循环流化床的脱硫工艺
- 格式:doc
- 大小:32.00 KB
- 文档页数:17
循环流化床半干法脱硫工艺优化摘要:半干法烟气脱硫属于燃烧后的烟气脱硫技术,技术成熟、工艺可靠,具有耗水量少、无污水排放和85%以上脱硫效率等优点;但是也存在煤种适应少、脱硫灰不利于综合利用等缺点。
该技术主要用于建材生产工艺中的脱硫、燃用中低硫煤的小型发电机组(200 MW 以下),亦适用于缺水地区的大型发电机组(300 MW及以上)。
关键词:循环流化床;半干法;脱硫工艺1 脱硫系统概述某电厂一台300 MW循环流化床锅炉机组,烟气脱硫系统分为炉内石灰石脱硫和尾部烟气半干法脱硫两个部分。
烟气半干法脱硫系统是为实现超低排放的要求而设置,进口烟气SO2质量浓度一般小于400 mg/m3,出口SO2质量浓度不超过30 mg/m3。
该脱硫工艺原设计采用电厂工业水作为脱硫工艺水,以消石灰为吸收剂。
锅炉机组整体的脱硫过程如图1所示。
2 二级脱硫系统的改进黑色线条及其区域代表的设备和系统是机组初始建设的构造,在炉内实现脱硫过程(一级脱硫);蓝色线条和区域代表的设备和系统是为适应超低排放要求而增加的半干法脱硫系统,即二级脱硫系统。
因二级脱硫而新增的末级除尘器即二级除尘器,控制烟尘排放达到环保要求。
脱硫系统投运后,存在的主要问题是脱硫灰的流动性较差,容易因系统结构发生灰循环故障;灰的综合利用性能差,脱硫灰的后续处理有一定的困难。
再者,脱硫消耗的工业水约40 t/h,而另一方面,电厂产生的大量工业废水需要处理。
综合考虑这些因素,决定对二级脱硫系统进行一些改进和优化,拟采用脱硫灰的回燃技术,并以浓盐水(高含盐浓度的工业废水)为工艺水取代工业水。
具体的做法是:1)搭建脱硫灰除尘器至锅炉炉膛的灰循环回路;2)搭建一级除尘器旁路烟道;3)改用适于浓盐水的雾化设备,以浓盐水取代工业水作为二级脱硫的工艺水。
这些新增设备和系统在图1中以红色线条区分。
改进的主要目标是:1)改善脱硫灰的流动性,保障灰循环的可靠;2)改善脱硫灰的综合利用性能;3)减少废水处理,节约电厂水耗量。
ABB-NID1、ABB锅炉烟气脱硫技术ABB锅炉烟气脱硫技术简称NID,它是由旋转喷雾半干法脱硫技术基础上发展而来的。
NID的原理是:以一定细度的石灰粉(CaO)经消化增湿处理后与大倍率的循环灰混合直接喷入反应器,在反应器中与烟气二氧化硫反应生成固态的亚硫酸钙及少量硫酸钙,再经除尘器除尘,达到烟气脱硫目的。
其化学反应式如下:CaO+H2O=Ca(OH)2Ca(OH)2+SO2=CaSO3·1/2H2O+1/2H2ONID技术将反应产物,石灰和水在容器中混合在加入吸收塔。
这种工艺只有很有限的商业运行经验,并且仅运行在100MW及以下机组,属于发展中的,不完善的技术。
和CFB技术相比,其主要缺点如下:由于黏性产物的存在,混合容器中频繁的有灰沉积由于吸收塔内颗粒的表面积小,造成脱硫效率低由于吸收塔中较高的固体和气体流速,使气体固体流速差减小,而且固体和气体在吸收塔中的滞留时间短,导致在一定的脱硫效率时,钙硫比较高,总的脱硫效果差。
需要配布袋除尘器,使其有一个”后续反应”才能达到一个稍高的脱硫效率,配电除尘器则没有”后续反应”。
对于大型机组,由于烟气量较大,通常需要多个反应器,反应器的增多不便于负荷调节,调节时除尘器入口烟气压力偏差较大。
脱硫剂、工艺水以及循环灰同时进入增湿消化器,容易产生粘接现象,负荷调节比较滞后。
