初中数学试卷中考压轴题精选(含详细答案)
- 格式:doc
- 大小:1.76 MB
- 文档页数:70
一、中考数学压轴题1.如图,在平面直角坐标系中,点O 为坐标原点,直线y =-x + m 交 y 轴的正半轴于点A ,交x 轴的正半轴于点B ,过点A 的直线AF 交x 轴的负半轴于点F ,∠AFO=45°. (1)求∠FAB 的度数;(2)点 P 是线段OB 上一点,过点P 作 PQ ⊥OB 交直线 FA 于点Q ,连接 BQ ,取 BQ 的中点C ,连接AP 、AC 、CP ,过点C 作 CR ⊥AP 于点R ,设 BQ 的长为d ,CR 的长为h ,求d 与 h 的函数关系式(不要求写出自变量h 的取值范围);(3)在(2)的条件下,过点 C 作 CE ⊥OB 于点E ,CE 交 AB 于点D ,连接 AE ,∠AEC=2∠DAP ,EP=2,作线段 CD 关于直线AB 的对称线段DS ,求直线PS 与直线 AF 的交点K 的坐标.2.已知:如图,在平面直角坐标系中,点O 为坐标原点,()2,0C .直线26y x =+与x 轴交于点A ,交y 轴于点B .过C 点作直线AB 的垂线,垂足为E ,交y 轴于点D . (1)求直线CD 的解析式;(2)点G 为y 轴负半轴上一点,连接EG ,过点E 作EH EG ⊥交x 轴于点H .设点G 的坐标为()0,t ,线段AH 的长为d .求d 与t 之间的函数关系式(不要求写出自变量的取值范围)(3)过点C 作x 轴的垂线,过点G 作y 轴的垂线,两线交于点M ,过点H 作HN GM ⊥于点N ,交直线CD 于点K ,连接MK ,若MK 平分NMB ∠,求t 的值.3.如图1,抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,点E 是BD 上方抛物线上的一点,连接AE 交DB 于点F ,若AF=2EF ,求出点E 的坐标.(3)如图3,点M 的坐标为(32,0),点P 是对称轴左侧抛物线上的一点,连接MP ,将MP 沿MD 折叠,若点P 恰好落在抛物线的对称轴CE 上,请求出点P 的横坐标.4.如图,在梯形ABCD 中,AD//BC ,AB=CD=AD=5,cos 45B =,点O 是边BC 上的动点,以OB 为半径的O 与射线BA 和边BC 分别交于点E 和点M ,联结AM ,作∠CMN=∠BAM ,射线MN 与边AD 、射线CD 分别交于点F 、N .(1)当点E 为边AB 的中点时,求DF 的长;(2)分别联结AN 、MD ,当AN//MD 时,求MN 的长;(3)将O 绕着点M 旋转180°得到'O ,如果以点N 为圆心的N 与'O 都内切,求O 的半径长.5.如图,在平面直角坐标系中,直线6y x =+与x 轴交于点A ,与y 轴交于点B ,点C 在x 轴正半轴上,2ABC ACB ∠=∠.(1)求直线BC 的解析式;(2)点D 是射线BC 上一点,连接AD ,设点D 的横坐标为t ,ACD ∆的面积为S ()0S ≠,求S 与t 的函数解析式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,AD 与y 轴交于点E ,连接CE ,过点B 作AD 的垂线,垂足为点H ,直线BH 交x 轴于点F ,交线段CE 于点M ,直线DM 交x 轴于点N ,当:7:12NF FC =时,求直线DM 的解析式.6.在梯形ABCD 中,//AD BC ,90B ∠=︒,45C ∠=︒,8AB =,14BC =,点E 、F 分别在边AB 、CD 上,//EF AD ,点P 与AD 在直线EF 的两侧,90EPF ∠=︒,PE PF =,射线EP 、FP 与边BC 分别相交于点M 、N ,设AE x =,MN y =.(1)求边AD 的长;(2)如图,当点P 在梯形ABCD 内部时,求关于x 的函数解析式,并写出定义域; (3)如果MN 的长为2,求梯形AEFD 的面积.7.如图,已知正方形ABCD 中,4,BC AC BD =、相交于点O ,过点A 作射线AM AC ⊥,点E 是射线AM 上一动点,连接OE 交AB 于点F ,以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,连接DH .(1)求证:EDO EAO ∆≅∆;(2)设BF x =,正方形OEGH 的边长为y ,求y 关于x 的函数关系式,并写出定义域;(3)连接AG ,当AEG ∆是等腰三角形时,求BF 的长.8.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.9.如图,在ABC ∆中,14AB =,45B ∠=︒,4tan 3A =,点D 为AB 中点.动点P 从点D 出发,沿DA 方向以每秒1个单位长度的速度向终点A 运动,点P 关于点D 对称点为点Q ,以PQ 为边向上作正方形PQMN .设点P 的运动时间为t 秒.(1)当t =_______秒时,点N 落在AC 边上.(2)设正方形PQMN 与ABC ∆重叠部分面积为S ,当点N 在ABC ∆内部时,求S 关于t 的函数关系式.(3)当正方形PQMN 的对角线所在直线将ABC ∆的分为面积相等的两部分时,直接写出t 的值.10.对于平面直角坐标系xOy 中的任意点()P x y ,,如果满足x y a += (x ≥0,a 为常数),那么我们称这样的点叫做“特征点”.(1)当2≤a ≤3时,①在点(1,2),(1,3),(2.5,0)A B C 中,满足此条件的特征点为__________________;②⊙W 的圆心为(,0)W m ,半径为1,如果⊙W 上始终存在满足条件的特征点,请画出示意图,并直接写出m 的取值范围;(2)已知函数()10Z x x x=+>,请利用特征点求出该函数的最小值.11.如图,在平面直角坐标系中,点(1,2)A ,(5,0)B ,抛物线22(0)y ax ax a =->交x 轴正半轴于点C ,连结AO ,AB .(1)求点C 的坐标;(2)求直线AB 的表达式; (3)设抛物线22(0)y ax ax a =->分别交边BA ,BA 延长线于点D ,E .①若2AE AO =,求抛物线表达式;②若CDB △与BOA △相似,则a 的值为 .(直接写出答案)12.如图1,在平面直角坐标系中,抛物线239334y x x =--x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C . (1)过点C 的直线5334y x =-x 轴于点H ,若点P 是第四象限内抛物线上的一个动点,且在对称轴的右侧,过点P 作//PQ y 轴交直线CH 于点Q ,作//PN x 轴交对称轴于点N ,以PQ PN 、为邻边作矩形PQMN ,当矩形PQMN 的周长最大时,在y 轴上有一动点K ,x 轴上有一动点T ,一动点G 从线段CP 的中点R 出发以每秒1个单位的速度沿R K T →→的路径运动到点T ,再沿线段TB 以每秒2个单位的速度运动到B 点处停止运动,求动点G 运动时间的最小值:(2)如图2, 将ABC ∆绕点B 顺时针旋转至A BC ''∆的位置, 点A C 、的对应点分别为A C ''、,且点C '恰好落在抛物线的对称轴上,连接AC '.点E 是y 轴上的一个动点,连接AE C E '、, 将AC E ∆'沿直线C E '翻折为A C E ∆'', 是否存在点E , 使得BAA ∆'为等腰三角形?若存在,请求出点E 的坐标;若不存在,请说明理由.13.(1)如图1,A 是⊙O 上一动点,P 是⊙O 外一点,在图中作出PA 最小时的点A . (2)如图2,Rt △ABC 中,∠C =90°,AC =8,BC =6,以点C 为圆心的⊙C 的半径是3.6,Q 是⊙C 上一动点,在线段AB 上确定点P 的位置,使PQ 的长最小,并求出其最小值. (3)如图3,矩形ABCD 中,AB =6,BC =9,以D 为圆心,3为半径作⊙D ,E 为⊙D 上一动点,连接AE ,以AE 为直角边作Rt △AEF ,∠EAF =90°,tan ∠AEF =13,试探究四边形ADCF 的面积是否有最大或最小值,如果有,请求出最大或最小值,否则,请说明理由.14.(问题探究)课堂上老师提出了这样的问题:“如图①,在ABC 中,108BAC ∠=︒,点D 是BC 边上的一点,7224BAD BD CD AD ∠=︒==,,,求AC 的长”.某同学做了如下的思考:如图②,过点C 作CE AB ∥,交AD 的延长线于点E ,进而求解,请回答下列问题:(1)ACE ∠=___________度;(2)求AC 的长.(拓展应用)如图③,在四边形ABCD 中,12075BAD ADC ∠=︒∠=︒,,对角线AC BD 、相交于点E ,且AC AB ⊥,22EB ED AE ==,,则BC 的长为_____________.15. 在平面直角坐标系中,点O 为坐标原点,直线y =﹣x+4与x 轴交于点A ,过点A 的抛物线y =ax 2+bx 与直线y =﹣x+4交于另一点B ,且点B 的横坐标为1.(1)该抛物线的解析式为;(2)如图1,Q 为抛物线上位于直线AB 上方的一动点(不与B 、A 重合),过Q 作QP ⊥x 轴,交x 轴于P ,连接AQ ,M 为AQ 中点,连接PM ,过M 作MN ⊥PM 交直线AB 于N ,若点P 的横坐标为t ,点N 的横坐标为n ,求n 与t 的函数关系式;在此条件下,如图2,连接QN 并延长,交y 轴于E ,连接AE ,求t 为何值时,MN ∥AE .(3)如图3,将直线AB 绕点A 顺时针旋转15度交抛物线对称轴于点C ,点T 为线段OA 上的一动点(不与O 、A 重合),以点O 为圆心、以OT 为半径的圆弧与线段OC 交于点D ,以点A 为圆心、以AT 为半径的圆弧与线段AC 交于点F ,连接DF .在点T 运动的过程中,四边形ODFA 的面积有最大值还是有最小值?请求出该值.16.如图,抛物线25y ax bx =+-交x 轴于点A 、B (A 在B 的左侧),交y 轴于点C ,且OB OC =,()2,0A -.(1)求抛物线的解析式;(2)点P 为第四象限抛物线上一点,过点P 作y 轴的平行线交BC 于点D ,设P 点横坐标为t ,线段PD 的长度为d ,求d 与t 的函数关系式.(不要求写出t 的取值范围) (3)在(2)的条件下,F 为BP 延长线上一点,且45PFC ∠=︒,连接OF 、CP 、PB ,FOB ∆的面积为3600169,求PBC ∆的面积.17.如图①,△ABC是等腰直角三角形,在两腰AB、AC外侧作两个等边三角形ABD和ACE,AM和AN分别是等边三角形ABD和ACE的角平分线,连接CM、BN,CM与AB交于点P.(1)求证:CM=BN;(2)如图②,点F为角平分线AN上一点,且∠CPF=30°,求证:△APF∽△AMC;(3)在(2)的条件下,求PFBN的值.18.如图,在⊙O中,直径AB=10,tanA=3.(1)求弦AC的长;(2)D是AB延长线上一点,且AB=kBD,连接CD,若CD与⊙O相切,求k的值;(3)若动点P以3cm/s的速度从A点出发,沿AB方向运动,同时动点Q以32cm/s的速度从B点出发沿BC方向运动,设运动时间为t (0<t<103),连结PQ.当t为何值时,△BPQ为Rt△?19.如图,在矩形ABCD中,点E为BC的中点,连接AE,过点D作DF AE⊥于点F,过点C作CN DF⊥于点N,延长CN交AD于点M.(1)求证:AM MD=(2)连接CF,并延长CF交AB于G①若2AB=,求CF的长度;②探究当ABAD为何值时,点G恰好为AB的中点.20.在一次数学课上,李老师让同学们独立完成课本第23页第七题选择题(2)如图 1,如果 AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()A.180° B.270° C.360° D.540°(1)请写出这道题的正确选项;(2)在同学们都正确解答这道题后,李老师对这道题进行了改编:如图2,AB∥EF,请直接写出∠BAD,∠ADE,∠DEF之间的数量关系.(3)善于思考的龙洋同学想:将图1平移至与图2重合(如图3所示),当AD,ED分别平分∠BAC,∠CEF时,∠ACE与∠ADE之间有怎样的数量关系?请你直接写出结果,不需要证明.(4)彭敏同学又提出来了,如果像图4这样,AB∥EF,当∠ACD=90°时,∠BAC、∠CDE 和∠DEF之间又有怎样的数量关系?请你直接写出结果,不需要证明.21.如图1,以AB为直径作⊙O,点C是直径AB上方半圆上的一点,连结AC,BC,过点C作∠ACB的平分线交⊙O于点D,过点D作AB的平行线交CB的延长线于点E.(1)如图1,连结AD,求证:∠ADC=∠DEC.(2)若⊙O的半径为5,求CA•CE的最大值.(3)如图2,连结AE,设tan∠ABC=x,tan∠AEC=y,①求y关于x的函数解析式;②若CBBE=45,求y的值.22.发现来源于探究.小亮进行数学探究活动,作边长为a的正方形ABCD和边长为b的正方形AEFG(a>b),开始时,点E在AB上,如图1.将正方形AEFG绕点A逆时针方向旋转.(1)如图2,小亮将正方形AEFG 绕点A 逆时针方向旋转,连接BE 、DG ,当点G 恰好落在线段BE 上时,小亮发现DG ⊥BE ,请你帮他说明理由.当a=3,b=2时,请你帮他求此时DG 的长.(2)如图3,小亮旋转正方形AEFG ,点E 在DA 的延长线上,连接BF 、DF .当FG 平分∠BFD 时,请你帮他求a :b 及∠FBG 的度数.(3)如图4,BE 的延长线与直线DG 相交于点P ,a=2b .当正方形AEFG 绕点A 从图1开始,逆时针方向旋转一周时,请你帮小亮求点P 运动的路线长(用含b 的代数式表示).23.问题探究(1)如图1.在ABC 中,8BC =,D 为BC 上一点,6AD =.则ABC 面积的最大值是_______.(2)如图2,在ABC 中,60BAC ∠=︒,AG 为BC 边上的高,O 为ABC 的外接圆,若3AG =,试判断BC 是否存在最小值?若存在,请求出最小值:若不存在,请说明理由.问题解决:如图3,王老先生有一块矩形地ABCD ,6212AB =,626BC =+,现在他想利用这块地建一个四边形鱼塘AMFN ,且满足点E 在CD 上,AD DE =,点F 在BC 上,且6CF =,点M 在AE 上,点N 在AB 上,90MFN ∠=︒,这个四边形AMFN 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.24.问题一:如图①,已知AC =160km ,甲,乙两人分别从相距30km 的A ,B 两地同时出发到C 地.若甲的速度为80km /h ,乙的速度为60km /h ,设乙行驶时间为x (h ),两车之间距离为y (km ).(1)当甲追上乙时,x = .(2)请用x 的代数式表示y .问题二:如图②,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB =30°.(3)分针OD 指向圆周上的点的速度为每分钟转动 km ,时针OE 指向圆周上的点的速度为每分钟转动 °;(4)若从2:00起计时,求几分钟后分针与时针第一次重合?25.在平面直角坐标系中,点O 为坐标原点,抛物线(2)()y a x x m =++与x 轴交于点A C 、(点A 在点C 的左侧),与y 轴正半轴交于点B ,24OC OB ==.(1)如图1,求a m 、的值;(2)如图2,抛物线的顶点坐标是M ,点D 是第一象限抛物线上的一点,连接AD 交抛物线的对称轴于点N ,设点D 的横坐标是t ,线段MN 的长为d ,求d 与t 的函数关系式;(3)如图3,在(2)的条件下,当154d =时,过点D 作DE x 轴交抛物线于点E ,点P 是x 轴下方抛物线上的一个动点,连接PE 交x 轴于点F ,直线211y x b =+经过点D 交EF 于点G ,连接CG ,过点E 作EH CG 交DG 于点H ,若3CFG EGH S S =△△,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.F解析:(1)∠FAB=90°;(2)22d h =;(3)直线PS 与直线AF 的交点K(-2,6).【解析】【分析】(1)通过直线AB 的解析式可求出点A 、B 的坐标,可知AOB 是等腰直角三角形,再结合已知条件即可确定90FAB ∠=︒;(2)根据已知条件证明CP=AC=QC=BC 从而得出△ACP 是等腰直角三角形,在Rt △CRP 中,利用sin ∠CPR 22CR CP ==,推出2CP CR =,继而得出22BQ CR =,得出答案; (3)过点 A 作AH ⊥CE 交 EC 的延长线于点 H ,延长 CH 到点 G ,使 HG=CH ,连接AG ,证明△AHC ≌△CEP ,设AH CE n ==,得出EG=CE+CH+GH=n+2+2=n+4,再通过角的等量代换,得出∠EAG=∠G ,从而有EG=EA=n+4,在Rt △AHE 中,通过勾股定理AE²=HE²+AH²可求出n 的值为6,从而得出直线AF 的解析式y = x + 8 ,再求出直线PS 的解析式为 y=-x+4,求交点即可.