教育最新K122018_2019学年度八年级数学上册第13章轴对称13.1轴对称同步练习新版新人教版
- 格式:doc
- 大小:230.00 KB
- 文档页数:17
第十三章 13.1.3作对称轴
知识点:轴对称图形以及轴对称的对称轴的画法
根据轴对称和轴对称图形的性质,对称轴是任何一对对应点所连线段的垂直平分线.因此,只要找到一对对应点,作出所连线段的垂直平分线,就可以得到它们的对称轴.
反思:对于轴对称图形,由于对称轴可能不唯一,所以要注意选取不同类型的对应点,作出所有的对称轴.
考点1:作图形的对称轴
【例1】如图,已知线段AB和线段A'B'关于某条直线对称,请你画出这条对称轴.
解:如图所示:
点拨:连接AA'或BB'作它们的线段垂直平分线,就是对称轴所在直线.
考点2:利用作对称轴解决实际问题
【例2】如图,校园内有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮忙画出灯柱的位置P,并说明理由.
解:到∠AOB两边距离相等的点在这个角的平分线上,而到宣传牌C、D的距离相等的点则在线段CD的垂直平分线上,于是如图,交点P即为所求.
点拨:本题根据角的平分线和线段的垂直平分线的性质作图即可.。
第十三章 13.1 轴对称学校:姓名:班考号:()A. B. C.D.2. 下列所述图形中,既是中心对称图形,又是轴对称图形的是()A. 矩形B. 平行四边形C. 正五边形D. 正三角形3. 下列说法错误的是()A. 若E,D是线段AB的垂直平分线上的两点,则AD=BD,AE=BEB. 若AD=BD,AE=BE,D,E是不同的两点,则直线DE是线段AB的垂直平分线C. 若PA=PB,则点P在线段AB的垂直平分线上D. 若PA=PB,则过点P的直线是线段AB的垂直平分线4. 如图,AC=AD,BC=BD,则有()A. AB垂直平分CDB. CD垂直平分ABC. AB与CD互相垂直平分D. CD平分∠ACB5. 如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为()A. 30°B. 45°C.60° D. 75°6. 小明在镜子中看到身后墙上的时钟,实际时间最接近8时的是图中的()A. B. C.D.7. 将一张正方形纸片按图①②所示的方式依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得到的图案是图中的()A. B. C.D.8. 如图所示,在△ABC中,AB的垂直平分线交AC于点E,若AE=4 cm,则B,E两点之间的距离是()A. 2 cmB. 3 cmC.4 cm D.5 cm9. 如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC的延长线于F,若∠F=30°,DE=1,则EF的长是( )A. 3B.2 C. D.110. 为了丰富学生的课余生活,某校举行联欢晚会,在联欢晚会上,有A,B,C三名同学站在一个三角形三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放在△ABC的()A. 三边中线的交点处B. 三条角平分线的交点处C. 三边高的交点处D. 三边垂直平分线的交点处二、填空题D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连接OC,若∠AOC=125°,则∠ABC= .12. 如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有________种.13. 角是轴对称图形,它的对称轴是,线段是轴对称图形,它的对称轴是.14. 如图,已知等边三角形ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折使点B 落在B'处,DB',EB'分别交边AC于点F,G.若∠ADF=80°,则∠CEG度数为.15. 如图所示,将长方形ABCD沿着直线BD折叠,使点C落在点C'处,BC'交AD于点E,若∠1=20°,则∠AEC'= .16. 通过找出这组图形符号中所蕴含的内在规律,在空白处的横线上填上恰当的图形.三、解答题,.18. 如图,△ABC中,AD⊥BC,点E在AC的垂直平分线上,且BD=DE.(1)如果△ABC的周长为14 cm,AC=6 cm,那么△ABE的周长= ;(2)你发现线段AB与BD的和等于图中哪条线段的长?请证明你的结论.19. 在学习“轴对称现象”的内容时,为了考查同学们的动手能力,王老师让同学们寻找身边的轴对称图形,小明有一副三角尺和一个量角器(如图所示).(1)小明的这三件文具中,可以看作是轴对称图形的是(填字母代号);(2)请用这三个图形中的两个拼成一个轴对称图案,画出草图(只需画出一种).四、证明题中,AD∥BC,E为CD的中点,连接AE,BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)AD=FC;(2)AB=BC+AD.21. 如图所示,在△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,求证:直线AD是CE的垂直平分线.参考答案1. 【答案】C【解析】由轴对称图形的定义,可知选项C中的三角板不是轴对称图形.2. 【答案】A【解析】本题考查中心对称图形和轴对称图形的性质.属于简单试题.既是中心对称图形又是轴对称图形的是矩形.故A正确.3. 【答案】D【解析】由垂直平分线的性质知选项A,B,C均正确;D选项, PA=PB,只能确定点P在线段AB的垂直平分线上,而过点P的直线有无数条,但只有一条直线是线段AB的垂直平分线.4. 【答案】A【解析】由AC=AD,BC=BD,可知A,B两点均在线段CD的垂直平分线上,又两点确定唯一一条直线,故AB垂直平分CD.5. 