Wulff-RCFBWulFF的CFB技术来源于80年代后期转到Wulff 去的鲁奇公司的雇员。
而LEE 近年来开发的新技术,Wulff公司没有,因此其技术有许多弱点:电除尘器的水平进口,直接积灰和气流与灰的分布不均。
没有要求再循环系统,对锅炉负荷的变化差,并直接导致在满负荷时烟气压头损失大。
消石灰和再循环产物的加入点靠近喷水点,使脱硫产物的黏性增加。
喷嘴上部引入再循环灰将对流化动态有负面影响,导致流化床中灰分布不均,在低负荷时,流化速度降低,循环灰容易从流化床掉入进口烟道中,严重时,大量的循环灰可将喷嘴堵塞。
1、前言循环流化床燃烧是指炉膛内高速气流与所携带的稠密悬浮颗粒充分接触,同时大量高温颗粒从烟气中分离后重新送回炉膛的燃烧过程。
循环流化床锅炉的脱硫是一种炉内燃烧脱硫工艺,以石灰石为脱硫吸收剂,与石油焦中的硫份反应生成硫酸钙,达到脱硫的目的。
较低的炉床温度(850°C〜900°C),燃料适应性强,特别适合较高含硫燃料,脱硫率可达80%〜95%,使清洁燃烧成为可能。
2、循环流化床内燃烧过程石油焦颗粒在循环流化床的燃烧是流化床锅炉内所发生的最基本而又最为重要的过程。
当焦粒进入循环流化床后,一般会发生如下过程:①颗粒在高温床料内加热并干燥;②热解及挥发份燃烧;③颗粒膨胀及一级破碎;④焦粒燃烧伴随二级破碎和磨损。
符合一定粒径要求的焦粒在循环流化床锅炉内受流体动力作用,被存留在炉膛内重复循环的850C〜900C的高温床料强烈掺混和加热,然后发生燃烧。
受一次风的流化作用,炉内床料随之流化,并充斥于整个炉膛空间。
床料密度沿床高呈梯度分布,上部为稀相区,下部为密相区,中间为过渡区。
上部稀相区内的颗粒在炉膛出口,被烟气携带进入旋风分离器,较大颗粒的物料被分离下来,经回料腿及J阀重新回入炉膛继续循环燃烧,此谓外循环;细颗粒的物料随烟气离开旋风分离器,经尾部烟道换热吸受热量后,进入电除尘器除尘,然后排入烟囱,尘灰称为飞灰。
炉膛内中心区物料受一次风的流化携带,气固两相向上流动;密相区内的物料颗粒在气流作用下,沿炉膛四壁呈环形分布,并沿壁面向下流动,上升区与下降区之间存在着强烈的固体粒子横向迁移和波动卷吸,形成了循环率很高的内循环。
物料内、外循环系统增加了燃料颗粒在炉膛内的停留时间,使燃料可以反复燃烧,直至燃尽。
循环流化床锅炉内的物料参与了外循环和内循环两种循环运动,整个燃烧过程和脱硫过程就是在这两种形式的循环运动的动态过程中逐步完成的。
3、循环流化床内脱硫机理循环流化床锅炉脱硫是一种炉内燃烧脱硫工艺,以石灰石为脱硫吸收剂,石油焦和石灰石自锅炉燃烧室下部送入,一次风从布风板下部送入,二次风从燃烧室中部送入。
CFB-FGD、NID、RCFB-FGD三种脱硫⼯艺的⽐较CFB-FGD、NID、RCFB-FGD三种脱硫⼯艺的⽐较⼀、烟⽓循环流化床⼲法脱硫技术(CFB-FGD):烟⽓循环流化床⼲法脱硫技术是德国鲁奇能捷斯(LLAG)公司最早在上世纪七⼗年代末开始了循环流化床烟⽓脱硫技术的研究,经过近三⼗年的不断改进(主要是在90年代中后期),解决了烟⽓循环流化床⼲法脱硫技术在负荷适应性、煤种适应性、物料流动性、可靠性、⼤型化应⽤等⽅⾯的问题,使烟⽓循环流化床脱硫技术得以成熟地进⾏⼯业应⽤。
德国鲁奇能捷斯(LLAG)公司是世界上最早从事烟⽓治理设备研制和⽣产的企业,已有⼀百多年的历史(静电除尘器的除尘效率计算公式---多依奇公式,就是该公司多依奇先⽣在上世纪初发明的)。