【详解】解:(1)如下图,y = -x + m ,当x=0时,y=m∴A (0,m ),OA=m当y=0时,0=-x+m ,x=m ,∴B (m ,0),OB=m∴OA=OB∴∠OAB=∠OBA=45°∵∠AFO=45°,∠FAB+∠FBA+∠AFB=180°∴∠FAB=90°(2)如下图 ,∵CP 、AC 分别是 Rt △QPB 和 Rt △QAB 的斜边上的中线∴CP= 12QB ,12AC QB =, ∴CP=AC=QC=BC∴∠CAB=∠CBA设∠CAB=∠CBA=α,∴∠CBP=45°+α∴∠CPB=∠CBP=45°+α∴∠PCB=180°-(∠CPB+∠CBP )=90°-2α∵∠ACB=180°-∠CAB-∠CBA=180°-2α∴∠ACP=∠ACB-∠PCB=180°-2α-(90°-2α)=90°∵AC=CP∴△ACP 是等腰直角三角形∴∠CPA=∠CAP=45°∵CR ⊥AP ,∴∠CRP=90°,在Rt △CRP 中sin ∠CPR 22CR CP == ∴2CP CR =∵12CP BQ =, ∴22BQ CR =即22d h =(3)过点 A 作AH ⊥CE 交 EC 的延长线于点 H ,延长 CH 到点 G ,使 HG=CH ,连接AG ∴∠AHC=∠CEP=90°∴∠HAC+∠HCA=∠PCE+∠HCA∴∠HAC=∠PCE ,∵AC=CP∴△AHC ≌△CEP∴CH=PE=2,AH=CE ,∴GH=CH=2,AH CE n ==∴EG=CE+CH+GH=n+2+2=n+4设∠DAP=β,则∠AEG=2β∴α+β=45°∵∠EBD=∠EDB=∠HDA=∠HAD=45°∴∠CAH=∠HAD-α=45°-α=β∵AH 垂直平分 GC∴AG=AC∴∠GAH=∠CAH=β∴∠G=90°-β 在△EAG 中∠EAG=180°-∠G-∠AEG=180°-(90°-β)-2β =90°-β∴∠EAG=∠G∴EG=EA=n+4在 Rt △AHE 中,AE²=HE²+AH²222(4)(2)n n n +=++126,2n n ==-(舍)∴AH=OE=6,EP=EB=2∴OB=OE+BE=8∴m=8,∴A (0,8)∴OA=OF=8 , ∴F (-8,0)∴直线 AF 的解析式为 y = x + 8∵CD=CE-DE=CE-BE=6-2=4∵线段 CD 关于直线 AB 的对称线段 DS∴SD=CD=4,∠CDA=∠SDA=45°∴∠CDS=90°,∴SD ∥x 轴过点 S 分别作 SM ⊥x 轴于点 M ,SN ⊥y 轴于点 N∴四边形 OMSN 、SMED 都是矩形∴OM=SN=OE-ME=2,ON=SM=DE=BE=2∴S(2,2)∵OP=OE-EP=6-2=4,∴P(4,0)设直线 PS 的解析式为 y=ax+b∴4022a b a b +=⎧⎨+=⎩,解得:14a b =-⎧⎨=⎩∴直线 PS 的解析式为 y=-x+4设直线PS 与直线AF 的交点K(x ,y)∴48y x y x =-+⎧⎨=+⎩解得26x y =-⎧⎨=⎩∴直线PS 与直线AF 的交点K(-2,6).【点睛】本题考查的知识点是一次函数与几何图形,将一次函数的图象与几何图形综合在一起的问题,是考查学生综合素质和能力的热点题型,它充分体现了数学解题中的数形结合思想和整体转化思想.本题考查的知识点有一次函数图象与坐标轴的交点问题、等腰直角三角形的判定及性质、三角形内角和定理、全等三角形的判定及性质、矩形的性质、待定系数法求一次函数解析式、线段垂直平分线等.2.C解析:(1)112y x =-+;(2)1d t =-+;(3)6215t -= 【解析】【分析】(1)根据互相垂直两直线斜率积为-1,设出直线CE 的解析式,再将点C 坐标代入即可求解;(2)过点E 作EM ⊥y 轴于点M ,过点E 作EN x ⊥轴于点N ,通过解直角三角形可证EDM ≌EAN ,ENH ≌EMG ,得到AN =DM ,HN =GM ,进而得到AH DG =,再根据CE 解析式求出D 点坐标,即可找出d 与t 之间的函数关系式;(3)过点B 作BT CM ⊥于点T ,在直线BT 上截取TL NK =,证四边形BGMT 与四边形HNMC 均为矩形,得MN MT =,再进一步证明ENH ≌EMG ,利用全等三角形的性质通过角度计算,得出△BML 为等腰三角形且BM BL =,再用含有t 的代数式表示BM ,最后在Rt △BMG 中利用勾股定理建立等式,求出t 的值.【详解】解:(1)∵CE ⊥AB ,∴设直线CE 的解析式为:12y x c =-+, 把点C (2,0)代入上述解析式,得1c =,∴直线CD 的解析式为:112y x =-+; (2)过点E 作EM ⊥y 轴于点M ,过点E 作EN x ⊥轴于点N ,令26 112y xy x=+⎧⎪⎨=-+⎪⎩,解得22xy=-⎧⎨=⎩,∴()2,2E-,易证EDM≌EAN,ENH≌EMG,∴AN=DM ,HN=GM,∴AH DG=,由直线CE的解析式112y x=-+,可求点D(0,1)∴DG=1—t,∴1d t=-+;(3)过点B作BT CM⊥于点T,在直线BT上截取TL NK=,易证四边形BGMT与四边形HNMC均为矩形,由(2)问可知1tAH GD==-,则6tHC=-∴6tBG MT==-,∴MN MT=,∵90KNM LTM∠=∠=︒,∴ENH≌EMG,∴LNKM∠=∠,设KMNα∠=,则KMB KMNα∠=∠=,∴90NKM α∠=︒-,∴90NKM L α∠=∠=︒-,∵//BL MN ,∴2MBL BMN α∠=∠=,∴18090BML MBL L α∠=︒-∠-∠=︒-,∴BM BL =, ∵1tan 2KCH ∠=, ∴11322KH CH t ==-, ∴133322KN KH HN t t t TL =+=--=-=, ∴352BL BT TL t BM =+=-=, 在Rt BMG △中, 222BM BG GM =+,解得t =(不合题意舍去)或t =故,65t -=. 【点睛】本题一次函数综合题,考查了待定系数法求解析式,一次函数的性质,全等三角形的判定与性质,角平分线的性质,勾股定理等,利用已知条件求相等交,相等线段是解决本题的关键.3.E解析:(1)2y x 2x 3=-++;(2)E (2,3)或(1,4);(3)P 点横坐标为118【解析】【分析】(1) 抛物线2(0)y ax bx c a =++≠的顶点为C (1,4),设抛物线的解析式为2(1)4y a x =-+,由抛物线过点B,(3,0),即可求出a 的值,即可求得解析式; (2)过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x xx -++,求出A 、D 点的坐标,得到OM=x ,则AM=x+1,由AF=2EF 得到22(1)33x AN AM +==,从而推出点F 的坐标21210(,)3333x x --+,由23FN EM =,列出关于x 的方程求解即可;(3)先根据待定系数法求出直线DM 的解析式为y=-2x+3,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.证明△FGP ≌△FHQ ,得到FG=FH ,PT=45GH.设点P (m ,-m²+2m+3),则T (m ,-2m+3),则PT=m²-4m ,GH=1-m , 可得m²-4m=45(1-m ),解方程即可. 【详解】(1)∵抛物线的顶点为C (1,4),∴设抛物线的解析式为2(1)4y a x =-+,∵抛物线过点B,(3,0),∴20(31)4a =-+,解得a=-1,∴设抛物线的解析式为2(1)4y x =--+,即2y x 2x 3=-++;(2)如图,过点E 、F 分别作x 轴的垂线,交x 轴于点M 、N ,设点E 的坐标为()2,23x x x -++,∵抛物线的解析式为2y x 2x 3=-++,当y=0时,2023x x =-++,解得x=-1或x=3,∴A (-1.0),∴点D (0,3),∴过点BD 的直线解析式为3y x =-+,点F 在直线BD 上,则OM=x ,AM=x+1,∴22(1)33x AN AM +==, ∴2(1)2111333x x ON AN +=-=-=-, ∴21210(,)3333x x F --+,∴2210332233FN EM x x x +--++==, 解得x=1或x=2, ∴点E 的坐标为(2,3)或(1,4);(3)设直线DM 的解析式为y=kx+b ,过点D (0,3),M (32,0), 可得,3023k b b ⎧+=⎪⎨⎪=⎩,解得k=-2,b=3,∴直线DM 的解析式为y=-2x+3,∴32OM =,3OD =, ∴tan ∠DMO=2, 如图,过点P 作PT ∥y 轴交直线DM 于点T ,过点F 作直线GH ⊥y 轴交PT 于点G ,交直线CE 于点H.∵PQ ⊥MT ,∴∠TFG=∠TPF ,∴TG=2GF ,GF=2PG ,∴PT=25GF , ∵PF=QF ,∴△FGP ≌△FHQ ,∴FG=FH ,∴PT=45GH. 设点P (m ,-m²+2m+3),则T (m ,-2m+3),∴PT=m²-4m ,GH=1-m ,∴m²-4m=45(1-m ), 解得:1112018m -=,或2112018m +=(不合题意,舍去), ∴点P 的横坐标为11201-. 【点睛】 本题考查二次函数综合题、平行线分线段成比例定理、轴对称性质等知识,解题的关键是学会用转化的思想思考问题,学会用数形结合的思想解决问题,有一定难度.4.D解析:(1)DF 的长为158;(2)MN 的长为5;(3)O 的半径长为258. 【解析】【分析】(1)作EH BM ⊥于H ,根据中位线定理得出四边形BMFA 是平行四边形,从而利用cos 45B =解直角三角形即可求算半径,再根据平行四边形的性质求FD 即可; (2)先证AMB CNM ∠=∠,再证MAD CNM ∠=∠,从而证明AFM NFD ∆~∆,得到AF MF AF DF NF MF NF DF=⇒=,再通过平行证明AFN DFM ∆~∆,从而得到AF NF AF MF NF DF DF MF=⇒=,通过两式相乘得出AF NF =再根据平行得出NF DF =, 从而得出答案.(3)通过图形得出MN 垂直平分'OO ,从而得出90BAM CMN ∠=∠=︒,再利用cos 45B =解三角函数即可得出答案. 【详解】(1)如图,作EH BM ⊥于H :∵E 为AB 中点,45,cos 5AB AD DC B ====∴52AE BE ==∴cos 45BH B BE == ∴2BH = ∴2253222EH ⎛⎫=-= ⎪⎝⎭设半径为r ,在Rt OEH ∆中:()222322r r ⎛⎫=-+ ⎪⎝⎭ 解得:2516r =∵,E O 分别为,BA BM 中点 ∴BAM BEO OBE ∠=∠=∠又∵CMN BAM ∠=∠∴CMN OBE ∠=∠∴//MF AB∴四边形BMFA 是平行四边形∴2528AF BM r ===∴2515588FD AD AF =-=-= (2)如图:连接MD AN ,∵,B C BAM CMN ∠=∠∠=∠∴AMB CNM ∠=∠又∵AMB MAD ∠=∠∴MAD CNM ∠=∠又∵AFM NFD ∠=∠∴AFM NFD ∆~∆∴AF MF AF DF NF MF NF DF=⇒=① 又∵//MD AN ∴AFN DFM ∆~∆∴AF NF AF MF NF DF DF MF=⇒=② 由①⨯②得; 22AF NF AF NF =⇒=∴NF DF =∴5MN AD ==故MN 的长为5;(3)作如图:∵圆O 与圆'O 外切且均与圆N 内切设圆N 半径为R ,圆O 半径为r∴'=NO R r NO -=∴N 在'OO 的中垂线上 ∴MN 垂直平分'OO∴90NMC ∠=︒∵90BAM CMN ∠=∠=︒∴A 点在圆上∴54cos 5AB B BM BM === 解得:254BM = O 的半径长为258【点睛】 本题是一道圆的综合题目,难度较大,掌握相似之间的关系转化以及相关线段角度的关系转化是解题关键.5.A解析:(1)6y x =-+;(2)636S t =-,()6t >;(3)5599y x =+ 【解析】【分析】(1)求出点A 、B 的坐标,从而得出△ABO 是等腰直角三角形,再根据2ABC ACB ∠=∠可得△OCB 也是等腰直角三角形,从而可求得点C 的坐标,将点B 、C 代入可求得解析式;(2)存在2种情况,一种是点D 在线段BC 上,另一种是点D 在线段BC 的延长线上,分别利用三角形的面积公式可求得;(3)如下图,先证ACR CAD ∆≅∆,从而推导出//RD AC ,进而得到CF RG =,同理还可得NF DG =,RD CN =,然后利用:7:12NF FC =可得到N 、D 的坐标,代入即可求得.【详解】解:(1)直线6y x =+与x 轴交于点A ,与y 轴交于点B ,(6,0)A ∴-,(0,6)B .6OA OB ∴==.45BAO ∴∠=︒,180BAO ABC BCO ∠+∠+∠=︒,2ABC ACB ∠=∠,45BCO ∴∠=︒6OC OB ∴==,()6,0C ∴.设直线BC 的解析式为y kx b =+,将B 、C 两点坐标代得606k b b +=⎧⎨=⎩ 解得16k b =-⎧⎨=⎩∴直线BC 的解析式为6y x =-+.(2)点D 是射线BC 上一点,点D 的横坐标为t ,(,6)D t t ∴-+,6(6)12AC =--=.如下图,过点D 作DK AC ⊥于点K ,当点D 在线段BC 上时,6DK t =-+,16362S AC DK t ∴=⋅=-+()06t ≤<; 如下图,当点D 在线段BC 的延长线上时,6DK t =-,636S t ∴=-()6t >.(3)如图,延长CE 交AB 于点R ,连接DR 交BF 于点G ,交y 轴于点P .45BAO BCO ∠=∠=︒,BA BC ∴=.AO CO =,BO AC ⊥EA EC ∴=,EAC ECA ∴∠=∠.ACR CAD ∴∆≅∆.BAD BCR ∴∠=∠.AR CD ∴=.BR BD ∴=.//RD AC ∴.BH AD ⊥,HBD BAD BCR ∴∠=∠=∠.MB MC ∴=,∠MRB MRB MBR ∠=∠MR MB ∴=.CM MR ∴=.//RD AC ,::1:1CF RG CM RM ∴==.CF RG ∴=.同理NF DG =.RD CN =.∵:7:12NF FC =.:7:12DG RG ∴=.RP PD BP ==,5tan 19PG OF OBF BP OB∴==∠= 6OB ∴=,3019OF ∴=,6OC =,8419CF ∴=. 7RD GN ∴==.1ON ∴=,72PD =.52OP OB BP ∴=-=. (1,0)N ∴-,75,22D ⎛⎫ ⎪⎝⎭. 设直线 DN 的解析式为y ax c =+,将N 、D 两点代入,07522a c a c -+=⎧⎪⎨+=⎪⎩解得5959 ac⎧=⎪⎪⎨⎪=⎪⎩∴直线DM的解析式为5599y x=+.【点睛】本题考查了一次函数与图形的综合,需要用到全等、三角函数和平面直角坐标系的知识,解题关键是想办法确定函数图像上点的坐标.6.D解析:(1)6;(2)y=-3x+10(1≤x<103);(2)1769或32【解析】【分析】(1)如下图,利用等腰直角三角形DHC可得到HC的长度,从而得出HB的长,进而得出AD的长;(2)如下图,利用等腰直角三角形的性质,可得PQ、PR的长,然后利用EB=PQ+PR得去x、y的函数关系,最后根据图形特点得出取值范围;(3)存在2种情况,一种是点P在梯形内,一种是在梯形外,分别根y的值求出x的值,然后根据梯形面积求解即可.【详解】(1)如下图,过点D作BC的垂线,交BC于点H∵∠C=45°,DH⊥BC∴△DHC是等腰直角三角形∵四边形ABCD是梯形,∠B=90°∴四边形ABHD是矩形,∴DH=AB=8∴HC=8∴BH=BC-HC=6∴AD=6(2)如下图,过点P作EF的垂线,交EF于点Q,反向延长交BC于点R,DH与EF交于点G∵EF ∥AD,∴EF ∥BC∴∠EFP=∠C=45°∵EP ⊥PF∴△EPF 是等腰直角三角形同理,还可得△NPM 和△DGF 也是等腰直角三角形∵AE=x∴DG=x=GF,∴EF=AD+GF=6+x∵PQ ⊥EF,∴PQ=QE=QF∴PQ=()162x + 同理,PR=12y ∵AB=8,∴EB=8-x∵EB=QR∴8-x=()11622x y ++ 化简得:y=-3x+10 ∵y >0,∴x <103 当点N 与点B 重合时,x 可取得最小值则BC=NM+MC=NM+EF=-3x+10+614x +=,解得x=1∴1≤x <103(3)情况一:点P 在梯形ABCD 内,即(2)中的图形 ∵MN=2,即y=2,代入(2)中的关系式可得:x=83=AE ∴188176662339ABCD S ⎛⎫=⨯++⨯= ⎪⎝⎭梯形 情况二:点P 在梯形ABCD 外,图形如下:与(2)相同,可得y=3x -10则当y=2时,x=4,即AE=4 ∴()16644322ABCD S =⨯++⨯=梯形 【点睛】本题考查了等腰直角三角形、矩形的性质,难点在于第(2)问中确定x 的取值范围,需要一定的空间想象能力. 7.A解析:(1)详见解析;(2)2448x x y -+=(04x <<);(3)当AEG ∆是等腰三角形时,2BF =或43【解析】【分析】 (1)根据正方形的性质得到∠AOD=90°,AO=OD ,∠EOH=90°,OE=OH ,由全等三角形的性质即可得到结论;(2)如图1,过O 作ON ⊥AB 于N ,根据等腰直角三角形的性质得到122AN BN ON AB ====, 根据勾股定理得到()222222248OF FN ON x x x =+=-+=-+线段成比例定理即可得到结论;(3)①当AE=EG 时,△AEG 是等腰三角形,②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP ⊥EG 于P ③当GE=AG 时,△AEG 是等腰三角形,如图3,过G 作GQ ⊥AE 于Q ,根据相似三角形的性质或全等三角形的性质健即可得到结论.【详解】(1)∵四边形ABCD 是正方形,,OA OD AC BD ∴=⊥,90AOD ∴∠=︒,∵四边形OEGH 是正方形,,90OE OH EOH ∴=∠=︒,AOD EOH ∴∠=∠,AOD AOH EOH AOH ∴∠-∠=∠-∠,即HOD EOA ∠=∠,HDO EAO ∴∆≅∆.