【答案】C【解析】由反弹的对称性可得∠1=∠2,又∠2+∠3=90°,∠3=30°,所以∠1=∠2=60°.6. 【答案】D【解析】由镜面对称的特点左右相反,上下相同,易知选D.7. 【答案】B【解析】找准裁剪部分与折痕的位置,及准确把握折纸的方向,即可确定所得图形的图案或按照题中方法动手操作亦可解题.8. 【答案】C【解析】连接BE.∵DE是AB的垂直平分线,∴BE=AE=4 cm.9. 【答案】B【解析】连接BE,因为∠F=30°,所以∠ABC=60°,所以∠A=30°,因为DE是AB的中垂线,所以∠ABE=∠A=30°,所以∠EBC=∠ABC-∠ABE=30°,所以有△BED≌△BEC,所以EC=ED=1,所以EF=2EC=2,故选B.10. 【答案】D【解析】要使游戏公平需使凳子到三名同学的距离相等即在三角形内部一点到各定点距离相等,又因为线段垂直平分线上的点到线段两个端点的距离相等,故选D.11. 【答案】70°12. 【答案】313. 【答案】角平分线所在的直线;线段的垂直平分线和线段自身所在的直线14. 【答案】40°15. 【答案】140°16. 【答案】18. 【答案】如图所示.19.(1) 【答案】8 cm(2) 【答案】AB+BD=DC.证明如下:∵AD⊥BC,BD=DE,AD=AD,∴△ABD≌△AED(SAS),∴,AB=AE.又∵点E在AC的垂直平分线上,∴AE=EC,∴AB=EC.∴AB+BD=EC+DE=DC.20.(1) 【答案】B,C(2) 【答案】如图所示.(1) 【答案】∵AD∥BC,∴∠ADC=∠DCF,即∠ADE=∠FCE.又∵E是CD的中点,∴DE=CE.在△ADE和△FCE中,∴△ADE≌△FCE(ASA),∴AD=FC.(2) 【答案】由第1问知△ADE≌△FCE,∴AE=FE.又∵BE⊥AE,∴BE是线段AF的垂直平分线,∴AB=BF=BC+FC.又∵AD=FC,∴AB=BC+AD.21. 【答案】∵∠ACB=90°,AD平分∠BAC,DE⊥AB,∴DE=DC,∴点D在线段CE的垂直平分线上.∵∠EAD=∠CAD,∠AED=∠ACD=90°,DE=DC,∴△AED≌△ACD(AAS),∴AE=AC,∴点A在线段CE的垂直平分线上,∴直线AD是CE的垂直平分线.。
轴对称课题: 13.1.1轴对称一教学设计课标要求了解轴对称图形的概念;认识并欣赏自然界和现实生活中的轴对称图形。
通过具体实例了解轴对称的概念,探索它的基本性质:成轴对称的两个图形中,对应点的连线段被对称轴垂直平分.教材及学情分析本节课是在学习了图形的平移基础上,继续学习轴对称图形、两个图形关于轴对称的概念及其性质;学习线段垂直平分线的概念。
把形象思维与抽象思维相结合,把静态、动态的观察、思维法相结合,不断提高平面逻辑思维、能力与想像、表达能力。
为后续学习研究多边形的几何性质、函数图像性质打下坚实的基础。
八年级学生性格开朗活泼,对新鲜事物特别敏感,且较易接受,因此,教学过程中创设的问题情境应较生动活泼,直观形象,且贴近学生的生活,从而引起学生的有意注意。
学生已经有了一定的概括能力和推理能力,所以在教学时,可让学生充分探讨、分析,帮助他们直观形象地感知。
学生已经具备了一定的学习能力,所以本节课中,主要采用学生自主学习、合作学习的方式,让他们主动参与、勤于动手、从而乐于探究。
总之,本节课旨在让学生体会到数学与实际生活的密切联系,经历知识的形成过程,培养学生的应用意识。
教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验,体验到数、符号和图形是有效地描述现实世界的重要手段与解决实际问题的重要工具。
课时教学目标1、掌握轴对称图形,轴对称(成轴对称)的概念;理解轴对称图形与轴对称对称的区别和联系;会用轴对称及轴对称图形的知识解决相关问题。
2、通过实例让学生归纳轴对称的性质,掌握概念;加以适当的练习使学生有一种成就感,从而促使学生更好的关注生活,学会观察,善于发现。
3、通过轴对称图形和轴对称的学习,激发学生学习欲望,主动参与数学学习活动中,体会图形的美,同时感悟数学来源于生活又用于生活。
重点轴对称图形和两个图形关于某直线对称的概念及轴对称的性质难点轴对称图形与轴对称的区别与联系及轴对称的性质教法学法指导教具准备教学过程提要环节学生要解决的问题或完成的任务师生活动设计意图引入新课观察欣赏生活中的轴对称图形欣赏图片:1、让学生观察图片(完整和破损谈谈自己的感受;破坏后的图片相比,完整的图片好在哪里?你认为前后两组图片最大的区别在哪里?学生仔细观察图片,交流讨论,各抒己见,基本达成共识(对称美)从观察欣赏轴对称、两个图形关于直线轴对称图片入手,引发学生思考问题的兴趣;激励自主学习解决问题.教学过程初步了解轴对称图形和轴对称相关概念巩固练习理解轴对称相关概念自学指导认真阅读课本58页60页练习前的内容,回答下列问题:1.什么叫做轴对称图形?什么叫对称轴?2.什么叫做两个图形关于直线(成轴)对称?什么叫对称点?3.什么叫线段的垂直平分线?4.图形轴对称的性质是什么?师生共同解决梳理轴对称相关知识1.下面四个中文艺术字中,不是轴对称图形的是()2、已知以下四个汽车标志图案:其中是轴对称图形的图案是(只需填入图案代号).观察每对图形有什么共同特点?1.把__________沿着某一条直线折叠,如果它能那么就说这两个图形____,图形______够与2.同样,我们把这条直线叫做________.3.折叠后重合的点是对应点,叫做________.发现轴对称图形和两个图形关于直线轴对称的两组念及其性质.比较两个概念的异同点。
第十三章 13.1.3作对称轴
知识点:轴对称图形以及轴对称的对称轴的画法
根据轴对称和轴对称图形的性质,对称轴是任何一对对应点所连线段的垂直平分线.因此,只要找到一对对应点,作出所连线段的垂直平分线,就可以得到它们的对称轴.