迄今为⽌,德国LLAG公司的循环流化床⼲法脱硫技术在全世界已有约50多套应⽤业绩。
其中包括世界上成功运⾏的300MW机组配套配套业绩。
从已投运装置的情况看,LLAG的烟⽓循环流化床技术,在脱硫率、Ca/S⽐、负荷适应能⼒、系统阻⼒、可控性、系统配置灵活性、可靠性等多项技术指标上,居于世界领先⽔平。
德国LLAG公司的烟⽓循环流化床脱硫技术的主要特点说明如下:1、采⽤流化床脱硫塔,⼀炉⼀塔。
2、塔内烟⽓流速约5m/s,烟⽓与脱硫剂的接触时间⼤于8秒钟以上,有利于脱硫效率的保证和脱硫灰⽔分的充分蒸发,提⾼整个系统的可靠性。
另外,长达8秒的接触时间为⾼脱硫率提供了的保证。
3、将物料和⽔分开单独加⼊到吸收塔内,加⽔的位置位于流化床颗粒浓度最⼤和湍动能最⼤的区域,采⽤单根回流式⾼压喷嘴,注⼊到塔内的雾化⽔的粒径⼩于200µ,通过⽓流和以⼤量激烈湍动的颗粒,促使脱硫反应的降温⽔得到有效的蒸发。
4、采⽤回流式⾼压喷嘴单喷嘴,⽔泵的出⽔设计量是喷嘴注⽔量的数倍,适应烟温变化的能⼒较强。
5、脱硫灰和吸收剂均从⽂丘⾥下部烟⽓⾼温段注⼊,抑制和减少了强吸⽔性物质的产⽣,提⾼了脱硫灰的流动性,解决了脱硫灰过度抱团、黏结的问题。
循环流化床烟气脱硫技术1.引言我国是以燃煤为主的国家,据统计,1995年煤炭消耗量为12.8亿吨,且逐年递增,二氧化硫的排放量达2370万吨,超过美国2100万吨的排放量,成为世界二氧化硫排放第一大国。
目前全国62%以上的城市SO2浓度超过国家环境质量二级标准,占全国面积40%左右的地区受到SO2大量排放引起的酸雨污染,因此控制SO2的污染势在必行。
1996年我国颁布的《新大气法》针对我国酸雨和SO2污染日趋加重的情况,规定对已经产生和可能产生酸雨的地区和其他SO2污染严重地区划定酸雨控制区或者SO2控制区,控制区内新建的不能燃用低硫煤的火电厂和其他大中型企业必须配套建设脱硫和除尘装置,或者采用相应控制SO2的措施;已建成的不能燃用低硫煤的企业应采取控制SO2排放和除尘措施。
国家环保局要求在两控区内,要把治理措施作为当地规划的重点内容。
因此高效脱硫设备的研究开发任重道远。
2.国内外研究现状目前,国内外应用的SO2的控制途径有三种:燃烧前脱硫、燃烧中脱硫和燃烧后脱硫(即烟气脱硫)。
其中,烟气脱硫(FGD即FlueGasDesulfuration)是目前世界唯一大规模商业化应用的脱硫方式,是控制SO2污染和酸雨的主要技术手段。
全世界已有15个国家和地区应用了 FGD装置,其设备总装机容量相当于2-2.5 亿Kw,每年去除SO21000万吨。
据统计,1992年,全球安装了FGD装置646套,其中美国占55.3%,德国占26.4%,日本占8.6%,其余国家占9.7%。
由于上述三国大规模应用FGD装置,且成效显著,虽然近年三国电站的装机容量不断增加,但SO2 排放总量却逐年减少。
日本是世界上最早大规模应用FGD装置的国家。
截止1990年,该装置达1900多套,总装机容量达0.5—0.6亿Kw。
目前,日本的SO2已基本得到控制。
自70年代初开始,特别是1978年美国重新修改了环境法规,否决了高烟囱排放,使FGD技术发展迅速。
循环流化床脱硫工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!循环流化床脱硫工艺是一种采用流化床技术进行脱硫的工艺,主要应用于燃煤电厂的烟气脱硫。