(2)如图1,过O 作ON⊥AB 于N ,则122AN BN ON AB ====, ∵BF=x,∴AF=4-x ,∴FN=2-x , ∴()222222248OF FN ON x x x =+=-+=-+∴248EF y x x =-+ ∵AM⊥AC,∴AE∥OB,∴BF OF AF EF=, ∴2248448x x x x y x x -+=---+, ∴)24804x x y x x-+≤=<; (3)①当AE=EG 时,△AEG 是等腰三角形,则AE=OE ,∵∠EAO=90°,∴这种情况不存在;②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP⊥EG 于P ,则AP∥OE,∴∠PAE=∠AEO,∴△APE∽△EAO,∴PE AE OA OE=,∵AE=AG,∴2421482x xxPE y-+==,()22248xAE yx-=-=,∴()22222224448448xx xxx xx---+=+,解得:x=2,②当GE=AG时,△AEG是等腰三角形,如图3,过G作GQ⊥AE于Q,∴∠GQE=∠EAO=90°,∴∠GEQ+∠EGQ=∠GEQ+∠AEO=90°,∴∠EGQ=∠AEO,∵GE=OE,∴△EGQ≌△OEA(AAS),∴22EQ AO==∴224242()xAE E Q-===∴43x =, ∴BF=2或43. 【点睛】本题考查了四边形的综合题,正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质,勾股定理,正确的作出辅助线构造全等三角形是解题的关键.8.B解析:(1)12;(2)3)【解析】【分析】(1)如图1中,过点B 作BD CA ⊥,交CA 延长线于点D ,通过构造直角三角形,求出BD 利用三角形面积公式求解即可.(2)如图示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,确定点P 的位置,利用勾股定理与矩形的性质求出CQ 的长度即为答案.(3)解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、,通过轴对称性质的转化,最终确定最小值转化为SN 的长.【详解】(1)如解图1所示,过点B 作BD CA ⊥,交CA 延长线于点D ,135BAC ∠=,180********BAD BAC ∴∠=-∠=-=,BD CA ⊥,交CA 延长线于点D ,BAD ∴为等腰直角三角形,且90BDA ∠=,BD AD ∴=,在BAD 中,,90BD AD BDA =∠=,222BD AD AB ∴+=,即222BD AB =,4AB =222232BD AB ∴===,解得:4BD =,6AC =,11641222ABC S AC BD ∴=⋅=⨯⨯=.(2)如解图2所示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M , D 关于AB 的对称点Q ,CQ 交AB 于点P ,PD PQ ∴=,PC PD PC PQ CQ ∴+=+=,点P 为AB 上的动点,PC PD CQ ∴+≥,∴当点P 处于解图2中的位置,PC PD +取最小值,且最小值为CQ 的长度, 点C 为半圆AB 的中点,90COB ∴∠=,90BOD COD COB ∠+∠=∠=,11903033BOD COB ∴∠=∠=⨯=, 10AB =,1110522OD AB ∴==⨯=, 在Rt ODH △中,由作图知,90OHD ∠=,且30HOD BOD ∠=∠=, 155,222DH OD QH DH ∴==∴==, 222255352OH OD DH ⎛⎫∴=-=-= ⎪⎝⎭, 由作图知,四边形OMQH 为矩形,553,2OM QH MQ OH ∴==== 515522CM OM OC ∴=+=+=, 222215535322CQ CM MQ ⎛⎫⎛⎫∴=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,PC PD ∴+的最小值为53.(3)如解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、, 点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,PE SE ∴=,FP FN =,SOA POA ∠=∠,,NOB POB OS OP ON ∠=∠==,.PE EF FP SE EF FN SN ∴++=++=,SOA NOB POA POB ∠+∠=∠+∠,E 为OA 上的点,F 为OB 上的点PE EF FP SN ∴++≥,∴当点E F 、处于解图3的位置时,PE EF FP ++的长度取最小值,最小值为SN 的长度,45POA POB AOB ∠+∠=∠=,45SOA NOB ∴∠+∠=,454590SON SOA AOB NOB ∴∠=∠+∠+∠=+=.扇形AOB 的半径为20,20OS ON OP ∴===,在Rt SON 中,90SON ∠=,20,90OS ON SON ==∠=PE EF FP ∴++的长度的最小值为202【点睛】本题主要考察了轴对称、勾股定理、圆、四边形等相关内容,理解题意,作出辅助线是做题的关键.9.A解析:(1)145;(2)2274,0314971421,2235t tSt t t⎧⎛⎫<≤⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-<<⎪⎪⎝⎭⎩;(3)t的值为477或727.【解析】【分析】(1)如下图,根据4tan3A=,可得出PN与AP的关系,从而求出t的值;(2)如下图,存在2种情况,一种是点M在△ABC内,另一种是点M在△ABC外部,分别根据正方形和三角形求面积的公式可求解;(3)如下图,存在2种情况,一种是PM所在的直线将△ABC的面积平分,另一种是QN 所在的直线将△ABC的面积平分.【详解】(1)如图1,点N在AC上图1由题意可知:PD=DQ=t ,AP=7-t∴PN=PQ=2t ∵4tan 3A = ∴43NP AP =,即2473t t =- 解得:t=145 (2)①如图2,图2四边形PQMN 是正方形,90BQM ∴∠=︒,45B ∠=︒,BQ MQ ∴=,即72t t -=解得73t =, 故当0t <≤73时,22(2)4S t t ==; ②如图3, 图390BQF ∠=︒,45B ∠=︒,7BQ FQ t ∴==-,45BFQ MFE ∠=∠=︒,则37MF MQ QF t =-=-,90M ∠=︒,37ME MF t ∴==-, 则2221149(2)(37)21222S t t t t =--=-+-71435t ⎛⎫<< ⎪⎝⎭; 综上,2274,0314971421,2235t t S t t t ⎧⎛⎫<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-<< ⎪⎪⎝⎭⎩. (3)如下图,过点C 作AB 的垂线,交AB 于点G图4∵4tan 3A = ∴设CG=4x ,则AG=3x∵∠B=45°∴△CBG 是等腰直角三角形∴GB=GC=4x∵AB=14∴3x+4x=14,解得:x=2∴1148562ABC S== ∴1282ABCS = 情况一:PM 所在的直线平分△ABC 的面积,如下图,PM 与BC 交于点E图5则28PBES=∵四边形PQMN是正方形,∴∠EPB=45°∵∠B=45°∴△PBE是等腰直角三角形∵1282PBES PE PB==∴PE=PB=214∴PB=47∵PB=AB-PA=14-(7-t)=7+t∴7+t=47t=477-情况二:如下图,QN所在线段平分△ABC的面积,QF交AC于点F,过点F作AB的垂线,交AB于点H图6同理,28AFQS=∵四边形PQMN是正方形,∴∠EQH=45°∴△FHQ是等腰直角三角形∵4 tan3A=∴设FH=4y,则AH=3y,HQ=FH=4y,∴AQ=7y∴174282AFQS y y==,解得:2∵AQ=AB-QB=14-(7-t)=7+t∴2解得:27∴综上得:t的值为477或727.【点睛】本题考查动点问题,解题关键是根据动点的变化情况,适当划分为几种不同的形式分别分析求解.10.A。
中考数学选填压轴题练习一.根的判别式(共1小题)1.(2023•广州)已知关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,则的化简结果是()A.﹣1B.1C.﹣1﹣2k D.2k﹣3【分析】首先根据关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,得判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,由此可得k≤1,据此可对进行化简.【解答】解:∵关于x的方程x2﹣(2k﹣2)x+k2﹣1=0有两个实数根,∴判别式Δ=[﹣(2k﹣2)]2﹣4×1×(k2﹣1)≥0,整理得:﹣8k+8≥0,∴k≤1,∴k﹣1≤0,2﹣k>0,∴=﹣(k﹣1)﹣(2﹣k)=﹣1.故选:A.二.函数的图象(共1小题)2.(2023•温州)【素材1】某景区游览路线及方向如图1所示,①④⑥各路段路程相等,⑤⑦⑧各路段路程相等,②③两路段路程相等.【素材2】设游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟;小州游路线①②⑧,他离入口的路程s与时间t的关系(部分数据)如图2所示,在2100米处,他到出口还要走10分钟.【问题】路线①③⑥⑦⑧各路段路程之和为()A.4200米B.4800米C.5200米D.5400米【分析】设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米,由题意及图象可知,然后根据“游玩行走速度恒定,经过每个景点都停留20分钟,小温游路线①④⑤⑥⑦⑧用时3小时25分钟”可进行求解.【解答】解:由图象可知:小州游玩行走的时间为75+10﹣40=45(分钟),小温游玩行走的时间为205﹣100=105(分钟),设①④⑥各路段路程为x米,⑤⑦⑧各路段路程为y米,②③各路段路程为z米由图象可得:,解得:x+y+z=2700,∴游玩行走的速度为:(2700﹣2100)÷10=60 (米/分),由于游玩行走速度恒定,则小温游路线①④⑤⑥⑦⑧的路程为:3x+3y=105×60=6300,∴x+y=2100,∴路线①③⑥⑦⑧各路段路程之和为:2x+2y+z=x+y+z+x+y=2700+2100=4800(米).故选:B.三.动点问题的函数图象(共1小题)3.(2023•河南)如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为,图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为()A.6B.3C.D.【分析】如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O沿直线运动到顶点B,结合图象可知,当点P在AO上运动时,PB=PC,AO=,易知∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,可知AO=OB=,过点O作OD⊥AB,解直角三角形可得AD=AO•cos30°,进而得出等边三角形ABC的边长.【解答】解:如图,令点P从顶点A出发,沿直线运动到三角形内部一点O,再从点O沿直线运动到顶点B,\结合图象可知,当点P在AO上运动时,,∴PB=PC,,又∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∴△APB≌△APC(SSS),∴∠BAO=∠CAO=30°,当点P在OB上运动时,可知点P到达点B时的路程为,∴OB=,即AO=OB=,∴∠BAO=∠ABO=30°,过点O作OD⊥AB,垂足为D,∴AD=BD,则AD=AO•cos30°=3,∴AB=AD+BD=6,即等边三角形ABC的边长为6.故选:A.四.反比例函数系数k的几何意义(共1小题)4.(2023•宁波)如图,点A,B分别在函数y=(a>0)图象的两支上(A在第一象限),连结AB交x 轴于点C.点D,E在函数y=(b<0,x<0)图象上,AE∥x轴,BD∥y轴,连结DE,BE.若AC =2BC,△ABE的面积为9,四边形ABDE的面积为14,则a﹣b的值为12,a的值为9.【分析】依据题意,设A(m,),再由AE∥x轴,BD∥y轴,AC=2BC,可得B(﹣2m,﹣),D (﹣2m,﹣),E(,),再结合△ABE的面积为9,四边形ABDE的面积为14,即可得解.【解答】解:设A(m,),∵AE∥x轴,且点E在函数y=上,∴E(,).∵AC=2BC,且点B在函数y=上,∴B(﹣2m,﹣).∵BD∥y轴,点D在函数y=上,∴D(﹣2m,﹣).∵△ABE的面积为9,∴S△ABE=AE×(+)=(m﹣)(+)=m••==9.∴a﹣b=12.∵△ABE的面积为9,四边形ABDE的面积为14,∴S△BDE=DB•(+2m)=(﹣+)()m=(a﹣b)••()•m=3()=5.∴a=﹣3b.又a﹣b=12.∴a=9.故答案为:12,9.五.反比例函数图象上点的坐标特征(共2小题)5.(2023•德州)如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(6,3),D是OA的中点,AC,BD交于点E,函数的图象过点B.E.且经过平移后可得到一个反比例函数的图象,则该反比例函数的解析式()A.y=﹣B.C.D.【分析】先根据函数图象经过点B和点E,求出a和b,再由所得函数解析式即可解决问题.【解答】解:由题知,A(6,0),B(6,3),C(0,3),令直线AC的函数表达式为y1=k1x+b1,则,解得,所以.又因为点D为OA的中点,所以D(3,0),同理可得,直线BD的函数解析式为y2=x﹣3,由得,x=4,则y=4﹣3=1,所以点E坐标为(4,1).将B,E两点坐标代入函数解析式得,,解得.所以,则,将此函数图象向左平移3个单位长度,再向下平移4个单位长度,所得图象的函数解析式为:.故选:D.6.如图,O是坐标原点,Rt△OAB的直角顶点A在x轴的正半轴上,AB=2,∠AOB=30°,反比例函数y=(k>0)的图象经过斜边OB的中点C.(1)k=;(2)D为该反比例函数图象上的一点,若DB∥AC,则OB2﹣BD2的值为4.【分析】(1)根据直角三角形的性质,求出A、B两点坐标,作出辅助线,证得△OPC≌△APC(HL),利用勾股定理及待定系数法求函数解析式即可解答.(2)求出AC、BD的解析式,再联立方程组,求得点D的坐标,分两种情况讨论即可求解.【解答】解:(1)在Rt△OAB中,AB=2,∠AOB=30°,∴,∴,∵C是OB的中点,∴OC=BC=AC=2,如图,过点C作CP⊥OA于P,∴△OPC≌△APC(HL),∴,在Rt△OPC中,PC=,∴C(,1).∵反比例函数y=(k>0)的图象经过斜边OB的中点C,∴,解得k=.故答案为:.(2)设直线AC的解析式为y=k1x+b(k≠0),则,解得,∴AC的解析式为y=﹣x+2,∵AC∥BD,∴直线BD的解析式为y=﹣x+4,∵点D既在反比例函数图象上,又在直线BD上,∴联立得,解得,,当D的坐标为(2+3,)时,BD2==9+3=12,∴OB2﹣BD2=16﹣12=4;当D的坐标为(2﹣3,)时,BD2=+=9+3=12,∴OB2﹣BD2=16﹣12=4;综上,OB2﹣BD2=4.故答案为:4.六.反比例函数与一次函数的交点问题(共1小题)7.(2023•湖州)已知在平面直角坐标系中,正比例函数y=k1x(k1>0)的图象与反比例函数(k2>0)的图象的两个交点中,有一个交点的横坐标为1,点A(t,p)和点B(t+2,q)在函数y=k1x的图象上(t≠0且t≠﹣2),点C(t,m)和点D(t+2,n)在函数的图象上.当p﹣m与q﹣n的积为负数时,t的取值范围是()A.或B.或C.﹣3<t<﹣2或﹣1<t<0D.﹣3<t<﹣2或0<t<1【分析】将交点的横坐标1代入两个函数,令二者函数值相等,得k1=k2.令k1=k2=k,代入两个函数表达式,并分别将点A、B的坐标和点C、D的坐标代入对应函数,进而分别求出p﹣m与q﹣n的表达式,代入解不等式(p﹣m)(q﹣n)<0并求出t的取值范围即可.【解答】解:∵y=k1x(k1>0)的图象与反比例函数(k2>0)的图象的两个交点中,有一个交点的横坐标为1,∴k1=k2.令k1=k2=k(k>0),则y=k1x=kx,=.将点A(t,p)和点B(t+2,q)代入y=kx,得;将点C(t,m)和点D(t+2,n)代入y=,得.∴p﹣m=kt﹣=k(t﹣),q﹣n=k(t+2)﹣=k(t+2﹣),∴(p﹣m)(q﹣n)=k2(t﹣)(t+2﹣)<0,∴(t﹣)(t+2﹣)<0.∵(t﹣)(t+2﹣)=•=<0,∴<0,∴t(t﹣1)(t+2)(t+3)<0.①当t<﹣3时,t(t﹣1)(t+2)(t+3)>0,∴t<﹣3不符合要求,应舍去.②当﹣3<t<﹣2时,t(t﹣1)(t+2)(t+3)<0,∴﹣3<t<﹣2符合要求.③当﹣2<t<0时,t(t﹣1)(t+2)(t+3)>0,∴﹣2<t<0不符合要求,应舍去.④当0<t<1时,t(t﹣1)(t+2)(t+3)<0,∴0<t<1符合要求.⑤当t>1时,t(t﹣1)(t+2)(t+3)>0,∴t>1不符合要求,应舍去.综上,t的取值范围是﹣3<t<﹣2或0<t<1.故选:D.七.二次函数图象与系数的关系(共3小题)8.(2023•乐至县)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,且过点(1,0).现有以下结论:①abc<0;②5a+c=0;③对于任意实数m,都有2b+bm≤4a﹣am2;④若点A(x1,y1)、B(x2,y2)是图象上任意两点,且|x1+2|<|x2+2|,则y1<y2,其中正确的结论是()A.①②B.②③④C.①②④D.