距离判别法贝叶斯判别法和费歇尔判别法的异同
- 格式:docx
- 大小:37.00 KB
- 文档页数:4
第二章2.1.试表达多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=-- 其中1a x b ≤≤,2c x d ≤≤。
求〔1〕随机变量1X 和2X 的边缘密度函数、均值和方差; 〔2〕随机变量1X 和2X 的协方差和相关系数; 〔3〕判断1X 和2X 是否相互独立。
〔1〕解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()dx cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()ddcc d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰12122222()()2[()2()]()()()()dd cc d c x a x b a t x a t dt b a d c b a d c ------=+----⎰2212122222()()[()2()]1()()()()d cdcd c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a +,方差为()212b a -。
距离判别法和Bayes判别法[color=black][size=3]距离判别法和Bayes判别法是判别分析中常用的两类判别法。
多元统计书上一般都有介绍。
简单说就是[font=MS Shell Dlg]判别给定的样本属于哪一类的。
比方说一堆样本,分好几类,样本有n个属性。
把这堆样本输入程序训练好后,程序就可以判别新的样本属于哪一类了。
[/font]我把它们做成了一个简单的界面,大家可以按界面提示操作下。
为了方便我准备了一些数据,见附件。
[font=MS Shell Dlg]train是训练样本(判别准备前用的),test是测试样本,即新数据,用来判别新样本中每一个属于哪一类的。
这里属性个数n=3。
实际使用时,n可以不局限于3。
训练样本只要按照附件中的格式(即第一列为类名,其余列为属性)存为xls文件即可。
测试样本直接就是由属性列组成的,每一行表示一个样本。
[/font][/size][/color][font=MS Shell Dlg][size=3]下面是代码(注释比较详细,用nested function写回调函数可以供GUI 初学者借鉴):[/size][/font][font=MS Shell Dlg][size=3][code]function DiscriminantMethodsfig=figure('defaultuicontrolunits','normalized','name','各类判别方法比较','numbertitle','off','menubar','none');%主界面,返回主界面句柄figUiButtonGroupH = uibuttongroup('Position',[0.55 0.08 0.40 0.85],'title','各判别方法','fontsize',12,'bordertype','etchedout');%群组对象,并返回句柄DistanceH = uicontrol('Style','Radio','String','距离判别法','fontsize',12,'pos',[0.05 0.73 0.9 0.15],'parent',UiButtonGroupH);%距离判别法的选项BayesH = uicontrol('Style','Radio','String','Bayes判别法','fontsize',12,'pos',[0.05 0.52 0.9 0.15],'parent',UiButtonGroupH);%Bayes判别法的选项FisherH = uicontrol('Style','Radio','String','Fisher判别法','fontsize',12,'pos',[0.05 0.31 0.9 0.15],'parent',UiButtonGroupH);%Fisher判别法的选项%下面几行建立相关按钮控件。
判别分析判别分析是用以判别个体所属群体的一种统计方法。
最常用的判别方法:距离判别法、Bayes 判别法、Fisher 判别法。
1、距离判别法最为直观,其想法简单自然,就是计算新样品x 到各组的距离,然后将该样品判为离它距离最近的那一组。