循环流化床综合脱硫工艺方案1、关于循环流化床循环流化床是八十年代发展起来的新一代燃煤流化床锅炉,具有高效和低污染的特点:*床内具有很大的热容量,床内混合好,燃料适应性强,包括劣质燃料的良好适应性;*循环流化床的运行温度为830℃∽875℃,适应燃料燃烧过程脱硫,可降低so2的排放;*循环流化床采用低温分段送风燃烧,使燃烧在低的过量空气系数下运行,由炉底到炉顶的燃烧气氛从还原性气氛过度到氧化性气氛,有效降低了nox的生成与排放;*循环流化床内高的循环物料,强化传热锅炉负荷适应范围广,能40%负荷下保持额定蒸汽参数。
影响脱硫效果的显著因素有:流化床温度、脱硫剂的数量。
流化床温度对脱硫效果的影响,主要体现在反应的温度特性上。
当温度低于750℃时,石灰石不再进行煅烧分解反应,脱硫反应几乎不在进行。
而当温度高于1000℃时,硫酸盐将开始分解,不能达到固硫的效果。
所以,根据反应的温度特性及实际运行实践,流化床床层温度以825℃∽875℃为宜。
当流化床温度超出该温度范围时,脱硫效果将大幅度降低。
脱硫剂的数量用钙硫摩尔比表示:。
随着ca/s比的增加,脱硫效果增加。
对于循环流化床锅炉,ca/s=2.0时,一般可达到90%的脱硫效率。
煤中含硫量低时,脱硫效率相对下降。
使用石灰石或石灰脱硫,每脱出一个摩尔的硫,相应释放出一个摩尔的二氧化碳。
因此,应追求低钙硫比下的高脱硫效率,避免消除二氧化硫污染的同时,加剧二氧化碳的污染。
循环流化床达到∽90%脱硫效率适宜的条件[1]为:钙硫比:不小于2;床层温度:830℃∽875℃;石灰石粒径:0∽2.0mm。
2、问题的提出当钙硫比大于2时,除尘灰中含有大量的氧化钙,并随除尘灰一起排放,造成脱硫剂的浪费;过多的使用脱硫剂,会增加二氧化碳的排放,增加大气额外的污染。
因此,建议:采用低于2.0的钙硫比(如1.2),炉内燃烧脱除部分二氧化硫,炉后通过烟气脱硫工艺再进一步利用脱硫剂脱出部分二氧化硫,达到所期望的脱硫效果。
CFB系列循环流化床烟气脱硫系统系统简介循环流化床烟气脱硫技术(Circulating Fluidized Bed Flue Gas Desulfurization,简称CFB-FGD),采用消石灰或石灰作为脱硫剂。
CFB系列循环流化床烟气脱硫装置是国电南自自主开发的干法脱硫装置,该技术国电南自具有自主知识产权,循环流化床烟气脱硫技术(简称CFB-FGD),是采用消石灰或石灰作为脱硫剂,安装在空气预热器和除尘器之间。
工艺原理与工艺流程循环流化床烟气脱硫技术,在空气预热器和除尘器之间安装循环流化床系统,烟气从流化床反应器下部布风板进入反应器,与消石灰颗粒充分混合,SO2、SO3及其它有害气体,如HCl、HF等与消石灰发生反应,生成CaSO3·1/2H2O、CaSO4·1/2H2O和CaCO3等。
反应器内的脱硫剂呈悬浮的流化状态,反应表面积大,传热/传质条件很多,且颗粒之间不断碰撞、反应。
随后夹带着大量粉尘的烟气进入除尘器中,被除尘器收集下来的固体颗粒大部分又返回流化床反应器中,继续参加脱硫反应过程,同时循环量可以根据负荷进行调节。
由于脱硫剂在反应器内滞留时间长,因此使得脱硫效果和吸收剂的利用率大大提高。
另外,工业水用喷嘴喷入反应器下部,以增加烟气湿度降低烟温,从而提高了脱硫效率。
循环流化床烟气脱硫系统主要包括给料系统、反应器系统、物料循环系统、喷水系统、旁路烟道。