反思:对于轴对称图形,由于对称轴可能不唯一,所以要注意选取不同类型的对应点,作出所有的对称轴.
考点1:作图形的对称轴
【例1】如图,已知线段AB和线段A'B'关于某条直线对称,请你画出这条对称轴.
解:如图所示:
点拨:连接AA'或BB'作它们的线段垂直平分线,就是对称轴所在直线.
考点2:利用作对称轴解决实际问题
【例2】如图,校园内有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮忙画出灯柱的位置P,并说明理由.
解:到∠AOB两边距离相等的点在这个角的平分线上,而到宣传牌C、D的距离相等的点则在线段CD的垂直平分线上,于是如图,交点P即为所求.
点拨:本题根据角的平分线和线段的垂直平分线的性质作图即可.。
八年级数学上册第十三章《轴对称》备课教案13.1.1 轴对称第1课时教学目标1、通过丰富的实例认识轴对称图形,并能找出轴对称图形的对称轴.2、了解轴对称图形、两个图形成轴对称这两个概念之间的联系和区别.3、经历丰富材料的学习过程,发展对图形的观察、分析、判断、等能力.4、体验数学与生活的联系、发展审美观.教学重难点重点:轴对称的有关概念;难点:轴对称图形与两个图形关于某条直线对称这两个概念之间的联系与区别.教学过程一、创设情境,引入新课1.举实例说明对称的重要性和生活中充满着对称.2.对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.3.轴对称是对称中重要的一种,让我们一起走进轴对称世界,探索它的秘密吧!二、导入新课1.观察:几幅图片(出示图片),观察它们都有些什么共同特征.①强调:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,甚至日常生活用品,人们都可以找到对称的例子.②练习:从学生生活周围的事物中来找一些具有对称特征的例子.2.观察:如图13.1.2,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就剪出了美丽的窗花.你能发现它们有什么共同的特点吗?3.如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.我们也说这个图形关于这条直线(成轴)对称.4.动手操作:取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意刻出一个图案,将纸打开后铺平,你得到两个成轴对称的图案了吗?5.归纳小结:由此我们进一步了解了轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.6.练习:你能找出它们的对称轴吗?分小组讨论.思考:大家想一想,你发现了什么?小结得出:.像这样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.三、随堂练习课本60页练习.四、课时小结这节课我们主要认识了轴对称图形,了解了轴对称图形及有关概念,进一步探讨了轴对称的特点,区分了轴对称图形和两个图形成轴对称.五、课后作业课本64页习题13.1的第1、2题.六.教学反思数学教学应该选在牵一发而动全身的关键之处进行,轴对称图形的认识的教学就是要抓住“对折”与“完全重合”两个关键之处.不然就是隔靴搔痒. 当“部分重合”与“完全重合”理解了,轴对称图形的概念也会在学生脑海中留下深刻的印象.第2课时教学目标1.了解两个图形成轴对称性的性质,了解轴对称图形的性质.2. 探索并理解线段垂直平分线的两个性质3.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力逐步养成数学推理的习惯.4.在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步说理和进行简单推理的能力.教学重难点重点:轴对称的性质,线段垂直平分线的性质.难点: 由线段垂直平分线的两个性质得出的“点的集合”的描述教学过程一、创设情境,引入新课1.什么样的图形是轴对称图形呢?2.轴对称图形有哪些性质,从图形中能得到结论?二、导入新课1.如图,△ABC和△A'B'C'关于直线MN对称,点A'、B'、C'分别是点A、B、C对称点,线段AA'、BB'、CC'与直线MN有什么关系?为什么?(学生思考并做小范围讨论)2.对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.3.画一个轴对称图形,并找出两对称点,看一下对称轴和两对称点连线的关系.4.对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.5.归纳图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.下面我们来探究线段垂直平分线的性质.[探究1]如图,木条L与AB钉在一起,L垂直平分AB,P1,P2,P3,…是L上的点,分别量一量点P1,P2,P3,…到A与B的距离,你有什么发现?证法一:利用判定两个三角形全等.如图,在△APC和△BPC中,⇒△APC≌△BPC⇒PA=PB.证法二:利用轴对称性质.由于点C是线段AB的中点,将线段AB沿直线L对折,线段PA与PB是重合的,因此它们也是相等的.带着探究1的结论我们来看下面的问题.[探究2]如图,用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么?探究结论:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.上述两个探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.所以线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合.三、随堂练习如图,AB=AC,MB=MC.直线AM是线段BC的垂直平分线吗?四、课时小结这节课通过探索轴对称图形对称性的过程,了解了线段的垂直平分线的有关性质,同学们应灵活运用这些性质来解决问题.