定义:设组π的均值为μ,协方差矩阵为∑,x 是一个样品(样本),称()()μμπ-∑'-=-x x x d 1),(为x 到总体π的马氏距离或统计距离。
判别准则:不妨假设有k 组,记为k ππ...1,,均值分别为k μμ...1,,协方差矩阵分别为k ∑∑...,1,,若),(min ),(212i ki l x d x d ππ≤≤=,则判断x 来自第l 组。
注1:若k ∑==∑...1,上述准则可以化简,如果不确定是否相等,可两种情况都试试,那种规则误判概率小选哪种。
注2:实际中k μμ...1,以及k ∑∑...,1,均未知,用估计量代替。
2、Bayes 判别法(1)最大后验概率准则设有k 个组k ππ...1,,且组i π的概率密度为()x f i ,样品x 来自组i π的先验概率为,,...,1,k i p i =且.11=∑=ki i p 利用Bayes 理论,x 属于i π的后验概率(即当样品x 已知时,它属于i π的先验概率)为()().,...,2,1,)(1k i x f p x f p x P k j j j i i i ==∑=π最大后验概率法是采用如下的判别规则:()x P x P x l ji l l πππ≤≤=∈1max )(,若. (2)最小平均误判代价准则()()()()∑∑≠=≤≤≠==∈ki j j j j k i j k l j j j l j i c x f p j l c x f p x 111m i n ,若π,其中)(j i c 表示将来自j π的x 判为i π的代价。
例:设有321,,πππ三个组,欲判别某样品0x 属于何组,已知()()().4.2,63.0,10.0,30.0,65.0,05.0030201321======x f x f x f p p p 计算:()()004.04.230.063.065.010.005.010.005.0)(1111=⨯+⨯+⨯⨯==∑=k j j j x f p x f p x P π ()361.02=x P π()635.03=x P π假定误判代价矩阵为95.4110063.065.020010.005.0:305.36504.230.01010.005.0:239.51604.230.02063.065.0:1=⨯⨯+⨯⨯==⨯⨯+⨯⨯==⨯⨯+⨯⨯=l l l 3、Fisher 判别基本思想:先对原始数据进行降维,然后对新数据使用距离判别法进行判别。
判别分析--费希尔判别、贝叶斯判别、距离判别判别分析⽐较理论⼀些来说,判别分析就是根据已掌握的每个类别若⼲样本的数据信息,总结出客观事物分类的规律性,建⽴判别公式和判别准则;在遇到新的样本点时,再根据已总结出来的判别公式和判别准则,来判断出该样本点所属的类别。
1 概述三⼤类主流的判别分析算法,分别为费希尔(Fisher)判别、贝叶斯(Bayes)判别和距离判别。
具体的,在费希尔判别中我们将主要讨论线性判别分析(Linear Discriminant Analysis,简称LDA)及其原理⼀般化后的衍⽣算法,即⼆次判别分析(Quadratic Discriminant Analysis,简称QDA);⽽在贝叶斯判别中将介绍朴素贝叶斯分类(Naive Bayesian Classification)算法;距离判别我们将介绍使⽤最为⼴泛的K最近邻(k-Nearest Neighbor,简称kNN)及有权重的K最近邻( Weighted k-Nearest Neighbor)算法。
1.1 费希尔判别费希尔判别的基本思想就是“投影”,即将⾼维空间的点向低维空间投影,从⽽简化问题进⾏处理。
投影⽅法之所以有效,是因为在原坐标系下,空间中的点可能很难被划分开,如下图中,当类别Ⅰ和类别Ⅱ中的样本点都投影⾄图中的“原坐标轴”后,出现了部分样本点的“影⼦”重合的情况,这样就⽆法将分属于这两个类别的样本点区别开来;⽽如果使⽤如图8-2中的“投影轴”进⾏投影,所得到的“影⼦”就可以被“类别划分线”明显地区分开来,也就是得到了我们想要的判别结果。
原坐标轴下判别投影轴下判别我们可以发现,费希尔判别最重要的就是选择出适当的投影轴,对该投影轴⽅向上的要求是:保证投影后,使每⼀类之内的投影值所形成的类内离差尽可能⼩,⽽不同类之间的投影值所形成的类间离差尽可能⼤,即在该空间中有最佳的可分离性,以此获得较⾼的判别效果。
对于线性判别,⼀般来说,可以先将样本点投影到⼀维空间,即直线上,若效果不明显,则可以考虑增加⼀个维度,即投影⾄⼆维空间中,依次类推。
