished; min Nc L is the best path during NO. Nc iteration; min Nc d is the length of min Nc L .Step 6:Iteration complete: After a iteration finished, 1 was added to Nc till the max iteration number. The best path length of each iteration should be compared each others, then noted down and exported the shortest path(min L ) length among them.4. Parameters training by PSOIn solving Path Planning Problem by ACO, the parameter αand β is determined through experiments and have great impact to the performance of the algorithm.α indicates the importance of the remained pheromone on each pixel, and β indicates the importance of heuristic information. The effect of α and β given to the performance of the algorithm is mutual supported and closely related. Choosing parameters through experiments only depends on experience or repeated debugging, in this paper choosing parameters is by the guidance of PSO. Information sharing mechanism is used in PSO, which has the excellence of its simpleness to achieve and profound intelligent background. In training the ACO parameters α and β by PSO, the particles are expressed as a two-dimensional real-coded strings. The training steps is as following: It is supposed that n particles compose of a community, in which the NO.i particles is expressed as a two-dimensional vector X i =(x i1,x i2), i=1,2,…n, in the other words, the NO.i particle in the search space is located at x i. Therefore the position of each particle is a potential solution. The adaptive value can be calculated by adding x i to ACO through objective function and the solutions are measured by the magnitude of objective value. The flying velocity of the NO.i particle is also a two-dimensional vector, recorded as V i = (v i1 , v i2 ). The optimal location for the NO.i particle by that time is P i = (p i1 , p i2 ), and the optimal location for particlesswarm is P g = (p g1 , p g2 ). Operating the particles by the following formulas:1122(1)()(())(())i i i i g i V k wV k c r P x k c r P x k +=+−+− (7)(1)()(1)i i i x k x k V k +=++ (8)In the formulas above, w is the inertia weight, and is non-negative, and linearly varies from 0.9 to 0.4, that can slow down the movement of the particles, and prevent the particles move closer to g Best during oscillation. c 1 and c 2 separately is weight p id of individual optimal location p best and weight p gd of swarm optimal location g best, commonly c 1= c 1=2. r 1 and r 2 is random number between 0 to 1. The flying velocity vector weight of iterative particle i v id ∈[-v max,v max ], and v max is a constant. Iteration termination condition is ten largest iteration number 10 or the optimal location can meet predetermined minimum adaptation threshold value.5. Simulation researchBased on the above analysis, mathematical simulation software MATLAB was used to carry on experiment simulation study: setting m =20,Ncmax =50,1ρ=0.75,2ρ=0.55,c 1=1.8, c 2=0.9.