①②③④【分析】根据题意和函数图象,利用二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图象可得,a>0,b>0,c<0,∴abc<0,故①正确,∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,且过点(1,0).∴﹣=﹣2,a+b+c=0,∴b=4a,∴a+b+c=a+4a+c=0,故5a+c=0,故②正确,∵当x=﹣2时,y=4a﹣2b+c取得最小值,∴am2+bm+c≥4a﹣2b+c,即2b+bm≥4a﹣am2(m为任意实数),故③错误,∵抛物线开口向上,对称轴为直线x=﹣2,若点A(x1,y1)、B(x2,y2)是图象上任意两点,且|x1+2|<|x2+2|,∴y1<y2,故④正确;故选:C.9.(2023•丹东)抛物线y=ax2+bx+c(a≠0)与x轴的一个交点为A(﹣3,0),与y轴交于点C,点D是抛物线的顶点,对称轴为直线x=﹣1,其部分图象如图所示,则以下4个结论:①abc>0;②E(x1,y1),F(x2,y2)是抛物线y=ax2+bx(a≠0)上的两个点,若x1<x2,且x1+x2<﹣2,则y1<y2;③在x轴上有一动点P,当PC+PD的值最小时,则点P的坐标为;④若关于x的方程ax2+b(x﹣2)+c =﹣4(a≠0)无实数根,则b的取值范围是b<1.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据所给函数图象可得出a,b,c的正负,再结合抛物线的对称性和增减性即可解决问题.【解答】解:根据所给函数图象可知,a>0,b>0,c<0,所以abc<0,故①错误.因为抛物线y=ax2+bx的图象可由抛物线y=ax2+bx+c的图象沿y轴向上平移|c|个单位长度得到,所以抛物线y=ax2+bx的增减性与抛物线y=ax2+bx+c的增减性一致.则当x<﹣1时,y随x的增大而减小,又x1<x2,且x1+x2<﹣2,若x2<﹣1,则E,F两点都在对称轴的左侧,此时y1>y2.故②错误.作点C关于x轴的对称点C′,连接C′D与x轴交于点P,连接PC,此时PC+PD的值最小.将A(﹣3,0)代入二次函数解析式得,9a﹣3b+c=0,又,即b=2a,所以9a﹣6a+c=0,则c=﹣3a.又抛物线与y轴的交点坐标为C(0,c),则点C坐标为(0,﹣3a),所以点C′坐标为(0,3a).又当x=﹣1时,y=﹣4a,即D(﹣1,﹣4a).设直线C′D的函数表达式为y=kx+3a,将点D坐标代入得,﹣k+3a=﹣4a,则k=7a,所以直线C′D的函数表达式为y=7ax+3a.将y=0代入得,x=.所以点P的坐标为(,0).故③正确.将方程ax2+b(x﹣2)+c=﹣4整理得,ax2+bx+c=2b﹣4,因为方程没有实数根,所以抛物线y=ax2+bx+c与直线y=2b﹣4没有公共点,所以2b﹣4<﹣4a,则2b﹣4<﹣2b,解得b<1,又b>0,所以0<b<1.故④错误.所以正确的有③.故选:A.10.(2023•河北)已知二次函数y=﹣x2+m2x和y=x2﹣m2(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.m2C.4D.2m2【分析】求出三个交点的坐标,再构建方程求解.【解答】解:令y=0,则﹣x2+m2x=0和x2﹣m2=0,∴x=0或x=m2或x=﹣m或x=m,∵这四个交点中每相邻两点间的距离都相等,若m>0,则m2=2m,∴m=2,若m<0时,则m2=﹣2m,∴m=﹣2.∵抛物线y=x2﹣m2的对称轴为直线x=0,抛物线y=﹣x2+m2x的对称轴为直线x=,∴这两个函数图象对称轴之间的距离==2.故选:A.八.二次函数图象上点的坐标特征(共1小题)11.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac 的值为()A.﹣1B.﹣2C.﹣3D.﹣4【分析】过A作AH⊥x轴于H,根据正方形的性质得到∠AOB=45°,得到AH=OH,利用待定系数法求得a、c的值,即可求得结论.【解答】解:过A作AH⊥x轴于H,∵四边形ABCO是正方形,∴∠AOB=45°,∴∠AOH=45°,∴AH=OH,设A(m,m),则B(0,2m),∴,解得am=﹣1,m=,∴ac的值为﹣2,故选:B.九.二次函数与不等式(组)(共1小题)12.(2023•西宁)直线y1=ax+b和抛物线(a,b是常数,且a≠0)在同一平面直角坐标系中,直线y1=ax+b经过点(﹣4,0).下列结论:①抛物线的对称轴是直线x=﹣2;②抛物线与x轴一定有两个交点;③关于x的方程ax2+bx=ax+b有两个根x1=﹣4,x2=1;④若a >0,当x<﹣4或x>1时,y1>y2.其中正确的结论是()A.①②③④B.①②③C.②③D.①④【分析】根据直线y1=ax+b经过点(﹣4,0).得到b=4a,于是得到=ax2+4ax,求得抛物线的对称轴是直线x=﹣﹣=2;故①正确;根据Δ=16a2>0,得到抛物线与x轴一定有两个交点,故②正确;把b=4a,代入ax2+bx=ax+b得到x2+3x﹣4=0,求得x1=﹣4,x2=1;故③正确;根据a>0,得到抛物线的开口向上,直线y1=ax+b和抛物线交点横坐标为﹣4,1,于是得到结论.【解答】解:∵直线y1=ax+b经过点(﹣4,0).∴﹣4a+b=0,∴b=4a,∴=ax2+4ax,∴抛物线的对称轴是直线x=﹣﹣=2;故①正确;∵=ax2+4ax,∴Δ=16a2>0,∴抛物线与x轴一定有两个交点,故②正确;∵b=4a,∴方程ax2+bx=ax+b为ax2+4ax=ax+4a得,整理得x2+3x﹣4=0,解得x1=﹣4,x2=1;故③正确;∵a>0,抛物线的开口向上,直线y1=ax+b和抛物线交点横坐标为﹣4,1,∴当x<﹣4或x>1时,y1<y2.故④错误,故选:B.一十.三角形中位线定理(共1小题)13.(2023•广州)如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点M是边AC上一动点,点D,E分别是AB,MB的中点,当AM=2.4时,DE的长是 1.2.若点N在边BC上,且CN=AM,点F,G分别是MN,AN的中点,当AM>2.4时,四边形DEFG面积S的取值范围是3≤S≤4.【分析】依据题意,根据三角形中位线定理可得DE=AM=1.2;设AM=x,从而DE=x,由DE∥AM,且DE=AM,又FG∥AM,FG=AM,进而DE∥FG,DE=FG,从而四边形DEFG是平行四边形,结合题意可得DE边上的高为(4﹣x),故四边形DEFG面积S=4x﹣x2,进而利用二次函数的性质可得S的取值范围.【解答】解:由题意,点D,E分别是AB,MB的中点,∴DE是三角形ABM的中位线.∴DE=AM=1.2.如图,设AM=x,∴DE=AM=x.由题意得,DE∥AM,且DE=AM,又FG∥AM,FG=AM,∴DE∥FG,DE=FG.∴四边形DEFG是平行四边形.由题意,GF到AC的距离是x,BC==8,∴DE边上的高为(4﹣x).∴四边形DEFG面积S=2x﹣x2,=﹣(x﹣4)2+4.∵2.4<x≤6,∴3≤S≤4.故答案为:1.2;3≤S≤4.一十一.矩形的性质(共2小题)14.(2023•宁波)如图,以钝角三角形ABC的最长边BC为边向外作矩形BCDE,连结AE,AD,设△AED,△ABE,△ACD的面积分别为S,S1,S2,若要求出S﹣S1﹣S2的值,只需知道()A.△ABE的面积B.△ACD的面积C.△ABC的面积D.矩形BCDE的面积【分析】作AG⊥ED于点G,交BC于点F,可证明四边形BFGE是矩形,AF⊥BC,可推导出S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,所以只需知道S△ABC,就可求出S﹣S1﹣S2的值,于是得到问题的答案.【解答】解:作AG⊥ED于点G,交BC于点F,∵四边形BCDE是矩形,∴∠FBE=∠BEG=∠FGE=90°,BC∥ED,BC=ED,BE=CD,∴四边形BFGE是矩形,∠AFB=∠FGE=90°,∴FG=BE=CD,AF⊥BC,∴S﹣S1﹣S2=ED•AG﹣BE•EG﹣CD•DG=ED•AG﹣FG•ED=BC•AF=S△ABC,∴只需知道S△ABC,就可求出S﹣S1﹣S2的值,故选:C.15.(2023•河南)矩形ABCD中,M为对角线BD的中点,点N在边AD上,且AN=AB=1.当以点D,M,N为顶点的三角形是直角三角形时,AD的长为2或1+.【分析】以点D,M,N为顶点的三角形是直角三角形时,分两种情况:如图1,当∠MND=90°时,如图2,当∠NMD=90°时,根据矩形的性质和等腰直角三角形的性质即可得到结论.【解答】解:以点D,M,N为顶点的三角形是直角三角形时,分两种情况:①如图1,当∠MND=90°时,则MN⊥AD,∵四边形ABCD是矩形,∴∠A=90°,∴MN∥AB,∵M为对角线BD的中点,∴AN=DN,∵AN=AB=1,∴AD=2AN=2;如图2,当∠NMD=90°时,则MN⊥BD,∵M为对角线BD的中点,∴BM=DM,∴MN垂直平分BD,∴BN=DN,∵∠A=90°,AB=AN=1,∴BN=AB=,∴AD=AN+DN=1+,综上所述,AD的长为2或1+.故答案为:2或1+.一十二.正方形的性质(共2小题)16.如图,在边长为4的正方形ABCD中,点G是BC上的一点,且BG=3GC,DE⊥AG于点E,BF∥DE,且交AG于点F,则tan∠EDF的值为()A.B.C.D.【分析】由正方形ABCD的边长为4及BG=3CG,可求出BG的长,进而求出AG的长,证△ADE∽△GAB,利用相似三角形对应边成比例可求得AE、DE的长,证△ABF≌△DAE,得AF=DE,根据线段的和差求得EF的长即可.【解答】解:∵四边形ABCD是正方形,AB=4,∴BC=CD=DA=AB=4,∠BAD=∠ABC=90°,AD∥BC,∴∠DAE=∠AGB,∵BG=3CG,∴BG=3,∴在Rt△ABG中,AB2+BG2=AG2,∴AG=,∵DE⊥AG,∴∠DEA=∠DEF=∠ABC=90°,∴△ADE∽△GAB,∴AD:GA=AE:GB=DE:AB,∴4:5=AE:3=DE:4,∴AE=,DE=,又∵BF∥DE,∴∠AFB=∠DEF=90°,又∵AB=AD,∠DAE=∠ABF(同角的余角相等),∴△ABF≌△DAE,∴AF=DE=,∴EF=AF﹣AE=,∴tan∠EDF=,故选:A.17.(2023•湖州)如图,标号为①,②,③,④的四个直角三角形和标号为⑤的正方形恰好拼成对角互补的四边形ABCD,相邻图形之间互不重叠也无缝隙,①和②分别是等腰Rt△ABE和等腰Rt△BCF,③和④分别是Rt△CDG和Rt△DAH,⑤是正方形EFGH,直角顶点E,F,G,H分别在边BF,CG,DH,AE上.(1)若EF=3cm,AE+FC=11cm,则BE的长是4cm.(2)若,则tan∠DAH的值是3.【分析】(1)将AE和FC用BE表示出来,再代入AE+FC=11cm,即可求出BE的长;(2)由已知条件可以证明∠DAH=∠CDG,从而得到tan∠DAH=tan∠CDG,设AH=x,DG=5k,GH =4k,用x和k的式子表示出CG,再利用tan∠DAH=tan∠CDG列方程,解出x,从而求出tan∠DAH 的值.【解答】解:(1)∵Rt△ABE和Rt△BCF都是等腰直角三角形,∴AE=BE,BF=CF,∵AE+FC=11cm,∴BE+BF=11cm,即BE+BE+EF=11cm,即2BE+EF=11cm,∵EF=3cm,∴2BE+3cm=11cm,∴BE=4cm,故答案为:4;(2)设AH=x,∵,∴可设DG=5k,GH=4k,∵四边形EFGH是正方形,∴HE=EF=FG=GH=4k,∵Rt△ABE和Rt△BCF都是等腰直角三角形,∴AE=BE,BF=CF,∠ABE=∠CBF=45°,∴CG=CF+GF=BF+4k=BE+8k=AH+12k=x+12k,∠ABC=∠ABE+∠CBF=45°+45°=90°,∵四边形ABCD对角互补,∴∠ADC=90°,∴∠ADH+∠CDG=90°,∵四边形EFGH是正方形,∴∠AHD=∠CGD=90°,∴∠ADH+∠DAH=90°,∴∠DAH=∠CDG,∴tan∠DAH=tan∠CDG,∴,即,整理得:x2+12kx﹣45k2=0,解得x1=3k,x2=﹣15k(舍去),∴tan∠DAH===3.故答案为:3.一十三.正多边形和圆(共1小题)18.(2023•河北)将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l上.两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l平行,有两边分别经过两侧正六边形的一个顶点.则图2中:(1)∠α=30度;(2)中间正六边形的中心到直线l的距离为2(结果保留根号).【分析】(1)作图后,结合正多边形的外角的求法即可得到结论;(2)把问题转化为图形问题,首先作出图形,标出相应的字母,把正六边形的中心到直线l的距离转化为求ON=OM+BE,再根据正六边形的性质以及三角函数的定义,分别求出OM,BE即可.【解答】解:(1)作图如图所示,∵多边形是正六边形,∴∠ACB=60°,∵BC∥直线l,∴∠ABC=90°,∴α=30°;故答案为:30°;(2)取中间正六边形的中心为O,作图如图所示,由题意得,AG∥BF,AB∥GF,BF⊥AB,∴四边形ABFG为矩形,∴AB=GF,∵∠BAC=∠FGH,∠ABC=∠GFH=90°,∴△ABC≌△GFH(SAS),∴BC=FH,在Rt△PDE中,DE=1,PE=,由图1知AG=BF=2PE=2,OM=PE=,∵,∴,∴,∵,∴,∴.∴中间正六边形的中心到直线l的距离为2,故答案为:2.一十四.扇形面积的计算(共1小题)19.(2023•温州)图1是4×4方格绘成的七巧板图案,每个小方格的边长为,现将它剪拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF作为题字区域(点A,E,D,B在圆上,点C,F在AB上),形成一幅装饰画,则圆的半径为5.若点A,N,M在同一直线上,AB∥PN,DE=EF,则题字区域的面积为.【分析】根据不共线三点确定一个圆,根据对称性得出圆心的位置,进而垂径定理、勾股定理求得r,连接OE,取ED的中点T,连接OT,在Rt△OET中,根据勾股定理即可求解.【解答】解:如图所示,依题意,GH=2=GQ,∵过左侧的三个端点Q,K,L作圆,QH=HL=4,又NK⊥QL,∴O在KN上,连接OQ,则OQ为半径,∵OH=r﹣KH=r﹣2,在Rt△OHQ中,OH2+QH2=QO2,∴(r﹣2)2+42=r2,解得:r=5;连接OE,取ED的中点T,连接OT,交AB于点S,连接PB,AM,过点O作OU⊥AM于点U.连接OA.由△OUN∽△NPM,可得==,∴OU=.MN=2,∴NU=,∴AU==,∴AN=AU﹣NU=2,∴AN=MN,∵AB∥PN,∴AB⊥OT,∴AS=SB,∴NS∥BM,∴NS∥MP,∴M,P,B共线,又NB=NA,∴∠ABM=90°,∵MN=NB,NP⊥MP,∴MP=PB=2,∴NS=MB=2,∵KH+HN=2+4=6,∴ON=6﹣5=1,∴OS=3,∵,设EF=ST=a,则,在Rt△OET中,OE2=OT2+TE2,即,整理得5a2+12a﹣32=0,即(a+4)(5a﹣8)=0,解得:或a=﹣4,∴题字区域的面积为.故答案为:.一十五.轴对称-最短路线问题(共1小题)20.(2023•安徽)如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误的是()A.P A+PB的最小值为3B.PE+PF的最小值为2C.△CDE周长的最小值为6D.四边形ABCD面积的最小值为3【分析】延长AD,BC交于M,过P作直线l∥AB,由△ADE和△BCE是等边三角形,可得四边形DECM 是平行四边形,而P为CD中点,知P为EM中点,故P在直线l上运动,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB=P A'+PB最小,即可得P A+PB 最小值A'B==2,判断选项A错误;由PM=PE,即可得当M,P,F共线时,PE+PF 最小,最小值为MF的长度,此时PE+PF的最小值为2,判断选项B正确;过D作DK⊥AB于K,过C作CT⊥AB于T,由△ADE和△BCE是等边三角形,得KT=KE+TE=AB=2,有CD≥2,故△CDE周长的最小值为6,判断选项C正确;设AE=2m,可得S四边形ABCD=(m﹣1)2+3,即知四边形ABCD面积的最小值为3,判断选项D正确.【解答】解:延长AD,BC交于M,过P作直线l∥AB,如图:∵△ADE和△BCE是等边三角形,∴∠DEA=∠MBA=60°,∠CEB=∠MAB=60°,∴DE∥BM,CE∥AM,∴四边形DECM是平行四边形,∵P为CD中点,∴P为EM中点,∵E在线段AB上运动,∴P在直线l上运动,由AB=4知等边三角形ABM的高为2,∴M到直线l的距离,P到直线AB的距离都为,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,P A+PB =P A'+PB最小,此时P A+PB最小值A'B===2,故选项A错误,符合题意;∵PM=PE,∴PE+PF=PM+PF,∴当M,P,F共线时,PE+PF最小,最小值为MF的长度,∵F为AB的中点,∴MF⊥AB,∴MF为等边三角形ABM的高,∴PE+PF的最小值为2,故选项B正确,不符合题意;过D作DK⊥AB于K,过C作CT⊥AB于T,如图,∵△ADE和△BCE是等边三角形,∴KE=AE,TE=BE,∴KT=KE+TE=AB=2,∴CD≥2,∴DE+CE+CD≥AE+BE+2,即DE+CE+CD≥AB+2,∴DE+CE+CD≥6,∴△CDE周长的最小值为6,故选项C正确,不符合题意;设AE=2m,则BE=4﹣2m,∴AK=KE=m,BT=ET=2﹣m,DK=AK=m,CT=BT=2﹣m,∴S△ADK=m•m=m2,S△BCT=(2﹣m)(2﹣m)=m2﹣2m+2,S梯形DKTC =(m+2﹣m)•2=2,∴S四边形ABCD=m2+m2﹣2m+2+2=m2﹣2m+4=(m﹣1)2+3,∴当m=1时,四边形ABCD面积的最小值为3,故选项D正确,不符合题意;故选:A.