五、课后作业课本65页习题13.1的第3、4题.六.教学反思本节证明了线段的中垂线的性质定理及判定定理、用尺规作线段的中垂线.在课堂中,学生证明过程、作图方法原理的理解及掌握都比较好,但要强调作业中不用三角板等工具而要用尺规来作图,解决实际问题时可以直接用定理而不是借助于全等13.1.2线段的垂直平分线的性质教学目标知识与技能1.探索作出轴对称图形的对称轴的方法.掌握轴对称图形对称轴的作法.2.在探索的过程中,培养学生分析、归纳的能力.过程与方法1.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯.2.在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步说理和进行简单推理的能力.情感、态度与价值观1.体会数学与现实生活的联系,增强克服困难的勇气和信心.2.会应用数学知识解决一些简单的实际问题,增强应用意识.【教学重难点】重点:轴对称图形对称轴的作法.难点:探索轴对称图形对称轴的作法.【教学过程】一、提出问题,引入新课1.有时我们感觉两个图形是轴对称的,如何验证呢?不折叠图形,你能比较准备地作出轴对称图形的对称轴吗?2.轴对称图形性质.如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.轴对称图形的对称轴,是任何一对对称点所连线段的垂直平分线.3.找到一对对应点,作出连结它们的线段的垂直平分线,就可以得到这两个图形的对称轴了.4.问题:如何作出线段的垂直平分线?二、导入新课要作出线段的垂直平分线,根据垂直平分线的判定定理,到线段两端点距离相等的点在这条线段的垂直平分线上,又由两点确定一条直线这个公理,那么必须找到两个到线段两端点距离相等的点,这样才能确定已知线段的垂直平分线.例1尺规作图:经过已知直线外一点作这条直线的垂线.已知:直线AB和AB外一点C.(如下图)求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使点K和点C在AB的两旁.(2)以点C为圆心,CK长为半径作弧,交AB于点D和点E.(3)分别以点D和点E为圆心,大于12DE的长为半径作弧,两弧相交于点F.(4)作直线CF.直线CF就是所求作的垂线.根据上面作法中的步骤,想一想,为什么直线CF就是所求作的垂线?请与同伴进行交流.例2:如图(1),点A和点B关于某条直线成轴对称,你能作出这条直线吗?已知:线段AB[如图(1)].求作:线段AB的垂直平分线.作法:如图(2)(1)分别以点A、B为圆心,以大于AB的长为半径作弧,两弧相交于C和D两点;(2)作直线CD.直线CD就是线段AB的垂直平分线.三、随堂练习如图,与图形A成轴对称的是哪个图形?画出它们的对称轴.A B C D答案:与A成轴对称的是图形D(或B).四、课时小结本节课我们探讨了尺规作图,作出线段的垂直平分线.并据此得到作出一个轴对称图形一条对称轴的方法:找出轴对称图形的任意一对对应点,连接这对对应点,作出连线的垂直平分线,该垂直平分线就是这个轴对称图形的一条对称轴.五、课后作业课本65页习题13.1的第5、10、11、12题.六.教学反思通过前两节的学习,这节画对称轴的习题课就可以全部交由学生自己完成.画轴对称图形的对称轴就是利用两个对称点找到对称轴,即画出这对对应点连线的垂直平分线,让学生用尺规作图,独立完成.13.2 画轴对称图形第1课时教学目标1.能够作轴对称图形;2.通过实际操作,掌握作轴对称图形的方法.3.能够用轴对称的知识解决相应的数学问题.教学重难点重点:能够按要求作出简单平面图形经过一次对称后的图形.难点:较复杂图形的轴对称图形的画法.教学过程一、问题导入我们前面学习了轴对称图形以及轴对称图形的一些相关的性质.如果有一个图形和一条直线,如何画出这个图形关于这条直线对称的图形呢?这节课我们一起来学习作轴对称图形的方法.二、探究新知[活动] 在一张半透明纸的左边部分,画一只左脚印,把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印.这时,右脚印和左脚印成轴对称,折痕所在的直线就是它们的对称轴,并且连接任意一对对应点的线段被对称轴垂直平分.类似地,请你再将一个图形做一做,看看能否得到同样的结论.(1)认真观察,左脚印和右脚印有什么关系?(成轴对称)(2)对称轴是折痕所在的直线,即直线l,它与图中的线段PP′是什么关系?(直线l垂直平分线段PP′)[思考1] 如何画一个点的对称图形?例1 画出点A关于直线l的对称点A′.画法:(1)过点A作对称轴l的垂线,垂足为B;(2)延长AB到A′,使得BA′=AB.点A′就是点A关于直线l的对称点.[思考2] 如何画一条直线的对称图形?例2 已知线段AB,画出AB关于直线l的对称线段.画法: (1)画出点A关于直线l的对称点A′.(2)画出点B关于直线l的对称点B′.(3)连接点A′和点B′成线段A′B′.线段A′B′即为所求.[思考3] 如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?例3 如图,已知△ABC和直线l,画出与△ABC关于直线l对称的图形.画法:(1)过点A画直线l的垂线,垂足为O,在垂线上截取OA′=OA,A′就是点A关于直线l的对称点.(2)同理,分别画出点B,C关于直线l的对称点B′,C′.(3)连接A′B′,B′C′,C′A′,则△A′B′C′即为所求.三、课堂练习1.教材第68页练习第1,2题2.下列图形中,点P与P′关于直线MN对称的图形是( )四、课堂小结几何图形都可以看成由点组成,对于某些图形,只要画出图形中的一些特殊点(如线段的端点),连接这些对称点,就可以得到图形的对称图形.五.布置作业:教材习题13.2第1题.六.课后反思几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.第2课时教学目标1.能在直角坐标系中画点关于坐标轴的对称点.2.能表示点关于坐标轴对称的点的坐标,表示关于平行于坐标轴的直线的对称点的坐标.3.