(a) The results of 10 Iterations later(b) The optimum resultFig.2: Results of first experiment(a)The results of 10 Iterations later(b)The optimum resultFig.3: Results of second experiment.Fig.2and Fig.3 respectively represent the results of two items of experiments. In Fig.3, G1 and G2 are two planning aim point, at the same time, G1 is also the planning start point for G2.Simulation results indicate that the method used in this study can reach satisfying precision under the price of a certain period of time.6.ConclusionsIn this paper, an ACO-PSO Hybrid Algorithm Solving Path Planning Problem based on Swarm Intelligence(SI) is proposed. ACO as its positive feedback, parallelism and easy combining whit other algorithms, is widely applied on lots of filed; Using PSO is because that ACO greadtly need experience or repeated experiments to choose corresponding parameters. experience always occupies in a leading role. Thus the parameters in ACO can be optimized through PSO and parameters can be chosen self-adaptively, so that the optimal performance of ACO can be effectively enhanced. By simulating experiments show that the algorithm is correct.AcknowledgementThis work is partially supported by National Nature Science Foundation of China (Grant No. 50474052). References[1]S. Hackwood and G. Beni, Self-organization ofsensors for swarm intelligence. IEEEInternational Conference on Robotics andAutomation, pp.819-829, 1992.[2]M. Dorigo and L.M. Gambardella, A cooperativelearning approach to the traveling salesmanproblem. IEEE Transactions on EvolutionaryComputation, pp.53-66, 1997.[3] A. Colorni, M. Dirigo and V. Maniezzo,Distributed optimization by ant colonies. Procof the ECAL-91, pp.134-142, 1991.[4] M. Dorigo, V. Maniezzo and A. Colorni, The antsystem: optimization by a colony of cooperatingagents. IEEE Trans on Systems, Man &Cybernetics-B, pp.29-41, 1996.[5] B. Wu and Z.Z. Shi, An ant colony algorithmbased partition algorithm for TSP. Chinese JComputers, pp.1328-1333, 2001.[6] D. Subramanian, P. Druschel and J. Chen, Antsand reinforcement learning: a case study inrouting in dynamic networks. International JointConference on Artificial Intelligence, pp.832-838,1997.[7] A. Colorni, M. Dirigo, V. Maniezzo and M.Trubian, Ant system for job-shop scheduling.Belgian Journal of Operations Research,Statistics and ComputerScience(JORBEL),pp.39-53, 1994.[8] L.M. Gambardella, E.d. Taillard and M.Dorigo,Ant colonies for the QAP. Journal of theOperational Research Society(JORS), pp.53-66,1997.[9] D. Costa and A. Hertz, Ants can color graphs.Journal of the operational Research Society,pp.295-305, 1997.