一十六.翻折变换(折叠问题)(共2小题)21.(2023•乐至县)如图,在平面直角坐标系xOy中,边长为2的等边△ABC的顶点A、B分别在x轴、y 轴的正半轴上移动,将△ABC沿BC所在直线翻折得到△DBC,则OD的最大值为+1.【分析】过点D作DF⊥AB,交AB延长线于点F,取AB的中点E,连接DE,OE,OD,在Rt△ABO 中利用斜边中线性质求出OE,根据OE+DE≥OD确定当D、O、E三点共线时OD最大,最大值为OD =OE+DE.【解答】解:如图,过点D作DF⊥AB,交AB延长线于点F,取AB的中点E,连接DE,OE,OD,∵等边三角形ABC的边长为2,∴AB=2,∠ABC=60°,由翻折可知:∠DBC=∠ABC=60°,DB=AB=2,∴∠DBF=60°,∵DF⊥AB,∴∠DFB=90°,∴∠BDF=30°,∴BF=BD=1,∴DF=BF=,∵E是AB的中点,∴AE=BE=OE=AB=1,∴EF=BE+BF=2,∴DE===,∴OD≤DE+OE=+1,∴当D、E、O三点共线时OD最大,最大值为+1.故答案为:+1.22.(2023•南京)如图,在菱形纸片ABCD中,点E在边AB上,将纸片沿CE折叠,点B落在B′处,CB′⊥AD,垂足为F.若CF=4cm,FB′=1cm,则BE=cm.【分析】作EH⊥BC于点H,由CF=4cm,FB′=1cm,求得B′C=5cm,由折叠得BC=B′C=5cm,由菱形的性质得BC∥AD,DC=BC=5cm,∠B=∠D,因为CB′⊥AD于点F,所以∠BCB′=∠CFD =90°,则∠BCE=∠B′CE=45°,DF==3cm,所以∠HEC=∠BCE=45°,则CH=EH,由=sin B=sin D=,=cos B=cos D=,得CH=EH=BE,BH=BE,于是得BE+BE =5,则BE=cm.【解答】解:作EH⊥BC于点H,则∠BHE=∠CHE=90°,∵CF=4cm,FB′=1cm,∴B′C=CF+FB′=4+1=5(cm),由折叠得BC=B′C=5cm,∠BCE=∠B′CE,∵四边形ABCD是菱形,∴BC∥AD,DC=BC=5cm,∠B=∠D,∵CB′⊥AD于点F,∴∠BCB′=∠CFD=90°,∴∠BCE=∠B′CE=∠BCB′=×90°=45°,DF===3(cm),∴∠HEC=∠BCE=45°,∴CH=EH,∵=sin B=sin D==,=cos B=cos D==,∴CH=EH=BE,BH=BE,∴BE+BE=5,∴BE=cm,故答案为:.一十七.旋转的性质(共1小题)23.(2023•西宁)如图,在矩形ABCD中,点P在BC边上,连接P A,将P A绕点P顺时针旋转90°得到P A′,连接CA′,若AD=9,AB=5,CA′=2,则BP=2.【分析】过A′点作A′H⊥BC于H点,如图,根据旋转的性质得到P A=P A′,再证明△ABP≌△PHA′得到PB=A′H,PH=AB=5,设PB=x,则A′H=x,CH=4﹣x,然后在Rt△A′CH中利用勾股定理得到x2+(4﹣x)2=(2)2,于是解方程求出x即可.【解答】解:过A′点作A′H⊥BC于H点,如图,∵四边形ABCD为矩形,∴BC=AD=9,∠B=90°,∵将P A绕点P顺时针旋转90°得到P A′,∴P A=P A′,∵∠P AB+∠APB=90°,∠APB+∠A′PH=90°,∴∠P AB=∠A′PH,在△ABP和△PHA′中,,∴△ABP≌△PHA′(AAS),∴PB=A′H,PH=AB=5,设PB=x,则A′H=x,CH=9﹣x﹣5=4﹣x,在Rt△A′CH中,x2+(4﹣x)2=(2)2,解得x1=x2=2,即BP的长为2.故答案为:2.一十八.相似三角形的判定与性质(共2小题)24.(2023•杭州)如图,在△ABC中,AB=AC,∠A<90°,点D,E,F分别在边AB,BC,CA上,连接DE,EF,FD,已知点B和点F关于直线DE对称.设=k,若AD=DF,则=(结果用含k的代数式表示).【分析】方法一:先根据轴对称的性质和已知条件证明DE∥AC,再证△BDE∽△BAC,推出EC=k•AB,通过证明△ABC∽△ECF,推出CF=k2•AB,即可求出的值.方法二:证明AD=DF=BD,可得BF⊥AC,设AB=AC=1,BC=k,CF=x,则AF=1﹣x,利用勾股定理列方程求出x的值,进而可以解决问题.【解答】解:方法一:∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB,∵AD=DF,∴∠A=∠DF A,∵点B和点F关于直线DE对称,∴∠BDE=∠FDE,∵∠BDE+∠FDE=∠BDF=∠A+∠DF A,∴∠FDE=∠DF A,∴DE∥AC,∴∠C=∠DEB,∠DEF=∠EFC,∵点B和点F关于直线DE对称,∴∠DEB=∠DEF,∴∠C=∠EFC,∵AB=AC,∴∠C=∠B,∵∠ACB=∠EFC,∴△ABC∽△ECF,∴=,∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴==,∴EC=BC,∵=k,∴BC=k•AB,∴EC=k•AB,∴=,∴CF=k2•AB,∴====.方法二:如图,连接BF,∵点B和点F关于直线DE对称,∴DB=DF,∵AD=DF,∴AD=DB=DF,∴BF⊥AC,设AB=AC=1,则BC=k,设CF=x,则AF=1﹣x,由勾股定理得,AB2﹣AF2=BC2﹣CF2,∴12﹣(1﹣x)2=k2﹣x2,∴x=,∴AF=1﹣x=,∴=.故答案为:.25.(2023•广东)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为15.【分析】根据相似三角形的性质,利用相似比求出梯形的上底和下底,用面积公式计算即可.【解答】解:如图,∵BF∥DE,∴△ABF∽△ADE,∴=,∵AB=4,AD=4+6+10=20,DE=10,∴=,∴BF=2,∴GF=6﹣2=4,∵CK∥DE,∴△ACK∽△ADE,∴=,∵AC=4+6=10,AD=20,DE=10,∴=,∴CK=5,∴HK=6﹣5=1,∴阴影梯形的面积=(HK+GF)•GH=(1+4)×6=15.故答案为:15.一十九.相似三角形的应用(共1小题)26.(2023•南京)如图,不等臂跷跷板AB的一端A碰到地面时,另一端B到地面的高度为60cm;当AB 的一端B碰到地面时,另一端A到地面的高度为90cm,则跷跷板AB的支撑点O到地面的高度OH是()A.36cm B.40cm C.42cm D.45cm【分析】过点B作BC⊥AH,垂足为C,再证明A字模型相似△AOH∽△ABC,从而可得=,过点A作AD⊥BH,垂足为D,然后证明A字模型相似△ABD∽△OBH,从而可得=,最后进行计算即可解答.【解答】解:如图:过点B作BC⊥AH,垂足为C,∵OH⊥AC,BC⊥AC,∴∠AHO=∠ACB=90°,∵∠BAC=∠OAH,∴△AOH∽△ABC,∴=,∴=,如图:过点A作AD⊥BH,垂足为D,∵OH⊥BD,AD⊥BD,∴∠OHB=∠ADB=90°,∵∠ABD=∠OBH,∴△ABD∽△OBH,∴=,∴=,∴+=+,∴+=,∴+=1,解得:OH=36,∴跷跷板AB的支撑点O到地面的高度OH是36cm,故选:A.二十.解直角三角形(共1小题)27.(2023•丹东)如图,在平面直角坐标系中,点O是坐标原点,已知点A(3,0),B(0,4),点C在x 轴负半轴上,连接AB,BC,若tan∠ABC=2,以BC为边作等边三角形BCD,则点C的坐标为(﹣2,0);点D的坐标为(﹣1﹣2,2+)或(﹣1+2,2﹣).【分析】过点C作CE⊥AB于E,先求处AB=5,再设BE=t,由tan∠ABC=2得CE=2t,进而得BC =,由三角形的面积公式得S△ABC=AC•OB=AB•CE,即5×2t=4×(3+OC),则OC=﹣3,然后在Rt△BOC中由勾股定理得,由此解出t1=2,t2=10(不合题意,舍去),此时OC=﹣3=2,故此可得点C的坐标;设点D的坐标为(m,n),由两点间的距离公式得:BC2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,由△BCD为等边三角形得,整理:,②﹣①整理得m=3﹣2n,将m=3﹣2n代入①整理得n2﹣4n+1=0,解得n=,进而再求出m即可得点D的坐标.【解答】解:过点C作CE⊥AB于E,如图:∵点A(3,0),B(0,4),由两点间的距离公式得:AB==5,设BE=t,∵tan∠ABC=2,在Rt△BCE中,tan∠ABC=,∴=2,∴CE=2t,由勾股定理得:BC==t,∵CE⊥AB,OB⊥AC,AC=OC+OA=3+OC,∴S△ABC=AC•OB=AB•CE,即:5×2t=4×(3+OC),∴OC=﹣3,在Rt△BOC中,由勾股定理得:BC2﹣OB2=OC2,即,整理得:t2﹣12t+20=0,解得:t1=2,t2=10(不合题意,舍去),∴t=2,此时OC=﹣3=2,∴点C的坐标为(﹣2,0),设点D的坐标为(m,n),由两点间的距离公式得:BC2=(﹣2﹣0)2+(0﹣4)2=20,BD2=(m﹣0)2+(n﹣4)2,CD2=(m+2)2+(n﹣0)2,∵△BCD为等边三角形,∵BD=CD=BC,∴,整理得:,②﹣①得:4m+8n=12,∴m=3﹣2n,将m=3﹣2n代入①得:(3﹣2n)2+n2﹣8n=4,整理得:n2﹣4n+1=0,解得:n=,当n=时,m=3﹣2n=,当n=时,m=3﹣2n=,∴点D的坐标为或.故答案为:(﹣2,0);或.二十一.解直角三角形的应用(共1小题)28.(2023•杭州)第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(△DAE,△ABF,△BCG,△CDH)和中间一个小正方形EFGH 拼成的大正方形ABCD中,∠ABF>∠BAF,连接BE.设∠BAF=α,∠BEF=β,若正方形EFGH与正方形ABCD的面积之比为1:n,tanα=tan2β,则n=()A.5B.4C.3D.2【分析】设AE=a,DE=b,则BF=a,AF=b,解直角三角形可得,化简可得(b﹣a)2=ab,a2+b2=3ab,结合勾股定理及正方形的面积公式可求得S正方形EFGH;S正方形ABCD=1:3,进而可求解n的值.【解答】解:设AE=a,DE=b,则BF=a,AF=b,∵tanα=,tanβ=,tanα=tan2β,∴,∴(b﹣a)2=ab,∴a2+b2=3ab,∵a2+b2=AD2=S正方形ABCD,(b﹣a)2=S正方形EFGH,∴S正方形EFGH:S正方形ABCD=ab:3ab=1:3,∵S正方形EFGH:S正方形ABCD=1:n,∴n=3.故选:C.。
一、选择题(每题4分,共16分)1. 若函数f(x) = ax^2 + bx + c在x = 1时取得最小值,则a,b,c之间的关系是()A. a > 0,b = 0,c > 0B. a < 0,b = 0,c < 0C. a > 0,b ≠ 0,c ≠ 0D. a < 0,b ≠ 0,c ≠ 0答案:B解析:二次函数的顶点坐标为(-b/2a, f(-b/2a)),当a < 0时,函数开口向下,顶点为最大值点,因此a < 0。
又因为顶点坐标的y值为最小值,所以c < 0。
由于函数在x = 1时取得最小值,所以b = 0。
2. 在直角坐标系中,点A(2,3),B(-1,2),C(1,-2)构成的三角形ABC的外心坐标是()A. (1,0)B. (0,1)C. (0,-1)D. (-1,0)答案:A解析:三角形的外心是三角形三边垂直平分线的交点。
首先,计算AB、AC、BC三边的斜率,然后分别求出垂直平分线的方程。
最后,解方程组得到交点坐标。
3. 若等差数列{an}的前n项和为Sn,且S3 = 9,S5 = 25,则数列的公差d为()A. 2B. 3C. 4D. 5答案:B解析:等差数列的前n项和公式为Sn = n/2 (a1 + an)。
由题意,S3 = 3/2(a1 + a3) = 9,S5 = 5/2 (a1 + a5) = 25。
将S3和S5的表达式代入,得到两个方程,解得a1和a5,再求公差d。
4. 在平面直角坐标系中,抛物线y = x^2 - 2x + 3的焦点坐标是()A. (1,1)B. (1,-1)C. (0,1)D. (0,-1)答案:B解析:抛物线的一般方程为y = ax^2 + bx + c,焦点坐标为(-b/2a,1-1/(4a))。
将抛物线方程y = x^2 - 2x + 3代入,得到焦点坐标。
5. 若复数z满足|z-1| = |z+1|,则z的实部为()A. 0B. 1C. -1D. 不确定答案:A解析:复数z的模长|z|表示复数z到原点的距离。
中考数学压轴题专项训练十套(含答案)中考数学压轴题专项训练(一)做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日三、解答题23.(11分)如图,在直角梯形 $OABC$ 中,$AB\parallel OC$,$BC\perp x$ 轴于点 $C$,$A(1,1)$,$B(3,1)$.动点$P$ 从点 $O$ 出发,沿 $x$ 轴正方向以每秒 $1$ 个单位长度的速度移动.过点 $P$ 作 $PQ\perp OA$,垂足为 $Q$.设点$P$ 移动的时间为 $t$ 秒($0<t<4$),$\triangle OPQ$ 与直角梯形 $OABC$ 重叠部分的面积为 $S$.1)求经过 $O$,$A$,$B$ 三点的抛物线解析式.2)求 $S$ 与 $t$ 的函数关系式.3)将 $\triangle OPQ$ 绕着点 $P$ 顺时针旋转$90^{\circ}$,是否存在 $t$,使得 $\triangle OPQ$ 的顶点$O$ 或 $Q$ 在抛物线上?若存在,直接写出 $t$ 的值;若不存在,请说明理由.解析:1)由题意可知,经过 $O$,$A$,$B$ 三点的抛物线为$y=ax^{2}+bx+c$,代入三点的坐标可得:begin{cases}a+b+c=1\\4a+2b+c=1\\9a+3b+c=1end{cases}$解得 $a=-\dfrac{1}{4}$,$b=\dfrac{5}{4}$,$c=\dfrac{1}{2}$,即经过 $O$,$A$,$B$ 三点的抛物线解析式为 $y=-\dfrac{1}{4}x^{2}+\dfrac{5}{4}x+\dfrac{1}{2}$.2)设 $\triangle OPQ$ 的高为 $h$,则 $\triangle OPQ$ 的面积为 $\dfrac{1}{2}xh$,其中 $x=OP=t$.由于 $\triangle OPQ$ 与直角梯形 $OABC$ 重叠部分的面积为 $S$,所以$S=\dfrac{1}{2}(AB+BC)h=\dfrac{1}{2}(3+2t)h$.又因为 $P$ 沿 $x$ 轴正方向以每秒 $1$ 个单位长度的速度移动,所以 $h$ 的变化率为$\dfrac{\mathrm{d}h}{\mathrm{d}t}=-1$,即 $h=-t+4$.综上所述,$S=\dfrac{1}{2}(3+2t)(-t+4)=-t^{2}+5t-6$,即$S$ 与 $t$ 的函数关系式为 $S=-t^{2}+5t-6$.3)将 $\triangle OPQ$ 绕着点 $P$ 顺时针旋转$90^{\circ}$,则 $\triangle OPQ$ 变为 $\triangle OP'Q'$,其中$P'$,$Q'$ 分别为 $P$,$Q$ 绕着点 $P$ 顺时针旋转$90^{\circ}$ 后的点.易知 $\triangle OP'Q'$ 的顶点为 $O'$,坐标为 $(1+t,1)$.将 $O'$ 的坐标代入抛物线的解析式中,得到 $y=-\dfrac{1}{4}(1+t)^{2}+\dfrac{5}{4}(1+t)+\dfrac{1}{2}$.令 $y=0$,解得 $t=2\pm\sqrt{3}$.由于 $0<t<4$,所以 $t=2+\sqrt{3}$,即存在 $t$,使得$\triangle OPQ$ 的顶点 $O$ 在抛物线上.答案:(1)$y=-\dfrac{1}{4}x^{2}+\dfrac{5}{4}x+\dfrac{1}{2}$;(2)$S=-t^{2}+5t-6$;(3)$t=2+\sqrt{3}$.2)正方形以每秒5个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止。