能够经过探索利用坐标来表示轴对称;教学重难点重点:用坐标表示点关于坐标轴对称的点的坐标.难点:找对称点的坐标之间的关系.教学过程一、问题导入教材图13.2-3是一张老北京城的示意图,其中西直门和东直门是关于中轴线对称的,如果以天安门为原点,分别以长安街和中轴线为x轴和y 轴建立平面直角坐标系,根据如图所示的东直门的坐标,你能说出西直门的坐标吗?二、探究新知(1)【探究1】(1)在直角坐标系中画出下列已知点A(2,-3),B(-1,2),C(-6,-5),D(3,5),E(4,0),F(0,-3);(2)画出这些点分别关于x轴、y轴对称的点,并填写表格;(3)请你仔细观察点的坐标,你能发现关于坐标轴对称的点的坐标有什么规律吗?(4)请你想办法检验你所发现的规律的正确性,说说你是如何检验的.归纳:关于x轴对称的点的坐标规律是:横坐标相同,纵坐标互为相反数.(2)【探究2】在同一平面直角坐标系内描出以上各点关于y轴的对称点并写出坐标,观察关于y轴对称的两个点的坐标有什么规律?归纳:关于y轴对称的点的坐标规律是:纵坐标相同,横坐标互为相反数.(3)【探究3】按以上规律,说出点P(x,y)关于x轴的对称点P1的坐标,再说出P1关于y轴的对称点P2坐标.观察点P经过两次轴对称所得点P2的坐标有什么规律?归纳:一个点经历关于x轴、y轴两次轴对称得到的对称点坐标规律是:横坐标互为相反数,纵坐标也互为相反数.在以后学了“中心对称”后,两点被称为关于原点对称.三、举例分析例1:已知A(2,a),B(-b,4),分别根据下列条件求a,b的值.(1)A,B关于y轴对称;(2)A,B关于x轴对称;(3)A,C关于x轴对称,B,C关于y轴对称.解析:(1)A,B关于y轴对称,说明纵坐标相同,横坐标相反,a=4,b=2;(2)A,B关于x轴对称,说明横坐标相同,纵坐标相反,a=-4,b=-2;(3)A,C关于x轴对称,B,C关于y轴对称,说明A,B经过x轴、y轴两次对称变换,即关于原点对称,横、纵坐标各互为相反数,a=-4,b=2.例2:如下图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD关于y轴和x轴对称的图形.学生独立完成,教师用多媒体出示出正确答案并讲评.四、课堂巩固教材第70页练习第1,2.3题五、课堂小结(1)点关于某条直线对称的点的坐标可以通过寻找线段之间的关系来求.(2)点(x,y)关于x轴对称的点的坐标为(x,-y),即横坐标相等,纵坐标互为相反数;点(x,y)关于y轴对称的点的坐标为(-x,y)即横坐标互为相反数,纵坐标相等.六.布置作业教材习题13.2第3,4题.七:课后反思本节课通过学生熟悉、向往的北京城内天安门、长安街、东直门等的方位引入新课,能强烈地吸引学生的注意力,较好地激发学生的学习兴趣.其中归纳规律后检验其正确性是科学研究问题的一个必不可少的步骤,并通过一系列的练习培养学生思维的流畅性,也使学生特别是学有困难的学生都能达到基本的学习目标.13.3.1 等腰三角形第1课时教学目标1.理解并掌握等腰三角形的性质.2.运用等腰三角形的性质进行证明和计算.3.观察等腰三角形的对称性、发展形象思维.教学重难点重点:等腰三角形的性质及应用.难点:等腰三角形的性质的证明.教学过程一、情境导入教师预先做出各种几何图形,包括圆、长方形、正方形、等腰梯形、一般三角形、等腰三角形、等边三角形等.让同学们抢答哪些是轴对称图形,提问什么是轴对称图形,什么样的三角形才是轴对称图形.引入今天所要讲的课题——等腰三角形.我们知道,有两条边相等的三角形是等腰三角形,下面我们利用轴对称的知识来研究等腰三角形.二、探究新知(一)活动1:如图,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC有什么特点?1.学生活动:学生动手操作,从剪出的图形观察△ABC的特点,可以发现AB=AC.2.教师活动:让学生回顾等腰三角形的概念:有两边相等的三角形叫做等腰三角形,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.如下图.(二)活动2:把活动1中剪出的△ABC沿折痕AD对折,找出其中重合的1.学生活动:学生经过观察,独立完成上表,然后小组讨论交流,从表中总结等腰三角形的性质.2.教师活动:引导学生归纳.性质1 等腰三角形的两个底角相等(简写成“等边对等角”);性质2 等腰三角形顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).(三)活动3:你能用所学知识验证上述性质吗?如图,在△ABC 中,AB =AC.求证:∠B=∠C.证明:作BC 边上的中线AD ,如图.在△ABD 和△ACD 中,⎩⎨⎧AB =AC ,AD =AD ,BD =CD ,所以△ABD≌△ACD(SSS ),所以∠B=∠C.三、应用提高例1 如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,求△ABC 各角的度数.1.学生活动:小组合作,分组讨论、交流.2.教师活动:引导学生分析图形中关于角的数量关系.(三角形的内角、外角,等腰三角形的底角)四、课堂小结(1)等边对等角;(2)等腰三角形的三线合一;(3)等腰三角形常用辅助线作法(作底边上的高、作底边上的中线、作顶角的平分线).五.布置作业:教材习题13.3第1,3,7题.六.课后反思本节课重点要让学生通过动手翻折等腰三角形纸片得出等腰三角形“两个底角相等”、“三线合一”的性质.设计理念是让学生通过感官认识、折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证,使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目的.第2课时教学目标1.理解并掌握等腰三角形的判定方法.2.运用等腰三角形的判定进行证明和计算.教学重难点重点:等腰三角形的判定方法.难点:等腰三角形的判定方法的证明.教学过程一、提出问题出示教材第77页“思考”.学生思考,回答后教师提问:在一般三角形中,如果有两个角相等,那么它们所对的边有什么关系?