技术特点★ 脱硫系统流程简单、占地面积较少。
★ 脱硫工艺适用于已确定的煤种条件并适应燃煤含硫量在一定范围内可能的变动;可满足锅炉负荷从30%到120%范围内变化。
★ 系统运行费用低。
★ 采用易于取得且价廉的石灰石或消石灰作为脱硫剂,且在较低的钙硫比下(钙硫比为1.1~1.2),脱硫效率可达90%以上,系统运行费用低。
★ 采用具有自主产权的干式消化器,保证了脱硫剂的活性。
★ 由于脱硫剂的给料及硫化产物均为干态,设备不存在腐蚀现象。
循环流化床锅炉炉内喷CaO尾部增湿脱硫工艺介绍一、工艺概述循环流化床燃烧技术是一种新型有效的燃烧方式,它具有和煤粉炉相当的燃烧效率,并且其燃烧特点十分适用于炉内喷钙脱硫,原因如下:1.燃烧温度低(850℃~900℃),正处于炉内脱硫的最佳温度段,因而在不需要增加设备和较低的运行费用下就能较清洁地利用高硫煤。
2.烟气分离再循环技术的应用,相当于提高了脱硫剂在床内的停留时间,也提高了炉内脱硫剂的浓度,同时床料间,床料与床壁间的磨损、撞击使脱硫剂表面产物层变薄或使脱硫剂分裂,有效地增加了脱硫剂的反应比表面积,使脱硫剂的利用率得到了相应的提高。
理论上一般认为,在850℃~900℃的炉膛温度,Ca/S摩尔比为1.5~2.5,石灰石的粒度小于2mm(通常为0.1~0.3mm)时,炉内脱硫效率可达85~90%。
但是循环流化床锅炉实际运行中,还存在着一些问题,使得脱硫效率达不到理论脱硫效率,具体原因主要有以下四点:1.国外的循环流化床锅炉循环倍率一般为50~80,而国内一般低于30,低循环倍率下达到高脱硫效率是不现实的。
2.为了降低飞灰的含碳量,提高燃烧效率及热效率,实际运行时往往适当提高锅炉的燃烧温度,燃烧温度提高使得炉内脱离了最佳的脱硫温度范围,使炉内脱硫效率降低。
3.目前国内循环流化床锅炉的脱硫方法,大部分是采用煤直接掺混石灰石的做法,掺混不均匀使石灰石无法完全发挥功效。
4.在炉内硫酸盐化过程中,由于石灰颗粒孔隙的堵塞,阻碍了脱硫剂与二氧化硫接触。
以上原因使得国内循环流化床锅炉炉内喷钙脱硫效率仅为50%左右。
由于循环流化床锅炉炉内喷钙的高钙硫比和低脱硫效率,使得飞灰中含有大量的未被利用的氧化钙,直接排放造成脱硫剂的巨大浪费,使运行成本增高。
鉴于以上因素,为了进一步提高循环流化床锅炉炉内喷钙的脱硫效率和脱硫剂利用率,可以采取四个措施。
1.以生石灰粉(CaO)代替石灰石粉(CaCO)喷入炉内。
3是否有必要?可以产生多大的功效?增加运行成本?目前,炉内喷钙的脱硫剂大多采用石灰石微粒,石灰石微粒在炉内煅烧的过程中,其中所含的杂质包裹在生成的CaO表面,阻碍CaO与SO2的接触,即使炉内存在着较强的物料碰撞磨损,也无法有效地清除杂质,对脱硫效率和脱硫剂的利用率有较大的负面影响。
循环流化床干法脱硫业主:Circulating Fluidized Bed DryScrubber项目:工艺计算technical calculation输入参数gas volume 烟气量300,000Nm^3/h工况烟气量烟气量放量10.0%烟气含 SO2 量烟气温度140℃要求出口含 SO2 量温度放量10℃要求脱硫效率CDS入口粉尘浓度 0.25g/Nm^3CaO的利用率为要求粉尘排放浓度15mg/Nm^3脱硫需要的Ca/S比为一年运行小时数7000小时取CaO的纯度为烟气喷水冷却后温度70℃消石灰含水标况烟气量计算结果计算温度150℃计算烟气量后除尘器入口含尘浓度#REF!g/Nm^3工况烟气量除尘效率#REF!