一、解答题1.平面直角坐标系中,点在y轴正半轴,点在x轴正半轴,以线段AB为边在第一象限内作等边ABC,点C关于y轴的对称点为点D,连接AD,BD,且BD交y 轴于点E.(1)补全图形,并填空;①若点,则点D的坐标是__________;②若,则________.(2)若,求证:AD垂直平分BC;(3)若时,探究的数量关系,并证明.2.如图,在平面直角坐标系中,已知一次函数y=kx+b(k>0,b>0)的图象与x轴交于A,与y轴交于C.双曲线y=ax(x>0)的图象交一次函数的图像于第一象限内的点B,BD⊥x轴于D.E是AB中点,直线DE交y轴于F,连接AF.(1)若k=1,点B(2,6)时.①求一次函数和反比例函数的解析式;②求AFD的面积.(2)当k=2,a=12时,求AFD的面积.(3)求证:当k,b,a为任意常数时,AFD的面积恒等于1 2 a3.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.(1)如图1,当∠MBN 绕B 点旋转到AE =CF 时,求证:AE +CF =EF .(2)如图2,当∠MBN 绕B 点旋转到AE ≠CF 时,上述结论是否成立?若成立,请给予证明;若不成立,线段AE ,CF ,EF 又有怎样的数量关系?请写出你的猜想,并证明. (3)当∠MBN 绕B 点继续旋转到图3位置时,AE =10,CF =2.求EF 的长度.4.抛物线212y x mx n =-++与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知(1,0)A -,(0,2)C .(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P ,使PCD 是以CD 为腰的等腰三角形?如果存在,求出P 点的坐标;如果不存在,请说明理由;(3)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当四边形CDBF 的面积最大时,求点E 的坐标.5.如果抛物线1C 的顶点在抛物线2C 上,同时,抛物线2C 的顶点在抛物线1C 上,那么我们称抛物线1C 与2C 关联.(1)已知抛物线①221y x x =+-,判断下列抛物线②221y x x =-++;③221y x x =++与已知抛物线①是否关联,并说明理由.(2)抛物线211:(1)28C y x =+-,动点P 的坐标为(,2)t ,将抛物线绕点(,2)P t 旋转180︒得到抛物线2C ,若抛物线1C 与2C 关联,求抛物线2C 的解析式.(3)点A 为抛物线211:(1)28C y x =+-的顶点,点B 为与抛物线1C 关联的抛物线顶点,是否存在以AB 为斜边的等腰直角ABC ,使其直角顶点C 在y 轴上,若存在,求出C 点的坐标;若不存在,请说明理由.6.已知二次函数2y x bx c =+-图象通过两点(1,),(2,10)P a Q a . (1)如果a ,b ,c 是整数,且8c b a <<,求a ,b ,c 值.(2)设二次函数2y x bx c =+-图象和x 轴交点为A 、B ,和y 轴交点为C .如果有关x 方程20x bx c +-=两个根都是整数,求ABC 面积.7.如图1,直线AB 与x 轴,y 轴分别交于A ,B 两点,点C 在x 轴负半轴上,这三个点的坐标分别为A (4,0),B (0,4),C (−1,0) . (1)请求出直线AB 的解析式;(2)连接BC,若点E是线段AC上的一个动点(不与A,C重合),过点E作EF//BC交AB于点F,当△BEF的面积是52时,求点E的坐标;(3)如图2,将点B向右平移1个单位长度得到点D,在x轴上存在动点P,若∠DCO+∠DPO=∠α,当tan∠α=4时,请直接写出点P的坐标.8.如图①,在平面直角坐标系中,点A、B的坐标分别为A(4,0)、B(0,3),连结AB.抛物线经过点B,且对称轴是直线.(1)求抛物线的函数关系式.(2)将图①中的△ABO沿x轴向左平移得到△DCE(如图②),当四边形ABCD是菱形时,说明点C和点D都在该抛物线上.(3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),过点M作MN∥y轴交直线CD于点N.设点M的横坐标为m,线段MN的长为l.求l与m之间的函数关系式.(4)在(3)的条件下,直接写出m为何值时,以M、N、C、E为顶点的四边形是平行四边形.9.如图1,ABC内接于O,弦AE交BC于点D,连接BO,且ABO DAC∠∠.(1)求证:AE BC⊥;(2)如图2,点F在弧AC上,连接CF、BF,BF交AE于点M,若ACF OBC∠=∠,求证:MD ED=;(3)如图3,在(2)的条件下,3AM=时,求弦CF∠=∠,若10BFC EACBM=,3的长.10.如图,在△ABC中,AB=6,AC=BC=5,CD⊥AB于点D,点P从点A出发,以每秒5个单位长度的速度沿折线AC—CB向终点B运动,当点P不与A,B,C重合时,过点P作PQ⊥AB交AB于点Q,过点P作PM⊥PQ,使得PM=2PQ,点M、点D在PQ的同侧,连结MQ,设点P的运动时间为t(s)(1)线段CD=.(2)当点P在线段BC上时,PC=.(用含t的代数式表示)(3)当点M落在△BCD的内部时,求t的取值范围;(4)连结CM,当△CPM为锐角三角形时,直接写出t的取值范围.11.在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,过点A作AE⊥BC于点E.(1)如图1,求证:AE=CE;(2)如图2,点F是线段CE.上一点,CF=BE,FG⊥BC交BD于点G,连接AG,求证:AG=BE+FG;(3)如图3,在(2)的条件下,若EF=10,FG=7,求AG的长.12.在ABC中,AB AC=,D是边AC上一点,F是边AB上一点,连接BD、CF交于点E,连接AE,且.(1)如图1,若90BAC∠=︒,,,求点B到AE的距离;(2)如图2,若E为BD中点,连接FD,FD平分,G为CF上一点,且,求证:;(3)如图3,若,12△沿着AB翻折得,点H为的BC=,将ABD中点,连接HA、HC,当周长最小时,请直接写出的值.13.如图1,抛物线y=ax2+bx+3过点A(﹣1,0),点B(3,0),与y轴交于点C.M是抛物线任意一点,过点M作直线l⊥x轴,交x轴于点E,设M的横坐标为m(0<m<3).(1)求抛物线的解析式及tan∠OBC的值;(2)当m=1时,P是直线l上的点且在第一象限内,若△ACP是直角三角形时,求点P的坐标;(3)如图2,连接BC,连接AM交y轴于点N,交BC于点D,连接BM,设△BDM的面积为S1,△CDN的面积为S2,求S1﹣S2的最大值.14.如图,抛物线y=ax2+bx+2与直线AB相交于A(﹣1,0),B(3,2),与x轴交于另一点C.(1)求抛物线的解析式;(2)在y上是否存在一点E,使四边形ABCE为矩形,若存在,请求出点E的坐标;若不存在,请说明理由;DB的最小值.(3)以C为圆心,1为半径作⊙C,D为⊙O上一动点,求DA+5515.如图,已知抛物线y=ax2+bx+5(a≠0)与x轴交于点A(﹣5,0),点B(1,0)(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点,连接BD.直线y=经过点A,且与y轴交于点E.(1)求抛物线的解析式;(2)点N是抛物线上的一点,当△BDN是以DN为腰的等腰三角形时,求点N的坐标;(3)点F为线段AE上的一点,点G为线段OA上的一点,连接FG,并延长FG与线段BD 交于点H(点H在第一象限),当∠EFG=3∠BAE且HG=2FG时,求出点F的坐标.16.如图1,点A,点B的坐标分别(a,0),(0,b),且b=+4,将线段BA绕点B逆时针旋转90°得到线段BC.(1)直接写出a = ,b = ,点C 的坐标为 ;(2)如图2,作CD ⊥x 轴于点D ,点M 是BD 的中点,点N 在△OBD 内部,ON ⊥DN ,求证:2MN +ON =DN .(3)如图3,点P 是第二象限内的一个动点,若∠OPB =90°,求线段CP 的最大值. 17.如图,在长方形ABCD 中,10AB =,9BC =,点E 在AB 上,点G 在AD 上,AEFG 为正方形.点M ,N 分别为BC ,CD 上的动点,MO BC ⊥,NO CD ⊥,且点O 始终在正方形AEFG 的内部,MO 交EF 于点P ,NO 交FG 于点Q .(1)设CM AE a ==,①用含a 的代数式表示四边形EBMP 的周长;②若四边形OPFQ ,GQND 的周长之和恰好为四边形EBMP 周长的两倍,求a 的值. (2)设3CM x =,2CN x =,AE n CN =,是否存在正整数x ,n ,使得EBMP GQND S S =四边形四边形若存在,求出x ,n 的值;若不存在,请说明理由.18.如图,抛物线24y ax bx =++的对称轴是直线x =3,与x 轴交于()2,0A -,B 两点,与y 轴交于点C .(1)求抛物线的函数表达式;(2)若M 是抛物线上任意一点,过点M 作y 轴的平行线,交直线BC 于点N ,若3MN =,求点M 的坐标;(3)设点D ,E 是直线3x =上两动点,且1DE =,点D 在点E 上方,求四边形ACDE 周长的最小值.19.已知二次函数()20y x bx c a =++≠的图象与x 轴的交于A 、B (1,0)两点,与y 轴交于点()03C -,.(1)求二次函数的表达式及A 点坐标;(2)D 是二次函数图象上位于第三象限内的点,若点D 的横坐标为m ,ACD △的面积为S ,求S 与m 之间的函数关系式,并写出ACD △的面积取得最大值时点D 的坐标; (3)M 是二次函数图象对称轴上的点,在二次函数图象上是否存在点N .使以M 、N 、B 、O 为顶点的四边形是平行四边形?若有,请写出点N 的坐标(不写求解过程).20.如图1,已知二次函数y =ax 232+x +c 的图象与y 轴交于点C (0,4),与x 轴交于点A 、点B ,点B 坐标为(8,0).(1)请直接写出二次函数的解析式;(2)在直线BC 上方的抛物线上是否存在点P ,使△PBC 的面积为16?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)在(2)的结论下,过点P作PF⊥x轴于点F,交直线BC于点E,连接AE,点N是抛物线对称轴上的动点,在抛物线上是否存在点M,使得以M、N、A、E为顶点的四边形是平行四边形?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.【参考答案】**科目模拟测试一、解答题1.(1)①D(-2,3) ②∠BEO=60°;(2)答案见解析;(3)DE= AE+2EO,证明见解析.【解析】【分析】(1)①根据关于y轴的对称的性质可得答案,关于y轴的对称的两点,横坐标互为相反数,纵坐标不变;②根据C、D两点关于y轴的对称,可知y轴是线段CD的垂直平分线,得AD=AC、∠CAF=∠DAF,然后由等边△ABC得AC=AB,最后得AD=AB,∠ADB=∠ABD,即可得答案;(2)由|a−3|+b2−6b+9=0,得a=b,得∠BAO=45°,然后根据平角得∠CAF的度数、∠CAG的度数,即可得答案;(3)先证∠EBO=30°,得BE=2EO,然后作HE=AE,证△ADE≌△ABH,得DE=BH,最后证BH= AE+2EO,即可得答案.(1)解:补全图形如下图①∵C、D两点关于y轴的对称的两点,∴横坐标互为相反数,纵坐标不变,∵C(2,3),∴D(-2,3);②∵C、D两点关于y轴的对称,∠CAD=140°,=70°∴∠CAF=∠DAF=140°×12∵△ABC是等边三角形,∴∠CAB=60°,AC=AB,∴∠BAE=180°-70°-60°=50°,∵C、D两点关于y轴的对称,∴AD=AC,∴AD=AB,∴∠ADB=∠ABD=[180°-(360°-140°-60°)] ×1=10°2∴∠BEO=∠BAE+∠ABD=50°+10°=60°;(2)如下图:延长DA交BC于点G,∵|a−3|+b2−6b+9=0,∴|a−3|+(b−3)2=0,∴a=b=3,∴AO=BO,∴∠BAO=45°,∴∠CAF=180°-45°-60°=75°,∴∠CAG=180°-75°-75°=30°,∴∠BAG=60°-30°=30°,∴∠CAG=∠BAG,∴AD垂直平分BC;(3)如下图:作HE=AE,连接AH,∵C、D两点关于y轴的对称,∴∠CAF=∠DAF,∴∠CAE=∠DAE,∵∠CAE=60°+∠BAO,∴∠DAE=60°+∠BAO,∴∠DAB=60°+2∠BAO,=60°-∠BAO,∴∠DBA=[ 180°-(60°+2∠BAO)] ×12∴∠BEO=∠BAO+∠DBA=∠BAO+60°-∠BAO=60°,∴∠EBO=30°,∵∠AOB=90°,∴BE=2EO,∵HE=AE,∠BEA=∠AEH=60°,∴△AEH是等边三角形,∴AH=AE,∠HAE=60°,∴∠DAH=∠BAO,∵∠DAE=∠DAH+60°,∠BAH=∠BAO+60°,∴∠DAE=∠BAH,在△ADE和△ABH中,,∴△ADE≌△ABH,∴DE =BH , ∵HE =AE ,BE =2EO , ∴BH =BE +HE = AE +2EO , ∴DE = AE +2EO . 【点睛】本题考查了关于y 轴的对称的性质、等边三角形的性质、三角形的内角与外角的性质,垂直平分线的判定、在直角三角形中,30°的所对的边是斜边的一半、全等三角形的判定和性质,做题的关键是作辅助线,构造△ADE ≌△ABH .2.(1)①y =x +4,12y x=; ②6;(2)6;(3)见解析 【解析】 【分析】(1)①把点B (2,6)分别代入y =x +b 和y =kx (x >0),根据待定系数法即可求得; ②求出D ,E 的坐标,求出直线DE 的解析式,得到F 点坐标,故可求出△ADF 的面积; (2)联立两函数求出B 点坐标,再得到E 点坐标,求出直线DE 的解析式,从而得到F 点坐标,根据三角形的面积公式即可求出AFD 的面积 (3)与(2)同理即可求解. 【详解】解:(1)①∵一次函数y =x +b 的图象与反比例函数y =ax(x >0)的图象交于B ,B (2,6), ∴6=2+b ,6=2a , ∴b =4,a =12,∴一次函数解析式为y =x +4,反比例函数解析式为12y x=; ②令一次函数y =x +4=0 解得x =-4 ∴A (-4,0)∵E 是AB 中点,B (2,6) ∴E (-1,3) ∵BD ⊥x 轴于D ∴D (2,0)设直线DE 的解析式为y =mx +n ,代入E (-1,3)、D (2,0)得302m nm n =-+⎧⎨=+⎩解得12m n =-⎧⎨=⎩∴直线DE 的解析式为y =-x +2,令x =0,得y =2 ∴F (0,2) ∴OF =2 ∴AFD 的面积为1162622AD OF ⨯=⨯⨯=; (2)∵一次函数y =2x +b ,反比例函数12y x= 联立得2x +b =12x∴2x 2+bx -12=0解得xx舍去)∴B由A (12b -,0)得到E∵D0)设直线DE 的解析式为y =mx +n ,代入ED)得0m n m n ⎧=⎪=+⎪⎩解得2m n =-⎧⎪⎨=⎪⎩∴直线DE 的解析式为y =-2x令x =0,y∴F (0∴OF∵A (12b -,0),D0) ∴AD =12b∴AFD的面积为11622AD OF ⨯==;(3)∵一次函数y =kx +b ,反比例函数ay x= 联立得kx 2+bx -a =0解得xx舍去)∴B由A (bk -,0)得到E∵D0)设直线DE 的解析式为y =mx +n ,代入ED)得0m n m n ⎧=+⎪=+⎪⎩解得m kn =-⎧⎪⎨=⎪⎩∴直线DE 的解析式为y =-kx令x =0,y∴F (0∴OF∵A (bk -,0),D0)∴AD =b k∴AFD的面积为11212282ak AD OF a k ⨯===.【点睛】本题是反比例函数与一次函数的交点问题,解题的关键是熟知待定系数法求函数的解析式,三角形的面积及一元二次方程的解法.3.(1)见解析;(2)成立,理由见解析;(3)EF =8. 【解析】 【分析】(1)根据SAS 证明Rt △ABE ≌Rt △CBF ,求得BF =BE ,易求得△BEF 是等边三角形,可得BF =2CF ,即可解题;(2)将Rt △ABE 顺时针旋转120°,可得FG =CG +CF =AE +CF ,易证∠GBF =∠EBF =60°,即可求证△GBF ≌△EBF ,可得FG =EF ,即可解题;(3)将Rt △ABE 顺时针旋转120°,可得FG =CG -CF =AE -CF ,易证∠GBF =∠EBF =60°,即可求证△GBF ≌△EBF ,可得FG =EF ,即可解题. 【详解】证明:(1)∵Rt △ABE 和Rt △CBF 中,AB =BC ,CF =AE ,∠C =∠A =90°, ∴Rt △ABE ≌Rt △CBF (SAS ), ∴∠CBF =∠ABE ,BF =BE , ∵∠ABC =120°,∠MBN =60°,∴∠CBF =∠ABE =30°,△BEF 是等边三角形, ∴BF =2CF ,BE =2AE ,BF =EF , ∴EF =BF =2CF =AE +CF ; (2)成立,理由如下:如图2,将Rt △ABE 顺时针旋转120°,∵AB =BC ,∠ABC =120°,∴A 点与C 点重合,AE =CG ,BG =BE , ∵∠BCG =∠BCF =90°, ∴点G 、C 、F 共线, ∴FG =CG +CF =AE +CF ,∵∠ABC =120°,∠MBN =60°,∠ABE =∠CBG , ∴∠GBF =60°, 在△GBF 和△EBF 中, 60BG BE GBF EBF BF BF =⎧⎪∠=∠=︒⎨⎪=⎩,∴△GBF ≌△EBF (SAS ), ∴FG =EF , ∴EF =AE +CF ;(3)如图3,将Rt △ABE 顺时针旋转120°,∵AB =BC ,∠ABC =120°,∴A 点与C 点重合,AE =CG ,BG =BE , ∵∠BCG =∠BCD =90°, ∴点G 、C 、D 共线, ∴FG =CG +CF =AE +CF , ∵∠ABC =∠ABE +∠CBE =120°, ∴∠CBG +∠CBE =∠GBE =120°, ∵∠MBN =60°, ∴∠GBF =60°, 在△BFG 和△BFE 中, 60BG BE GBF EBF BF BF =⎧⎪∠=∠=︒⎨⎪=⎩, ∴△BFG ≌△BFE ,(SAS ) ∴GF =EF ,∴EF =AE -CF =10-2=8. 【点睛】本题考查了全等三角形的判定和性质,30°角所对直角边是斜边一半的性质,旋转的性质等知识点,本题中求证△BFG ≌△BFE 是解题的关键.4.(1)213222y x x =-++;(2)存在,13(,4)2P ,235(,)22P ,335(,)22P -;(3)点()2,1E【解析】 【分析】(1)把()1,0A -,()0,2C 代入抛物线的解析式,利用待定系数法求解即可;(2)先求解抛物线的对称轴3,2x = 再求解CD 的长,由CDP 是以CD 为腰的等腰三角形,可得123CP DP DP CD ===.