学生猜想它们所对的边相等.即如果一个三角形有两个角相等,那么这两个角所对的边也相等.二、解决问题教师引导提示,学生根据提示画出图形,并写出已知、求证.已知:在△ABC 中,∠B =∠C.求证:AB =AC.如图,在△ABC 中,∠B =∠C,作△ABC 的角平分线AD.在△BAD 和△CAD 中,⎩⎨⎧∠1=∠2,∠B =∠C,AD =AD ,∴△BAD ≌△CAD(AAS ),∴AB =AC.结论:归纳等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等,简称:“等角对等边”.三、应用举例1.出示教材例2.引导学生根据命题画出图形,利用角平分线的性质及“等边对等角”来证明.学生讨论后,自己完成证明过程.例2 求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC.(如图所示)求证:AB =AC.分析:要证明AB =AC.可先证明∠B=∠C.因为∠1=∠2,所以可以设法找出∠B,∠C 与∠1,∠2的关系.证明:∵AD∥BC,∴∠1=∠B(______________________),∠2=∠C(______________________).而已知∠1=∠2,所以∠B=∠C.∴AB=AC(______________).2.出示教材例3.让学生自学例3.例3 已知等腰三角形底边长为a,底边上的高的长为h,求作这个等腰三角形.作法:(1)作线段AB=a.(2)作线段AB的垂直平分线MN,与AB相交于点D.(3)在MN上取一点C,使DC=h.(4)连接AC,BC,则△ABC就是所求作的等腰三角形.四、课堂小结1.等腰三角形的判定方法是什么?2.等腰三角形的性质与判定既有区别又有联系,你能总结一下吗?五、布置作业教材习题13.3第2,8,10题.六.课后反思学生刚刚学过等腰三角形的性质,对等腰三角形已经有了一定的了解和认识.因此在课堂教学中先引出等腰三角形的判定定理及推论,并能够灵活应用它进行有关论证和计算.发展学生的动手、归纳猜想能力;发展学生证明用文字表述的几何命题的能力;使它们进一步掌握归纳思维方法,领会数学分类思想、转化思想.13.3.2 等边三角形第1课时教学目标1.掌握等边三角形的定义.2.理解等边三角形的性质与判定.教学重难点重点:等边三角形的性质和判定.难点:等边三角形的性质的应用.教学过程一、问题引入在等腰三角形中,如果底边与腰相等,会得到什么结论?二、自主探究1.等边三角形的定义底边和腰相等的等腰三角形叫做等边三角形.2.思考:把等腰三角形的性质用于等边三角形,能得到什么结论?一个三角形的三个内角满足什么条件才是等边三角形?(1)边:三条边都相等.(2)角:三个角都相等,并且每一个角都等于60°.3.在△ABC中,∠A=∠B=∠C,你能得到AB=BC=CA吗?为什么?你从中能得到什么结论?结论:三个角都相等的三角形是等边三角形.4.在△ABC中,AB=AC,∠A=60°.(1)求证:△ABC是等边三角形;(2)如果把∠A=60°改为∠B=60°或∠C=60°,那么结论还成立吗?(3)由上你可以得到什么结论?结论:有一个角是60°的等腰三角形是等边三角形.5.小结:等边三角形的性质和判定(1)等边三角形三个角都相等,并且每一个角都等于60°(2)三个角都相等的三角形是等边三角形(3)有一个角是60°的等腰三角形是等边三角形.三、应用举例1.教材例4.例4 如图,△ABC是等边三角形,DE∥BC,分别交AB,AC于点D,E.求证:△ADE是等边三角形.证明:∵△ABC是等边三角形,∴∠A=∠B=∠C.∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠A=∠ADE=∠AED,∴△ADE是等边三角形.2.归纳:在判定三角形是等边三角形时:(1)若三角形是一般三角形,只要找三个角相等或三条边相等;(2)若三角形是等腰三角形,一般是找一个角等于60°.四、巩固练习1.教材第80页练习第1,2题.2.补充题:(1).如图,已知等边△ABC,点D,E,F分别是各边上的一点,且AD=BE =CF.求证:△DEF是等边三角形.(2).如图,已知等边△ABC,点D是AC的中点,且CE=CD,DF⊥BE.求证:BF=EF.教师提出要求,补充题1,2可以让学生板书过程.五、总结提高小结:通过本节课的学习,你了解到了等边三角形有哪些特点?(1)等边三角形三个角都相等,并且每一个角都等于60°(2)三个角都相等的三角形是等边三角形(3)有一个角是60°的等腰三角形是等边三角形.六.布置作业:教材习题13.3第12,14题.七.课后反思教学中设计了两个问题:把等腰三角形的性质用于等边三角形,你能得到什么结论?类似地,你又能得到哪些等边三角形的判定方法?让学生先自主探索再合作交流,小组内、小组间充分讨论后概括所得结论.这既巩固应用等腰三角形的知识,又类比探索等边三角形性质定理和判定定理的方法,并使学生加深对等腰三角形与等边三角形的联系与区别的理解.。
13.1 轴对称学校:___________姓名:___________班级:___________一.选择题(共15小题)1.下列四个图案中,不是轴对称图案的是()A.B.C.D.2.如图所示的五角星是轴对称图形,它的对称轴共有()A.1条B.3条C.5条D.无数条3.如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.4.如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点(P不与AA′共线),下列结论中错误的是()A.△AA′P是等腰三角形B.MN垂直平分AA′,CC′C.△ABC与△A′B′C′面积相等D.直线AB、A′B′的交点不一定在MN上5.下列说法中错误的是()A.两个对称的图形对应点连线的垂直平分线就是它们的对称轴B.关于某直线对称的两个图形全等C.面积相等的两个四边形对称D.轴对称指的是两个图形沿着某一条直线对折后能完全重合6.