复习题原文: 答案:4.2 试述判别分析的实质。
4.3 简述距离判别法的基本思想和方法。
4.4 简述贝叶斯判别法的基本思想和方法。
4.5 简述费希尔判别法的基本思想和方法。
4.6 试析距离判别法、贝叶斯判别法和费希尔判别法的异同。
4.2 试述判别分析的实质。
答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。
设R1,R2,…,Rk 是p 维空间R p 的k 个子集,如果它们互不相交,且它们的和集为 ,则称 , 为 的一个划分。
判别分析问题实质上就是在某种意义上,以最优的性质对p 维空间 构造一个“划分”,这个“划分”就构成了一个判别规则。
4.3 简述距离判别法的基本思想和方法。
答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。
其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。
①两个总体的距离判别问题设有协方差矩阵∑相等的两个总体G 1和G 2,其均值分别是?1和? 2,对于一个新的样品X ,要判断它来自哪个总体。
计算新样品X 到两个总体的马氏距离D 2(X ,G 1)和D 2(X ,G 2),则X ,D 2(X ,G 1) D 2(X ,G 2)X ,D 2(X ,G 1)> D 2(X ,G 2, 具体分析,记()()W '=-X αX μ 则判别规则为 X ,W(X) X ,W(X)<0②多个总体的判别问题。
设有k 个总体k G G G ,,,21 ,其均值和协方差矩阵分别是和k ΣΣΣ,,,21 ,且ΣΣΣΣ====k 21。
计算样本到每个总体的马氏距离,到哪个总体的距离最小就属于哪个总体。
具体分析,21(,)()()D G ααα-'=--X X μΣX μ取ααμΣI 1-=,αααμΣμ121-'-=C ,k ,,2,1 =α。
距离判别法贝叶斯判别法和费歇尔判别法的异同
距离判别法、贝叶斯判别法和费歇尔判别法是三种常见的分类方法。
它们都是基于已知类别的数据集,通过学习得到一个分类模型,然后用该模型对未知数据进行分类。
虽然它们都属于分类方法,但是它们之间还是存在一些异同点的。
一、距离判别法
距离判别法是根据样本之间的距离来进行分类的方法。
具体地说,对于一个未知样本,计算它与每个已知类别中心之间的距离,然后将其归为距离最近的那个类别。
其中“中心”可以是类别内所有样本的平均值或者其他统计量。
优点:
1. 简单易懂:距离判别法直观易懂,容易理解。
2. 计算简单:计算样本与中心之间的距离只需要进行简单的数学运算即可。
缺点:
1. 对异常值敏感:由于距离判别法是基于样本之间的距离来进行分类,因此如果存在异常值,则可能会影响分类结果。
2. 需要提前确定中心:在使用距离判别法时需要提前确定每个类别的
中心,而这个过程可能会比较困难。
二、贝叶斯判别法
贝叶斯判别法是一种基于概率的分类方法。
它假设每个类别都服从某
种概率分布,然后根据贝叶斯公式计算出每个类别对于给定样本的后
验概率,最终将样本归为后验概率最大的那个类别。
优点:
1. 可以处理多维特征:与距离判别法不同,贝叶斯判别法可以处理多
维特征。
2. 对异常值不敏感:由于贝叶斯判别法是基于概率分布来进行分类的,因此对于一些异常值,它可以通过概率分布来进行修正。
缺点:
1. 需要大量数据:由于贝叶斯判别法需要估计每个类别的概率分布,因此需要大量的数据才能得到准确的结果。
2. 对先验概率敏感:在使用贝叶斯判别法时需要提前确定每个类别的先验概率,而这个过程可能会比较困难。
三、费歇尔判别法
费歇尔判别法是一种基于方差分析理论的分类方法。
它假设每个类别服从某种概率分布,然后根据方差分析的原理来计算每个类别对于给定样本的“可信度”,最终将样本归为“可信度”最高的那个类别。
优点:
1. 可以处理多维特征:与距离判别法不同,费歇尔判别法可以处理多维特征。
2. 对异常值不敏感:由于费歇尔判别法是基于方差分析理论来进行分类的,因此对于一些异常值,它可以通过方差分析来进行修正。
缺点:
1. 需要大量数据:由于费歇尔判别法需要估计每个类别的概率分布,
因此需要大量的数据才能得到准确的结果。
2. 对先验概率敏感:在使用费歇尔判别法时需要提前确定每个类别的先验概率,而这个过程可能会比较困难。
总结:
距离判别法、贝叶斯判别法和费歇尔判别法都是常见的分类方法,它们都有自己的优缺点。
在实际应用中,我们需要根据具体问题选择合适的分类方法,并结合具体情况进行调整和改进。