再作CH ⊥对称轴于点H ,从而可得答案; (3)先求解()4,0B .再求解直线BC 的解析式为122y x =-+.过点C 作CM EF ⊥于M ,设1,22E a a ⎛⎫-+ ⎪⎝⎭,213,222F a a a ⎛⎫-++ ⎪⎝⎭,根据BCDCEFBEFCDBF S SSS=++四边形111222BD OC EF CM EF BN =⋅+⋅+⋅列函数关系式,从而可得答案. 【详解】解:(1)∵抛物线212y x mx n =-++经过()1,0A -,()0,2C ,∴10,22,m n n ⎧--+=⎪⎨⎪=⎩解得3,22.m n ⎧=⎪⎨⎪=⎩ ∴抛物线的解析式为213222y x x =-++.(2)∵22131325222228y x x x ⎛⎫=-++=--+⎪⎝⎭, ∴抛物线的对称轴是直线32x =. ∴32OD =. ∵()0,2C ,∴2OC =.在Rt OCD △中,由勾股定理,得2235222CD ⎛⎫=+ ⎪⎝⎭. ∵CDP 是以CD 为腰的等腰三角形, ∴123CP DP DP CD ===. 作CH ⊥对称轴于点H , ∴12HP HD ==.∴14DP =.∴13(,4)2P ,235(,)22P ,335(,)22P -. (3)当0y =时,由2132022x x -++=,解得11x =-,24x =,∴()4,0B .设直线BC 的解析式为y kx b =+,得2,40,b k b =⎧⎨+=⎩解得1,22.k b ⎧=-⎪⎨⎪=⎩∴直线BC 的解析式为122y x =-+. 过点C 作CM EF ⊥于M ,设1,22E a a ⎛⎫-+ ⎪⎝⎭,213,222F a a a ⎛⎫-++ ⎪⎝⎭,∴2213112222222EF a a a a a ⎛⎫=-++--+=-+ ⎪⎝⎭.∵BCDCEFBEFCDBF S SSS=++四边形111222BD OC EF CM EF BN =⋅+⋅+⋅ 2215111122(4)2222222a a a a a a ⎛⎫⎛⎫=⨯⨯+-++--+ ⎪ ⎪⎝⎭⎝⎭225134(2)22a a a =-++=--+. ∴根据题意04a ≤≤,∴当2a =时,CDBF S 四边形的最大值为132,此时点()2,1E . 【点睛】本题考查的是利用待定系数法求解抛物线的解析式,二次函数与等腰三角形,图形面积的最值问题,灵活运用二次函数的图象与性质解决问题是解题的关键.5.(1)①、②关联,理由见解析;(2)21(7)68y x =--+或21(9)68y x =-++;(3)存在,(0,1)或(0,3+420,3-42 【解析】 【分析】(1)首先求得抛物线①的顶点坐标,然后检验是否此点在抛物线②与③上,再求得抛物线②的顶点坐标,检验是否在抛物线①上即可求得答案;(2)首先求得抛物线C 1的顶点坐标,则可得:点P 在直线y =2上,则可作辅助线:作M 关于P 的对称点N ,分别过点M 、N 作直线y =2的垂线,垂足为E ,F ,则可求得:点N 的坐标,利用顶点式即可求得结果;(3)分别从当A ,B ,C 逆时针分布时与当A ,B ,C 顺时针分布时分析,根据全等三角形的知识,即可求得点C 的坐标,注意别漏解. 【详解】解:(1)∵①抛物线y =x 2+2x -1=(x +1)2-2的顶点坐标为M (-1,-2), ∴②当x =-1时,y =-x 2+2x +1=-1-2+1=-2, ∴点M 在抛物线②上;∵③当x =-1时,y =x 2+2x +1=1-2+1=0, ∴点M 不在抛物线③上; ∴抛物线①与抛物线②有关联;∵抛物线②y =-x 2+2x +1=-(x -1)2+2,其顶点坐标为(1,2), 经验算:(1,2)在抛物线①上, ∴抛物线①、②是关联的;(2)抛物线C 1:211:(1)28C y x =+-的顶点M 的坐标为(-1,-2),∵动点P 的坐标为(t ,2), ∴点P 在直线y =2上,作M 关于P 的对称点N ,分别过点M 、N 作直线y =2的垂线,垂足为E ,F ,则ME =NF =4,∴点N 的纵坐标为6,当y =6时,21(1)268x +-=,解得:x 1=7,x 2=-9,①设抛物C 2的解析式为:y =a (x -7)2+6, ∵点M (-1,-2)在抛物线C 2上, ∴-2=a (-1-7)2+6,∴a =18-,∴抛物线C 2的解析式为:21(7)68y x =--+,②设抛物C 2的解析式为:y =a (x +9)2+6, ∵点M (-1,-2)在抛物线C 2上, ∴-2=a (-1+9)2+6,∴a =18-,∴抛物线C 2的解析式为:21(9)68y x =-++;(3)点C 在y 轴上的一动点,以AC 为腰作等腰直角△ABC ,令C 的坐标为(0,c ),则点B 的坐标分两类:①当A ,B ,C 逆时针分布时,如图中B 点,过点A ,B 作y 轴的垂线,垂足分别为H ,F , 在等腰直角△ABC 中,AC =BC ,∠ACB =90°,即∠ACH +∠BCH =90°, ∵∠ACH +∠CAH =90°,∴∠CAH =∠BCH ,又∠AHC =∠BFC =90°, 则△BCF ≌△CAH (AAS ),∴CF =AH =1,BF =CH =c +2,点B 的坐标为(c +2,c -1),当点B 在抛物线C 1:y =221(1)8x +-上时,c -1=18(c +2+1)2-2,解得:c =1.②当A ,B ,C 顺时针分布时,如图中B ′点,过点B ′作y 轴的垂线,垂足为D , 同理可得:点B ′的坐标为(-c -2,c +1),当点B ′在抛物线C 1:y =18(x +1)2-2上时,c +1=18(-c -2+1)2-2,解得:c =3+42c =3-42综上所述,存在三个符合条件的等腰直角三角形,其中C 点的坐标分别为:C 1(0,1),C 2(0,3+42C 3(0,3-42【点睛】此题考查了待定系数法求二次函数的解析式以及二次函数的顶点坐标的求解方法,全等三角形的性质等知识.此题综合性很强,难度较大,注意数形结合思想与分类讨论思想的应用.6.(1)a=2,b=15,c=14;(2)1【解析】【分析】(1)代入两点坐标,求得b、c(用a表示),再由已知c<b<8a,联立不等式组求得a、b、c的值;(2)设出程x2+bx-c=0的两个根,根据根与系数的关系与因式分解求得两根,得出函数解析式,进一步求得图象与x、y轴的交点A、B、C三点解答问题.【详解】解:点P(1,a)、Q(2,10a)在二次函数y=x2+bx-c的图象上,故1+b-c=a,4+2b-c=10a,解得b=9a-3,c=8a-2;(1)由c<b<8a知8293 938a aa a-<-⎧⎨-<⎩,解得1<a<3,又a为整数,所以a=2,b=9a-3=15,c=8a-2=14;(2)设m,n是方程的两个整数根,且m≤n.由根与系数的关系可得m+n=-b=3-9a,mn=-c=2-8a,消去a,得9mn-8(m+n)=-6,两边同时乘以9,得81mn-72(m+n)=-54,分解因式,得(9m-8)(9n-8)=10.∴9819810mn-=⎧⎨-=⎩或9810981mn-=-⎧⎨-=-⎩或985982mn-=-⎧⎨-=-⎩或982985mn-=⎧⎨-=⎩,解得:12mn=⎧⎨=⎩或2979mn⎧=-⎪⎪⎨⎪=⎪⎩或1323mn⎧=⎪⎪⎨⎪=⎪⎩或109139mn⎧=⎪⎪⎨⎪=⎪⎩;又∵m,n是整数,所以后面三组解舍去,故m=1,n=2.因此,b=-(m+n)=-3,c=-mn=-2,二次函数的解析式为y=x2-3x+2.令y=0,则x=1或x=2,令x=0,则y=2,∴点A、B的坐标为(1,0)和(2,0),点C的坐标为(0,2),∴△ABC的面积为12×(2−1)×2=1.【点睛】此题主要考查二次函数图象上点的坐标特点、根与系数的关系、不等式组、以及三角形的面积计算公式.7.(1)4y x =-+;(2)点E 坐标为3,02⎛⎫⎪⎝⎭;(3)点P 的坐标为(19,0)或(-17,0).【解析】 【分析】(1)利用待定系数法即可求解;(2)同理利用待定系数法求得直线BC 的解析式为y =4x +4,再求得直线EF 的解析式,联立求得点F 的坐标,利用BEF OAB OBE AEF S S S S ∆∆∆∆=--列式求解即可; (3)计算得到tan 4DGDOG OG∠==,推出∠α=∠DOG ,∠DPO =∠CDO ,设点P 的坐标为(p ,0),分p <0和p >0两种情况讨论,利用相似三角形的判定和性质求解即可. 【详解】解:(1)∵直线AB 经过点A (4,0),B (0,4), ∴设直线AB 的解析式为y =kx +4, 把A (4,0)代入得:4k +4=0, 解得:k =-1,∴直线AB 的解析式为y =-x +4; (2)设点E (m ,0),同理求得直线BC 的解析式为y =4x +4, ∵EF //BC ,∴设直线EF 的解析式为:4y x n =+,将点E 坐标代入上式并解得:04m n =+, ∴4n m =-,∴直线EF 的解析式为:44y x m =-, ∴444x x m -+=-, 解得:()415x m =+, 把x 的值代入4y x =-+,得1645my -=.∴点F 坐标为4416455m m +-⎛⎫⎪⎝⎭,, ()1111645444422252BEF OAB OBE AEF m S S S S m m -=--=⨯⨯-⨯--⨯=△△△△,解得:32m =, ∴点E 坐标为302⎛⎫⎪⎝⎭,; (3)将点B (0,4)向右平移1个单位长度得到点D ,则D (1,4), 过点D 作DG ⊥x 轴于点G ,则∠OGD =90°,OG =1,GD =4,CG =2, ∴tan 4DGDOG OG∠==,OD =22224117DG OG +=+=, 在Rt △CDG 中,CD =22222425CG DG +=+=, ∵tan ∠α=4, ∴∠α=∠DOG ,∵∠DCO +∠DPO =∠α,∠DCO +∠CDO =∠DOG , ∴∠DPO =∠CDO , ∵点P 在x 轴上∴设点P 的坐标为(p ,0),当p <0时,PO =-p ,∵∠POD =∠DOC ,∠DPO =∠CDO , ∴△POD ~△DOC , ∴PO DODO CO=, ∴PO =2171DO CO ==17,此时,点P 的坐标为(-17,0);当p>0时,PO=p,PC=p+1,∵∠PCD=∠DCO,∠DPC=∠ODC,∴△PCD~△DCO,∴PC DC DC CO=,∴PC=(22201DCCO==,∴p=PC-1=19,此时,点P的坐标为(19,0);综上,点P的坐标为(19,0)或(-17,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,角平分线的性质,相似三角形的性质和判定,三角形函数等,分类讨论是解第(3)问的关键.8.(1) y=;(2)见解析;(3)l=或l=;(4)m=或或−3时,以点M、N、C、E为顶点的四边形是平行四边形.【解析】【分析】(1)把点B的坐标代入抛物线解析式、联合对称轴x=列出关于系数b、c的方程组,通过解方程组来求它们的值;(2)由平移的性质易求点C、D的坐标,将它们的坐标分别代入抛物线解析式进行验证即可;(3)根据点C、D的坐标易求直线CD的解析式为y=.根据已知条件知点M、N 的横坐标都是m,则l的值就是点M、N的纵坐标之差.(4)由平行四边形的对边相等的性质推知MN=CE=3,利用所求的l与m间的函数式可以求得相应的m的值.【详解】解:(1)由已知,得,解得,∴二次函数的解析式为y=;(2)在Rt△ABO中,∵OA=4,OB=3,∴AB=5.又∵四边形ABCD是菱形,∴BC=AD=AB=5.∵△ABO沿x轴向左平移得到△DCE,∴CE=OB=3.∴C(−5,3)、D(−1,0).当x=−5时,y==3,当x=−1时,y==0,∴C、D在该抛物线上;(3)设直线CD的解析式为y=kx+b,则,解得,∴y=,∵MN//y轴,∴M、N的横坐标均为m,当M在直线CD的上方时,有l=MN=()−()=;当M在直线CD的下方时,有l=MN=()− ()=.∴l与m之间的函数解析式为l=或l=.(4)由于MN//CE,要使以点M、N、C、E为顶点的四边形是平行四边形,只需MN=CE=3,当=3时,解得;当=3时,解得.即当m=或或−3时,以点M、N、C、E为顶点的四边形是平行四边形.【点睛】本题综合考查了待定系数法求一次函数、二次函数解析式,平行四边形的性质.在求有关动点问题时要注意分析题意分情况讨论结果.9.(1)见解析;(2)见解析;(3)53.【解析】【分析】(1)作⊙O的直径AF,连接BF,证明∠ACD+∠CAE=90°即可;(2)连接BE,利用角的转换证明∠BMD=∠BEM,从而可得BM=BE,进而根据等腰三角形三线合一即可得出结论;(3)如图3,证明BEM AEB得2=即可求出DE长,进而由勾股定理求出BE EM AEBD,再由相交线弦定理求出CD,即可得出CE长,EC FC=.=可得EC FC【详解】解:(1)如图1,作⊙O的直径AF,连接BF,∴∠AFB+∠OAB=90°,∵OA=OB,∴∠ABO=∠OAB,又∵∠DAC=∠ABO,∴∠DAC=∠ABO=∠OAB.∵AB AB=∵∠AFB=∠ACD,∵AF是直径∴∠AFB+∠OAB=90°,∴∠ACD+∠CAE=90°,∴∠ADC=90°,即AE⊥BC;(2)连接BE,∵AF AF=∴∠ACF=∠ABF,又∵∠ACF=∠OBC,∴∠ABF=∠OBC,∴∠ABO+∠OBF=∠FBC+∠OBF,∴∠ABO=∠FBC,∵∠DAC=∠ABO,∴∠DAC=∠MBC,∵∠BMD+∠MBC=∠ACD+∠DAC=90°,∴∠BMD=∠ACD,∵AB AB=∴∠BEM=∠ACD,∴∠BMD=∠BEM,∴BM=BE,∵AE⊥BC,∴MD=ED;(3)如图2,连接EC,∵BC BC=∴BFC BAC∠=∠,∵3BFC EAC∠=∠,∴3BAC EAC∠=∠,∴2BAE BAC EAC EAC∠=∠-∠=∠,∵EBC FBC DAC∠=∠=∠,∴=2MBE EBC FBC EAC∠=∠+∠∠,∴MBE BAE∠=∠,又∵E E∠=∠,∴BEM AEB,∴BE AE EM BE=,∵10BM BE=3AM= 1010=1010=∴=2EM,由(2)可知MD =ED ,BM =BE ,∴1DM DE ==,314AD AM DM =+=+=在Rt BDM 中,BD =,在Rt BDA 中,AB =, ∵=BE BE , ∴BAD DCE ∠=∠, 又∵BDA CDE ∠=∠, ∴BDA EDC ,∴=EC DE AB BD,即1=53EC ∴5=3EC ,∵CAE FBC ∠=∠, ∴EC FC =,∴5=3EC FC =【点睛】本题是圆的综合题,主要考查了圆周角定理,涉及了相似三角形的判定和性质、勾股定理、等腰三角形的判定和性质等知识点,解题关键是利用同弧或等弧所对圆周角相等、直角三角形的两锐角相等找出图中角之间的关系,从而利用相似或勾股定理解题.10.(1)4;(2);(3)或;(4)或.【解析】 【分析】(1)首先根据等腰三角形三线合一的性质得到,然后根据勾股定理即可求出线段CD 的长度;(2)根据点P 运动的速度求出点P 运动的路程,然后减去AC 的长度即可求出PC 的长度;(3)分两种情况,当点P 在线段AC 上时和点P 在线段BC 上时,分别利用相似三角形的性质计算出点M 在线段CD 上时和点M 在线段BC 上时的时间,即可求出t 的取值范围; (4)分两种情况,当点P 在线段AC 上时和点P 在线段BC 上时,分别得出点M 在线段CD 上时和点M 在线段BC 上时是直角三角形,然后利用相似三角形的性质求出t 的值,即可得出△CPM 为锐角三角形时t 的取值范围. 【详解】解:(1)∵在△ABC 中,AC =BC =5 ∴ABC ∆是等腰三角形 ∵CD ⊥AB 于点D∴(三线合一)∴在中,由勾股定理得,故答案为:4;(2)∵点P从点A出发,以每秒5个单位长度的速度沿折线AC—CB向终点B运动∴点P运动的路程为5t∴当点P在线段BC上时,故答案为:;(3)当点P在线段AC上时,由题意得,,AC=5,如图所示,当点M在线段CD上时,∵PQ⊥AB,CD⊥AB,∴∴∴∴,即,解得:,,∴,∵PM=2PQ,∴,∵CD⊥AB,PQ⊥AB,PM⊥PQ,∴四边形PQDM是矩形,∴,∴,解得:,如图所示,当点M在线段BC上时,同理可得,,,,,,∵PQ⊥AB,PM⊥PQ,∴∴∴∴,即,解得:,∴当时,点M落在△BCD的内部;如图所示,当点P在线段BC上时,当点M在线段CD上时,设,则,同理可得,四边形MDQP是矩形,,∴,,∴,即,解得:,∴,∴,∴,当点P运动到B点时,,∴当时,点M落在△BCD的内部,综上所述,当点M落在△BCD的内部时,t的取值范围是或;(4)当点M在线段CD上时,,即是直角三角形,由(3)可得,此时,当时,如图所示,∵,,,则,,∵,,又∵,∴∴,即,解得:,∴当时,是锐角三角形;当点M在线段BC上时,当时,即是直角三角形,如图所示,设,则,,,,同理可得,,∴,即,解得:,∴,∴,∵当点M在CD上时,此时,即是直角三角形,由(3)可得,此时,∴当时,是锐角三角形,∴综上所述,当△CPM为锐角三角形时,t的取值范围是或.【点睛】此题考查了相似三角形的性质和判定,等腰三角形的性质,勾股定理,三角形动点问题等知识,解题的关键是根据题意画出相应的图形,分情况讨论利用相似三角形的性质求解.11.(1)见详解;(2)见详解;(3)29 2【解析】【分析】(1)过点D作DM⊥AE于点M,证明ABE△≌DAM△,即可得到结论;(2)延长GF到点M,使FM=BE,则BE+FG=MG,先证明ABE△≌BMF,再证明ABG≌MBG△,进而即可得到结论;(3)过点G作GN⊥AE,设BE=x,则AG=BE+FG=x+7,AN= 3+x,结合勾股定理,列出方程,进而即可求解.