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到()A.B.C.D.7.如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是()A.等边三角形B.等腰直角三角形C.等腰三角形D.含30°角的直角三角形8.如图,桌面上有M、N两球,若要将M球射向桌面的任意一边,使一次反弹后击中N球,则4个点中,可以瞄准的是()A.点A B.点B C.点C D.点D9.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50° B.70° C.75° D.80°10.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A.90° B.95° C.100°D.105°11.如图所示,△ABC中,AC=5,AB=6,BC=9,AB的垂直平分线交BC于点D,则△ACD的周长是()A.11 B.14 C.15 D.2012.从平面镜里看到背后墙上电子钟的示数如图所示,这时的正确时间是()A.21:05 B.21:15 C.20:15 D.20:1213.小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是()A.B.C.D.14.如图,点P在∠MON的内部,点P关于OM,ON的对称点分别为A,B,连接AB,交OM 于点C,交ON于点D,连接PC,PD.若∠MON=50°,则∠CPD=()A.70° B.80° C.90° D.100°15.如图,在△ABC中,∠C=90°,点A关于BC边的对称点为A′,点B关于AC边的对称点为B′,点C关于AB边的对称点为C′,则△ABC与△A′B′C′的面积之比为()A.B.C.D.二.填空题(共8小题)16.如图,某英语单词由四个字母组成,且四个字母都关于直线l对称,则这个英语单词的汉语意思为.17.如图,一束光线从点O射出,照在经过A(1,0)、B(0,1)的镜面上的点D,经AB 反射后,反射光线又照到竖立在y轴位置的镜面,经y轴再反射的光线恰好通过点A,则点D的坐标为.18.如图,正方形ABCD的边长为5cm,则图中阴影部分的面积为cm2.19.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为.20.某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图所示,则该汽车的号码是.21.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、M 在BC上,则∠EAN= .22.如图,在△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于点E,BD=4,△ABE的周长为14,则△ABC的周长为.23.如图,直线l是四边形ABCD的对称轴.若AD∥BC,则下列结论:(1)AB∥CD;(2)AB=BC;(3)BD平分∠ABC;(4)AO=CO.其中正确的有(填序号).三.解答题(共4小题)24.已知如图,在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连接CE.(1)求∠AEC的度数;(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论.25.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=5,求△ADE的周长.(2)若∠BAC=120°,求∠DAE的度数.26.如图,点P是∠AOB外的一点,点Q是点P关于OA的对称点,点R是点P关于OB的对称点,直线QR分别交∠AOB两边OA,OB于点M,N,连结PM,PN,如果∠PMO=33°,∠PNO=70°,求∠QPN的度数.27.如图,在△ABC中,∠ABC=45°,点P为边BC上的一点,BC=3BP,且∠PAB=15°点C 关于直线PA的对称点为D,连接BD,又△APC的PC边上的高为AH(1)求∠BPD的大小;(2)判断直线BD,AH是否平行?并说明理由;(3)证明:∠BAP=∠CAH.参考答案与试题解析一.选择题(共15小题)1.解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.2.解:五角星的对称轴共有5条,故选:C.3.解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意;故选:D.4.解:∵△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,∴△AA′P是等腰三角形,MN垂直平分AA′,CC′,这两个三角形的面积相等,A、B、C 选项正确;直线AB,A′B′关于直线MN对称,因此交点一定在MN上.D错误;故选:D.5.解:A、B、D都正确;C、面积相等的两个四边形不一定全等,故不一定轴对称,错误.故选:C.6.解:观察选项可得:只有C是轴对称图形.故选:C.7.解:因为三角形是轴对称图形,则该三角形是等腰三角形,根据有一个内角是60°的等腰三角形是等边三角形.故选:A.8.解:可以瞄准点D击球.故选:D.9.解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠DAC=70°,故选:B.10.解:∵CD=AC,∠A=50°,∴∠ADC=∠A=50°,根据题意得:MN是BC的垂直平分线,∴CD=BD,∴∠BCD=∠B,∴∠B=∠ADC=25°,∴∠ACB=180°﹣∠A﹣∠B=105°.故选:D.11.解:∵MN是AB的垂直平分线,∴DA=DB,∴△ACD的周长=AD+CD+AC=BD+CD+AC=BC+AC=14,故选:B.12.解:由图分析可得题中所给的“20:15”与“21:05”成轴对称,这时的时间应是21:05.故选:A.13.解:实际时间为8点的时针关于过12时、6时的直线的对称点是4点,那么8点的时钟在镜子中看来应该是4点的样子.