则SO2排放浓度为飞灰生成量#REF!Kg/h check每小时需脱去的SO2量为石灰消化用水量 130Kg/h烟气喷水冷却水量 14,447Kg/h一年运行天数喷嘴进水管水量 21,670Kg/h脱硫需要的CaO为系统耗水量 14,577Kg/h脱硫需要的Ca(OH)2为一天消化石灰用水为 3.1t/day一天所需CaO为一年消化石灰用水为 913t/year一年所需CaO为一天需要的脱硫用水为 347t/day一天需要的Ca(OH)2为一年需要的脱硫用水为 101,128t/year一年需要的Ca(OH)2为设计:校对:日期:日期:业主:项目:主要设备选型计算脱硫塔台数1台文丘里喉口速度漏风系数 2.0%文丘里个数出口法兰标高 3.5m塔内气速底部灰斗角度60 °脱硫塔进口烟气流速出灰口宽(方形)300mm出口烟道进口烟气量141.45am^3/s出口烟气量CDS塔几何尺寸单塔截面积31.5m^2文丘里段塔截面CDS塔直径 A 6.40m文丘里段塔直径 E 出口法兰高 B2 5.6m单塔喉口总面积计算出口法兰宽 B1 5.7m喉口直径 I天圆地方高 C 3.3m文丘里喉高 J3CDS塔直段高 D16.7m文丘里之间边距入口法兰宽 F 3.7m一级缩管直径 H1入口法兰高 G 2.7m二级缩管直径 H2底部灰斗高 2.94m一级缩管高 J1文丘里出口变径 L 3.7m二级缩管高 J2塔反应段高度29.3m文丘里出口喇叭高 J4反应时间 6.51s文丘里总高 K CDS塔总高38.40mCDS塔离地高41.9m单塔重#REF!t设计:校对:日期:日期:业主:项目:消石灰仓 Ca(OH)2数量1台数量储期1天储量消石灰容重0.6t/m^3脱硫灰容重直径3m直径取锥角63度取锥角出口法兰宽400mm出口法兰宽容积利用率90.0%容积利用率所需容积20.4m^3所需容积锥体积7.7m^3锥体积直段高度 2.9m直段高度整个仓高 5.4m整个仓高仓重#REF!t仓重中间石灰仓数量0台数量储期0.5h储量消石灰容重0.5t/m^3直径直径1m所需容积所需容积0.6m^3高度高度0.7m水箱重仓重#REF!t生石灰仓数量1台系统数量储期3天数量生石灰容重 1.2t/m^3储量直径3m脱硫灰容重所需容积24.1m^3直径直段高度 3.4m取锥角仓重#REF!t出口法兰宽容积利用率所需容积锥体积直段高度整个仓高仓重中转灰仓数量0台系统数量储量0.15h数量脱硫灰容重0.6t/m^3储量循环灰量#REF!t/h脱硫灰容重直径2m直径取锥角60度取锥角出口法兰宽400mm出口法兰宽容积利用率90.0%容积利用率所需容积#REF!m^3所需容积锥体积 2.1m^3锥体积直段高度#REF!m直段高度整个仓高#REF!m整个仓高仓重t仓重日期:2022/2/24锅炉:130Tam^3/h标况烟气 -Nm^3/h800mg/Nm^3石灰石细度:90%小于44μm(325目)30.0mg/Nm^3湿法中SO3以气溶胶的形式存在,跟随性较好,将绕过喷淋层液滴直接进入烟囱,排放到大气中,在半法脱硫中中,SO3表面不会以气溶脱的形式存在,SO3可以很好的与脱硫剂反应,生成96.3%65.0%Ca(OH)2+ SO2=CaS O3.1/2H2 O+1/2H2 O1.48CaSO3.1/ 