[10] B. Bullnheiner, R.F. Hartl and C. Strauss,Applying the ant system to the vehicle routingproblem. Advances and Trends in Local SearchParadigms for Optimization, pp.109-120, 1998. [11] J. Kennedy and R. Eberhart, Particle swarmoptimization. Proceedings of the IEEE International Conference on Neural Networks,pp.1942-1948, 1995.[12] B.B. Thompson, I.I. Marks and J. Robert,Inversion of neural network underwater acousticmodel for estimation of bottom parameters usingmodified particle swarm optimizers. Proceedingsof the International Joint Conference on NeuralNetworks, pp.1301-1306, 2003.。
《基于遗传—蚁群融合算法的聚类算法研究》篇一基于遗传-蚁群融合算法的聚类算法研究一、引言随着大数据时代的到来,聚类算法在数据分析和处理中发挥着越来越重要的作用。
传统的聚类算法如K-means、层次聚类等,在处理复杂数据集时往往存在局限性。
为了解决这一问题,本文提出了一种基于遗传-蚁群融合算法的聚类算法。
该算法通过融合遗传算法和蚁群算法的优点,能够在复杂数据集中发现更加准确和有效的聚类结果。
二、背景及文献综述遗传算法是一种基于生物进化原理的优化算法,具有全局搜索能力和较强的鲁棒性。
蚁群算法则是一种模拟蚂蚁觅食行为的优化算法,具有较强的局部搜索能力和自适应性。
这两种算法在聚类问题中都有广泛的应用。
近年来,许多研究者开始尝试将这两种算法进行融合,以发挥各自的优势,提高聚类效果。
三、遗传-蚁群融合算法的设计本节将详细介绍基于遗传-蚁群融合算法的聚类算法设计。
该算法主要包括以下步骤:1. 数据预处理:对原始数据进行清洗、去重、归一化等操作,以便于后续的聚类分析。
2. 初始化种群:根据数据集的特点,生成一定数量的初始解作为种群的个体。
3. 遗传操作:通过选择、交叉和变异等操作,生成新的种群。
其中,选择操作根据个体的适应度进行;交叉操作通过交换个体间的部分信息,产生新的个体;变异操作则是对个体进行随机改变,以增加种群的多样性。
4. 蚁群搜索:在遗传操作的基础上,利用蚁群算法在解空间中进行局部搜索。
通过模拟蚂蚁的信息素传递过程,蚁群算法能够在局部范围内找到更优的解。
5. 融合策略:将遗传算法和蚁群算法的搜索结果进行融合,得到最终的聚类结果。
融合策略可以采用加权平均、投票等方式。
6. 评估与优化:根据聚类效果评估指标,对融合后的聚类结果进行评估和优化。
四、实验与分析本节将通过实验验证基于遗传-蚁群融合算法的聚类算法的有效性。
实验采用多个数据集进行测试,包括人工合成数据集和真实世界数据集。
实验过程中,我们将该算法与传统的聚类算法进行对比,分析其优势和不足。
2011年11月 第39卷第21期
机床与液压
MACHINE TOOL&HYDRAULICS Nov.2011
Vo1.39 No.21
DOI:10.3969/j.issn.1001—3881.201 1.21.01 1 基于遗传蚁群混合算法的孔群加工路径优化
王春香,郭晓妮 (内蒙古科技大学机械工程学院,内蒙古包头014010)
摘要:为了提高孔群的数控加工效率,以孔群加工路径最短为目标函数,采用遗传蚁群混合算法对孔群加工路径规划 问题进行研究。该混合优化算法的前期采用遗传算法、后期采用蚁群算法。在遗传算法向蚁群算法转换过程中,提出一种 GSA遗传解到信息素转化策略。该策略以在遗传解endp叩中选取前90%个个体和再随机产生的10%个个体合并后组成的 新矩阵作为信息素值的转化依据;同时探讨了遗传算法中遗传算子的最佳组合问题。实例计算结果表明:与传统分批按编 号加工的路径相比较,采用最佳组合算子和GSA转化策略后的遗传蚁群混合算法求解问题所获得的孔群加工路径缩短了 70.9%,比单一遗传算法具有更高的求解精度,理论上可以明显地提高孔群的数控加工效率。 关键词:孔群加工路径优化;遗传算法;蚁群算法;混合算法 中图分类号:TH16;TP18 文献标识码:A 文章编号:1001—3881(2011)21—043—3
Holes Machining Path Optimization Based on a Hybrid Algorithm Integrated Genetic Algorithm、 th Ant Colony Optimization WANG Chunxiang.GUO Xiaoni (Mechanical Engineering School,Inner Mongolia University of Science&Technology.Baotou Inner Mongolia 014010.China) Abstract:In order to improve the efficiency of holes NC machining,with the shortest path to holes machining as the objective function,a hybrid algorithm(HA)integrated genetic algorithm(GA)with ant colony optimization(ACO)for solving holes machi— ning path optimization was studied.The GA was run first and then ACO in the hybrid algorithm.A new strategy called GSA was pro— posed aiming at the key link in the“HA”that converted genetic solution from GA into information pheromone to distribute in ACO. The new marx was taken by the GSA,which was formed by the combination of the former 90%of individual from genetic solution