故选:C.14.解:如图,连接OA、OB、OP,设PA与OM交于点E,PB与ON交于点F.∵点P关于OM,ON的对称点分别为A,B,∴OA=OP=OB,CA=CP,DP=DB,∠AOC=∠COP,∠POD=∠DOB,∴∠AOB=∠AOC+∠COP+∠POD+∠DOB=2∠COD=100°,∴∠OAB=∠OBA=(180°﹣∠AOB)=40°.设∠COP=α,∠DOP=β,则α+β=50°.∵OA=OP,∠AOP=2α,∴∠OPA=∠OAP=(180°﹣2α)=90°﹣α,∵∠OAB=40°,∴∠CPA=∠CAP=∠OAP﹣∠OAB=50°﹣α.同理,∠DPB=50°﹣β.∵∠EPF=360°﹣∠EOF﹣∠OEP﹣∠OFP=360°﹣50°﹣90°﹣90°=130°,∴∠CPD=∠EPF﹣(∠CPA+∠DPB)=130°﹣(50°﹣α+50°﹣β)=30°+(α+β)=80°.故选:B.15.解:如图,连接CC'并延长交A'B'于D,连接CB',CA',∵点A关于BC边的对称点为A′,点B关于AC边的对称点为B′,点C关于AB边的对称点为C′,∴AC=A'C,BC=B'C,∠ACB=∠A'CB',AB垂直平分CC',∴△ABC≌△A'B'C(SAS),∴S△ABC=S△A'B'C,∠A=∠AA'B',AB=A'B',∴AB∥A'B',∴CD⊥A'B',∴根据全等三角形对应边上的高相等,可得CD=CE,∴CD=CE=EC',∴S△A'B'C=S△A'B'C',∴S△ABC=S△A'B'C',∴△ABC与△A′B′C′的面积之比为,故选:B.二.填空题(共8小题)16.解:如图,这个单词所指的物品是书.故答案为:书.17.解:如图所示,∵点O关于AB的对称点是O′(1,1),点A关于y轴的对称点是A′(﹣1,0)设AB的解析式为y=kx+b,∵(1,0),(0,1)在直线上,∴,解得k=﹣1,∴AB的表达式是y=1﹣x,同理可得O′A′的表达式是y=+,两个表达式联立,解得x=,y=.故答案为:(,).18.解:由题意得:S阴影=×5×5=12.5(cm2).故阴影部分的面积为12.5cm2.故答案为:12.5.19.解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=70°,可得∠B′OG+∠BOG=110°∴∠B′OG=×110°=55°.20.解:根据镜面对称的性质,题中所显示的图片中的数字与“B6395”成轴对称,则该汽车的号码是B6395.21.解:∵△ABC中,∠BAC=106°,∴∠B+∠C=180°﹣∠BAC=180°﹣106°=74°,∵EF、MN分别是AB、AC的中垂线,∴∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN=74°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=106°﹣74°=32°.故答案为32°.22.解:∵BC边上的垂直平分线DE交BC于点D,交AC于点E,BD=4,∴BE=EC,BC=2BD=8;又∵△ABE的周长为14,∴AB+AE+BE=AB+AE+EC=AB+AC=14;∴△ABC的周长是:AB+AC+BC=14+8=22;故答案是:22.23.解:如图,∵直线l是四边形ABCD的对称轴,∴∠1=∠2,∠3=∠4,∵AD∥BC,∴∠2=∠3,∴∠1=∠3=∠4,∴AB∥CD,AB=BC,故(1)(2)正确;由轴对称的性质,AC⊥BD,∴BD平分∠ABC,AO=CO(等腰三角形三线合一),故(3)(4)正确.综上所述,正确的是(1)(2)(3)(4).故答案为:(1)(2)(3)(4).三.解答题(共4小题)24.解:(1)∵点D是BC边的中点,DE⊥BC,∴DE是线段BC的垂直平分线,∴EB=EC,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°;(2)AE2+EB2=AC2.∵∠AEC=90°,∴AE2+EC2=AC2,∵EB=EC,∴AE2+EB2=AC2.25.解:(1)∵边AB、AC的垂直平分线分别交BC于D、E,∴DA=DB,EA=EC,∴△ADE的周长=AD+DE+AE=DB+DE+EC=BC=5;(2)∵∠BAC=120°,∴∠B+∠C=60°,∵DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∴∠DAE=∠BAC﹣(∠DAB+∠EAC)=∠BAC﹣(∠B+∠C)=60°.26.解:∵点Q和点P关于OA的对称,点R和点P关于OB的对称∴直线OA、OB分别是PQ、PR的中垂线,∴MP=MQ,NP=NR,∴∠PMO=∠QMO,∠PNO=∠RNO,∵∠PMO=3 3°,∠PNO=70°∴∠PMO=∠QMO=33°,∠PNO=∠RNO=70°∴∠PMQ=66°,∠PNR=140°∴∠MQP=57°,∴∠PQN=123°,∠PNQ=40°,∴∠QPN=17°.27.解:(1)∵∠PAB=15°,∠ABC=45°,∴∠APC=15°+45°=60°,∵点C关于直线PA的对称点为D,∴PD=PC,AD=AC,∴△ADP≌△ACP,∴∠APC=∠APD=60°,∴∠BPD=180°﹣120°=60°;(2)直线BD,AH平行.理由:∵BC=3BP,∴BP=PC=PD,如图,取PD中点E,连接BE,则△BEP为等边三角形,△BCDE为等腰三角形,∴∠BEP=60°,∴∠BDE=∠BEP=30°,∴∠DBP=90°,即BD⊥BC.又∵△APC的PC边上的高为AH,∴AH⊥BC,∴BD∥AH;(3)如图,过点A作BD、DP的垂线,垂足分别为G、F.∵∠APC=∠APD,即点A在∠DPC的平分线上,∴AH=AF.∵∠CBD=90°,∠ABC=45°,∴∠GBA=∠CBA=45°,即点A在∠GBC的平分线上,∴AG=AE,∴AG=AF,∴点A在∠GDP的平分线上.又∵∠BDP=30°,∴∠GDP=150°,∴∠ADP=×150°=75°,∴∠C=∠ADP=75°,∴Rt△ACH中,∠CAH=15°,∴∠BAP=∠CAH.。