2H2O+3/2 H2O+1/2 O2=CaSO 4.2H2O80.0%量要求:石灰粉细度宜在2mm以下;加适量水后4min内温度可升高到60度(或是3min温升45度),纯度:CaO含量>=85%.1.0%300000Nm^3/h499,231am^3/h138.68am^3/s循环倍率3630.0mg/Nm^3循环灰量#REF!Kg/hOK 沉降室效率0%248Kg/h 沉降室灰量#REF!Kg/h 沉降室灰量#REF!T/h291.7天脱硫灰容重0.6T/m^3402Kg/h 沉降室灰量#REF!m^3/h511Kg/h中转灰仓灰量#REF!T/h9.6t/day循环灰量#REF!T/h 2,813t/year排出量#REF!T/h12.3t/day3,576t/year布袋效率100%布袋收灰量#REF!T/h灰斗个数#REF!每灰斗灰量#REF!T/h日期:2022/2/24锅炉:60m/s 7个4.5m/s 14.00m/s 正方形m出口烟道正方形119.82am^3/s长方形m10.20m^2进CDS烟道截面3.23700mm 2.36m^2650mm975.0mm文丘里之间边距60.0mm75.0mm 文丘里与壁之间边距52.5mm1158mm 827.0mm 165.5mm 331.0mm 1441.0mm 2913.0mm文丘里计算日期:2022/2/24锅炉:1台9h0.6t/m^32m61度400mm80.0%#REF!m^32.2m^3#REF!m#REF!m#REF!t1台4h4.6m86.7m^35.2m#REF!t1套#5,#6炉共设两座直径为10m 的灰库,每座灰库有效贮灰容积为1860m^3,可供两炉存灰48h 。
烟气循环流化床脱硫设计规程烟气循环流化床脱硫是一种常用的烟气净化技术,广泛应用于燃煤电厂、石化厂等工业领域。
其设计规程对于确保脱硫效果、提高设备运行效率具有重要意义。
本文将从床层材料、气体分布、吸收剂选择、循环系统等方面介绍烟气循环流化床脱硫设计规程。
床层材料的选择是烟气循环流化床脱硫设计的关键。
床层材料应具有良好的耐腐蚀性和耐高温性能,同时也要考虑其成本和可获得性。
常用的床层材料有陶瓷、陶粒、耐火砖等。
根据具体的工艺要求和经济性考虑,选择合适的床层材料非常重要。
气体分布是烟气循环流化床脱硫设计中需要重点考虑的问题。
合理的气体分布可以确保床层内的气体流动均匀,从而提高脱硫效果。
为了实现良好的气体分布,可以采用分布板、喷嘴等装置来引导气体流动,并通过调节气体流速和气体分布装置的布置来达到最佳效果。
吸收剂的选择也是烟气循环流化床脱硫设计中的重要环节。
吸收剂的选择应考虑其与烟气中的硫化物反应速率、吸收效率以及再生能力等因素。
常用的吸收剂有石灰石、石膏等。
根据不同的工艺要求,可以选择合适的吸收剂来实现高效脱硫。
循环系统的设计对于烟气循环流化床脱硫设备的运行稳定性和脱硫效果也起着重要作用。
循环系统包括循环泵、循环管路和循环罐等设备,其设计应考虑循环液的流动阻力、泵的扬程和循环液的流速等因素。
合理设计循环系统可以保证吸收剂的循环稳定,从而提高脱硫效果。
烟气循环流化床脱硫设计规程涉及床层材料、气体分布、吸收剂选择和循环系统等方面。
合理的设计规程可以确保脱硫设备的高效运行,达到环保要求。
在实际设计中,需要根据具体的工艺要求和经济性考虑,选择合适的设计参数和设备配置,以实现最佳的脱硫效果。