and 10%of individual by random generation as the basis of transformation of pheromone value.The best combination of genetic operators in GA Was also discussed.The experimental results show that with the traditional processing route by numbers compared,by the HA using optimal combination operator and GSA transformation strategy,the length Can be shortened for 70.9%,and has higher precision than a single genetic algorithm.The NC machining efficiency of holes can be obviously improved theoretically. Keywords:Holes machining path optimization;Genetic algorithm;Ant colony optimization;Hybrid algorithm
在数控加工中孔群加工所占的比重相当大,其加 工时间直接影响到生产效率。影m ̄:fL群加工时间的因 素主要有钻孔的时间和钻头移动的时间。人们往往关 注孔的加工时间而忽视了钻头移动的时间,事实上, 钻头移动时间对孔群加工生产率的影响程度大于其加 工时间,特别是当待加工孔数量巨大时更是如此…。 因此,如何合理规划孔群加工路径是提高生产率的关 键。孔群加工路径规划问题是典型的旅行商问题 (Traveling Salesman Problems,TSP),通过建立TSP 数学模型,利用仿生算法进行求解。周正武等 采用 遗传算法对26个孔群进行了路径优划;凌玲等人 采用改进的遗传算法对26个孔群进行了路径规划。 虽然采用遗传算法能够求解到比传统加工方法较优的 结果,但基于遗传算法的特性还是容易陷入局部最优 解。为了利用遗传算法的优点克服其缺点,作者采用 将遗传算法和仿生算法中的另一类算法——蚁群算法 融合的方法,进行孔群加工路径的优化。针对这两种 算法融合时的关键点——遗传解到信息素的转化,提 出一种GSA转化策略。该策略是:在遗传解endpop 中选取前90%个个体和随机产生的10%个个体合并 组成新矩阵,将此新矩阵作为信息素值的转化依据。 同时为了提高混合算法中遗传部分的求解精度,交叉 算子和变异算子采用通过对TSP问题实验得出的最 佳组合交叉算子和变异算子。
收稿日期:2010—10一l8 基金项目:内蒙古自然科学基金项目(200711020713);包头市科技发展基金资助项目(2008) 作者简介:王春香(1962一),女,硕士研究生,教授,从事优化方法及逆向工程技术及其应用等研究。通信作者:郭晓 妮,E—mail:ringil@163.com。 ・44・ 机床与液压 第39卷 1 遗传蚁群混合算法 遗传算法具有快速全局搜索能力,但没有利用系 统中的反馈信息,往往导致无为的冗余迭代,后期求 解效率低。蚁群算法是通过信息素的累积和更新而收 敛于最优路径,具有分布、并行、全局收敛能力。但 初期信息素匮乏,导致算法速度慢。因此,作者采用 前期利用遗传算法产生初始信息素分布,后期进行蚁 群算法的融合思想。流程框图如图1所示。 开始
设置遗传算法运行参数 随机生成初始群体 定义目标函数,计算各种群适应度
交叉操作(部分交叉) 变异操作(逆转变异)
从新生成的种群中 选择 个较优个体
初始化蚁群算法个参数;将遗传 算法求解的Ⅳ个较优个体转化为 蚁群算法的初始信息锁矩阵
蚂蚁j 1 开始蚁群算法,将J,1只放到 月个节点上,蚂蚁j 秆l
按照概率函数 选择下一个节点 ——— 一
\ N
在 只蚂蚁完成求解后,增加 最优路径信息索,禁忌表清零
对所有解的信息索进行全局更新
图l遗传蚁群混合算法流程图 1.1 遗传算子的组合研究 在遗传算法的运行过程中,交叉算子和变异算子 是相互配合,共同完成搜索的,不同的组合方式对算 法性能的影响也不同,为了使算法能够以良好的搜索 性能完成寻优过程,要选取最佳的组合算子。孔群加 工路径规划问题是典型的TSP问题,因此,针对目 前求解TSP问题常用的交叉算子和变异算子进行组 合研究,以提高遗传部分的求解精度。常用的交叉算 子有:部分映射交叉 (Partially—mapp ̄Crossover, PMX)算子,顺序交叉 (Ordered Crossover,OX) 算子,循环交叉 (Cycle Crossover,CX)算子;变 异算子有:移位变异” (Displacement Mutation, DM),交换变异 (Exchange Mutation,EM),逆转 变异 (Inversion Mutation,IVM)。下面通过TSP实 例的仿真实验找出一组最优的组合方式。 以bays29、att48、st70为例,初始参数设定为: 种群规模m=100,交叉概率P =0.9,变异概率 P =0.1,种群进化代数G=600。为了防止偶然性的 干扰,对各个交叉算子与变异算子组合进行5次独立
重复实验,结果取5次独立重复实验的平均值。 表1 交叉算子和变异算子组合测试
从以上实验可以看出,对TSP问题总体来说 PMX交叉和IVM变异的搭配要优于其他搭配,能够 以良好的搜索性能完成最优化问题的寻优过程。因此 文中采用PMx交叉和IVM变异。 1.2遗传解到信息素的转化 遗传算法产生最优解后,如何将最优解转化为蚁 群算法的信息素,是算法融合的一个关键点,作者将 蚁群算法信息素的初值设置为r = +r。,其中r 为 根据具体求解问题规模给定的一个信息素常数(这里 取为0.001),丁 为遗传算法求解结果转换的信息素 值。这里提出一种GSA转化策略来产生r :将遗传算 法求解TSP问题产生最优种群endpop,按照适应度值 从大到小进行排列;为了充分利用遗传解的信息,避 免陷入局部最优点,选取endpop中前90%个个体和随 机产生的10%个个体组成新矩阵 ,然后计算 中每 两个城市(i, )出现的次数k 将ko/n作为初始信 息素矩阵中 肿值,其中n为初始种群的数量。对于 没有出现的连接对应的初始信息素值设为0。 2孔群路径优化的遗传蚁群混合算法求解实例 2.1 遗传蚁群混合算法求解孔群加工路径步骤 已知条件如图2所示。
图2注塑模上模的零件图