【详解】解:(1)过点D作DM⊥AE于点M,∵∠DME=∠MEC=∠C=90°,∴四边形CDME是矩形,∴DM=CE,又∵∠BAD=∠AMD=90°,∴∠1+∠EAD=∠2+∠EAD=90°,∴∠1=∠2,在ABE△和DAM△中,∵1290AMD AEB AB AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴ABE △≌DAM △, ∴AE=DM , ∴AE =CE ;(2)延长GF 到点M ,使FM =BE ,则BE +FG =MG ,∵BE =CF , ∴BF =CE =AE , 在ABE △和BMF 中,∵90AE BF AEB BFM BE MF =⎧⎪∠=∠=︒⎨⎪=⎩, ∴ABE △≌BMF , ∴∠BAE =∠MBF ,AB =BM , ∵∠BAE +∠ABE =90°, ∴∠MBF +∠ABE =90°, ∴∠ABM =90°, ∵∠BAD =90°,AB =AD , ∴∠A BD=45°, ∴∠DBM =45°, ∴∠ABD =∠DBM , ∴ABG ≌MBG △, ∴AG=MG=BE +FG ;(3)过点G 作GN ⊥AE ,设BE =x ,则AG =BE +FG =x +7,∵∠GNE =∠NEF=EFG =90°, ∴四边形EFGN 是矩形, ∴NG =EF =10,EN=FG =7, 又∵AE =BF =10+x , ∴AN =AE -EN =10+x -7=3+x ,在直角ANG 中,()()2223107x x ++=+,解得:x =152, ∴AG =x +7=152+7=292.【点睛】本题主要考查矩形的性质,全等三角形的判定和性质,勾股定理,等腰自交三角形的性质,添加辅助线构造全等三角形,掌握“截长补短法”是解题的关键.12.3(2)证明见解析 (3)【解析】 【分析】(1)如图所示,过点B作BG⊥AE交AE延长线于G,先证明∠ACF=∠GAB,即可证明△ABG≌△CAE得到BG=AE,由勾股定理得,再由,得到,则点B到AE的距离为(2)如图所示,延长AE到H使得,AE=HE,连接DH,CH,先证明△AEB≌△HED得到AB=HD=AC,∠ABE=∠HDE,则∠HCD=∠HDC,AB∥DH,从而推出∠BAC=∠HDC=∠HCD,再证明CE是AH的垂直平分线,得到AC=HC,则∠ACE=∠HCE,即∠HCA=2∠ACE,然后推出∠FGD=∠HCD=∠HDC=∠FAC=2∠GCD,GD=GC,即可证明△AFD≌△GFD(AAS),得到AF=GF,则CF=GF+CG=AF+DG;(3)如图所示,连接,延长交BC于F,作直线BE⊥BC,由翻折的性质可知,,,,然后证明,得到,则点D在线段BC的垂直平分线上,即AF⊥BC,求出,由H 是的中点,得到直线A关于点H的对称点A'在直线BE上,则要使△AHC的周长最小,则要最小,即最小,即当A'、C、H、三点共线时有最小值,如图所示,连接交于,交AF于P,连接BP,先证明,得到,由平行线之间的间距相等,得到,然后求出,再证明,求出,由此求解即可.(1)解:如图所示,过点B作BG⊥AE交AE延长线于G,∵AE⊥CF,AG⊥BG,∴∠BAC=∠AGB=∠AEF=∠AEC=90°,∠AFC+∠ACF=90°,∴∠FAE+∠AFE=90°,∴∠ACF=∠GAB,又∵AB=CA,∴△ABG≌△CAE(AAS),∴BG=AE,在直角△AFC中,由勾股定理得,∵,∴,∴点B到AE(2)解:如图所示,延长AE到H使得,AE=HE,连接DH,CH,∵FD平分∠AFC,∴∠AFD=∠CFD,∵E是BD的中点,∴BE=DE,又∵AE=HE,∠AEB=∠HED,∴△AEB≌△HED(SAS),∴AB=HD=AC,∠ABE=∠HDE,∴∠HCD=∠HDC,∴∠BAC=∠HDC=∠HCD,∴∠ACE=∠HCE,即∠HCA=2∠ACE,∵∠GDC=∠GCD,∠FGD=∠GDC+∠GCD,∴∠FGD=∠HCD=∠HDC=∠FAC=2∠GCD,GD=GC,又∵FD=FD,∠AFD=∠GFD,∴△AFD≌△GFD(AAS),∴AF=GF,∴CF=GF+CG=AF+DG;(3)解:如图所示,连接,延长交BC于F,作直线BE⊥BC,由翻折的性质可知,,,,∴,又∵AB=AC,,∴,∴,∴点D在线段BC的垂直平分线上,即AF⊥BC,∴,∵H是的中点,∴直线A关于点H的对称点A'在直线BE上,∴,∴要使△AHC的周长最小,则要最小,即最小,∴当A'、C、H、三点共线时有最小值,如图所示,连接交于,交AF于P,连接BP,∵BE⊥BC,AF⊥BC,∴,∴,,又∵,∴,∴,∵,BC⊥BE,∴,∵平行线之间的间距相等,∴∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∴AB=2AF,∴,∴,∴,∵P在线段BC的垂直平分线上,∴PB=PC,∴∠PBC=∠PCB,∵,∴,∴,∴,∴,∴,∴,∴【点睛】本题主要考查了全等三角形的性质与判定,线段垂直平分线的性质,等腰三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,平行线的性质与判定等等,熟练掌握相关知识是解题的关键.13.(1)y=﹣x2+2x+3,1(2)(1,1)或(1,2)或(1,83)(3)【解析】【分析】(1)用待定系数法即可求解;(2)①当为直角时,证明,则,即,即可求解;②当为直角时,同理可解;③当为直角时,同理可解;(3);,即可求解.(1)解:设抛物线的表达式为,则,则,解得1a=-,故抛物线的表达式为2y x2x3=-++,则;(2)解:当1m=时,则直线l为抛物线的对称轴,如图1,连接AC,设点(1,)P m,①当为直角时,则,,,,过点C作于点N,,,,,即,∴,解得1m=或2,故点P的坐标为(1,1)或(1,2);②当为直角时,同理可得:点P'的坐标为8 (1,)3;③当为直角时,。
一、解答题1.在ABC中,AB AC=,D是边AC上一点,F是边AB上一点,连接BD、CF交于点E,连接AE,且.(1)如图1,若90∠=︒,,,求点B到AE的距离;BAC(2)如图2,若E为BD中点,连接FD,FD平分,G为CF上一点,且,求证:;(3)如图3,若,12△沿着AB翻折得,点H为的BC=,将ABD中点,连接HA、HC,当周长最小时,请直接写出的值.x-5与x轴、y轴分别交于B、C两点,点A为y轴正半轴上一2.如图1,直线y=12S=75.点,且ABC(1)请直接写出点B、C的坐标及直线AB的解析式:、、;(2)如图2,点P为线段OB上一点,若∠BCP=45°,请写出点P的坐标:,并简要写出解答过程;(3)如图3,点D是AB的中点,M是OA上一点,连接DM,过点D作DN⊥DM交OB 于点N,连接BM,若∠OBM=2∠ADM,请写出点M的坐标,并简要写出解答过程.3.已知有理数a,b,c在数轴上对应的点分别为A,B,C,其中b是最小的正整数,a,c满足()2++-=.a c250a______,b=______,c=______;(1)填空:=(2)点A,B,C分别以每秒4个单位长度,1个单位长度,1个单位长度的速度在数轴上同时向右运动,设运动时间为t 秒. ①当AC 长为6时,求t 的值;②当点A 在点C 左侧时(不考虑点A 与B ,C 重合的情况),是否存在一个常数m 使得2AC m AB +⋅的值在某段运动过程中不随t 的改变而改变?若存在,求出m 的值;若不存在,请说明理由.4.在平面直角坐标系中,直线24y x =-+与x 轴、y 轴分别相交于A 、B 两点,C 为AB 的中点,点D 在线段OB 上(BD OD <),连接CD ,将BCD △绕点C 逆时针旋转得到B CD ''△,旋转角为()0180αα︒<<︒,连接BB ',B D '.(1)求tan OBA ∠的值;(2)如图,当点D '恰好落在y 轴上时,B C '交y 轴于点E ,求证:BEB CED ''△△; (3)当点D 的坐标为(0,3),且ODB OBA ∠'=∠时,求点B ′的坐标.5.已知如图,在ABCD 中,点E 是AD 边上一点,连接,,,BE CE BE CE BE CE =⊥,点F 是EC 上一动点,连接BF .(1)如图1,当BF AB ⊥时,连接DF ,延长,BE CD 交于点K ,求证:FD DK =; (2)如图2,以BF 为直角边作等腰,90Rt FBG FBG ∠=︒△,连接GE ,若2,5DE CD ==,当点F 在运动过程中,求BEG 周长的最小值.6.如图,在直角梯形ABCD 中,AB ∥CD ,∠B =90°,AB =4,BC =8,CD =2m (m >2),P为CD中点,以P为圆心,CP为半径作半圆P,交线段AC于点E,交线段AD于点F.(1)当E为CA中点时,①求证:E是弧CF的中点.②求此时m的值.(2)连结PF,若PF平行△ABC的某一边时求出满足条件的m值.(3)连结PE,将PE绕着点E顺时针旋转90°得到EP',连结AP',当AP'⊥AC时,求此时CE的长.7.如图,抛物线y=ax2+bx+6与x轴交于A(2,0),B(8,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P是抛物线上一动点,当∠PCB12=∠BCO时,求点P的横坐标.8.等腰直角三角形ABC中,90ACB∠=︒,AE为BAC∠的角平分线,交BC于点E,点D 为AB的中点,连结CD交AE于点G,过点C作CF AE⊥,垂足为点F,交AB于点H.(1)如图1,AG 与CH 的数量关系为__________;CFAG的值为__________; (2)如图2,以点C 为位似中心,将CAE 做位似变换,得到CA E ''△,使CA E ''△与CAE 的相似比为()01k k <<,A E ''与CD 、CH 的交点分别为G ',F ',隐去线段AE ,试求'''CF A G 的值; (3)如图3,将(2)中的等腰直角三角形改为等腰三角形,30B ∠=︒,且其他条件不变, ①CF A G '''的值为__________; ②若'3CF =,直接写出A G C ''△的面积.9.平面直角坐标系xOy 中,抛物线231y ax ax =-+与y 轴交于点A . (1)求点A 的坐标及抛物线的对称轴;(2)当12x -≤≤时,y 的最大值为3,求a 的值;(3)已知点(0,2)P ,(1,1)Q a +.若线段PQ 与抛物线只有一个公共点,结合函数图象,求a 的取值范围.10.如图,菱形ABCD ,,点E 为平面内一点,连接AE .(1)如图1,点E 在BC 的延长线上,将AE 绕点A 顺时针旋转60°得AF ,连接EF 交AB 延长线于点H ,若∠AEB =15°,,求AE 的长;(2)如图2,点E 在CA 的延长线上,将AE 绕点A 逆时针旋转60°得AF ,点M 为CE 的中点,连接BM ,证明:FM 3;(3)如图3,将AB 沿AS 翻折得AE (∠BAE <120°),连DE 交AS 于点S ,当DS 取得最大值时,连接TD ,若,AD =6,求TD ﹣TE 的最大值.11.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,3OA OC ==,顶点为D ,对称轴交x 轴于点E . (1)求抛物线的解析式、对称轴及顶点D 的坐标.(2)点P 在抛物线上,直线AP 与y 轴交于点F ,若AOF 与BOC 全等,求出点P 的坐标.(3)点P 在抛物线上,直线AP 与y 轴交于点T ,若tan 2:3PAB ∠=,求出点P 的坐标.(4)在线段AC上是否存在点M,使得AOM与ABC相似,若存在,求出点M的坐标;若不存在,请说明理由.PQ y轴,PO与AC相交于点Q,连(5)第三象限内的抛物线上有一动点P,过点P作//△与ABC相似,若存在,求出点P的坐接BC.请问抛物线上是否存在点P,使得PCQ标;若不存在,请说明理由.(6)x轴下方的抛物线上有一动点P,过点P作PF x轴于点F,PF与AC相交于点G.请问抛物线上是否存在点P,使得AFG与CPG△相似?若存在,求出点P的坐标;若不存在,请说明理由.⊥于点Q,连接BC和PC.请问抛物线上是(7)抛物线上有一动点P,过点P作PQ AC△与BOC相似?若存在,求出点P的坐标;若不存在,请说明理否存在点P,使得PCQ由.(8)在抛物线上是否存在点P,过点P作PH x⊥轴于点H,使得PAH与BOC相似,若存在,求出点P的坐标;若不存在,请说明理由.(9)抛物线的顶点为点D,连接AD,CD,在抛物线上有一动点M,过点M作MN x轴于点N.请问抛物线上是否存在点M,使得AMN与ACD△相似?若存在,求出点M的坐标;若不存在,请说明理由.12.(1)回归教材:北师大七年级下册P44,如图1所示,点P是直线m外一点,,点O是垂足,点A、B、C在直线m上,比较线段PO,PA,PB,PC的长短,你发现了什么?最短线段是______,于是,小明这样总结:直线外一点与直线上各点连接的所有线段中,______.(2)小试牛刀:如图2所示,Rt ABC △中,AB c =,,.则点P 为AB 边上一动点,则CP 的最小值为______.(3)尝试应用:如图3所示ABC 是边长为4的等边三角形,其中点P 为高AD 上的一个动点,连接BP ,将BP 绕点B 顺时针旋转60°得到BE ,连接PE 、DE 、CE .①请直接写出DE 的最小值. ②在①的条件下求的面积.(4)拓展提高:如图4,顶点F 在矩形ABCD 的对角线AC 上运动,连接AE ..3AB =,4BC =,请求出AE 的最小值.13.如图,已知抛物线23y ax bx =++(a 、b 为常数,且a ≠0)与x 轴交于点A (-1,0)和点B ,与y 轴交于点C ,其对称轴是直线x =1,顶点为P ,连接BP ,CP .(1)求抛物线的表达式;(2)判断△BCP的形状,并说明理由;(3)该抛物线上是否存在点Q,使得∠QBC=∠ACO?若存在,请直接写出满足条件的所有点Q是坐标;若不存在,请说明理由.14.如图,在平面直角坐标系中抛物线y=ax2+bx+c经过原点,且与直线y=﹣kx+6交于则A(6,3)、B(﹣4,8)两点.(1)求直线和抛物线的解析式;(2)点P在抛物线上,解决下列问题:①在直线AB下方的抛物线上求点P,使得△PAB的面积等于20;②连接OA,OB,OP,作PC⊥x轴于点C,若△POC和△ABO相似,请直接写出点P的坐标.15.如图,在平面直角坐标系中,抛物线y=ax2+bx+2与直线y=x﹣2交于点A(m,0)和点B(﹣2,n),与y轴交于点C.(1)求抛物线的解析式及顶点D的坐标;(2)若向下平移抛物线,使顶点D落在x轴上,原来的抛物线上的点P平移后的对应点为P ,若,求点P的坐标;(3)在抛物线上是否存在点Q,使△QAB的面积是△ABC面积的一半?若存在,直接写出点Q的坐标;若不存在,请说明理由.16.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”.如图所示,点A、B、C、D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,﹣3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.(1)求“蛋圆”抛物线部分的解析式及“蛋圆”的弦CD的长;(2)已知点E是“蛋圆”上的一点(不与点A,点B重合),点E关于x轴的对称点是点F,若点F也在“蛋圆”上,求点E坐标;(3)点P是“蛋圆”外一点,满足∠BPC=60°,当BP最大时,直接写出点P的坐标.17.如图,在平面直角坐标系中,一抛物线的对称轴为直线x=1,且该抛物线与y轴负半轴交于C点,与x轴交于A,B两点,其中B点的坐标为(3,0),且OB=OC.(1)求此抛物线的函数表达式;(2)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ是以MN为一直角边的等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.18.已知二次函数经过点A(﹣3,0)、B(1,0)、C(0,3).(1)求该抛物线解析式;(2)如图1,点M 为抛物线上第二象限内一动点,BM 交y 轴于点N ,当BM 将四边形ABCM 的面积分为1:2两部分时,求点M 的坐标;(3)如图2,点P 为对称轴上D 点下方一动点,点Q 为直线y =x 第一象限上的动点,且DP =2OQ ,求BP +2BQ 的最小值并求此时点P 的坐标.19.如图,在平面直角坐标系中,已知二次函数图像222(1)2y x a x a a =-+++的顶点为P ,点B 39(2,)16- 是一次函数5119216y x =+上一点.(1)当a =0时,求顶点P 坐标;(2)若a >0,且一次函数2y x b =-+的图象与此抛物线没有交点,请你写出一个符合条件的一次函数关系式(只需写一个,不必写出过程); (3)作直线OC :12y x =与一次函数5119216y x =+交于点C .连结OB ,当抛物线与△OBC 的边有两个交点时,求a 的取值范围.20.在平面直角坐标系xOy 中,⊙O 的半径为1.对于线段AB ,给出如下定义:若线段AB 沿着某条直线l 对称可以得到⊙O 的弦A ′B ′,则称线段AB 是⊙O 的以直线l 为对称轴的“反射线段”,直线l 称为“反射轴”.(1)如图,线段CD ,EF ,GH 中是⊙O 的以直线l 为对称轴的“反射线段”有 ; (2)已知A 点坐标为(0,2),B 点坐标为(1,1),①若线段AB 是⊙O 的以直线l 为对称轴的“反射线段”,求反射轴l 与y 轴的交点M 的坐标.②若将“反射线段”AB 沿直线y =x 的方向向上平移一段距离S ,其反射轴l 与y 轴的交点的纵坐标yM 的取值范围为12≤yM 136≤,求S . (3)已知点M ,N 是在以原点为圆心,半径为2的圆上的两个动点,且满足MN =1,若MN 是⊙O 的以直线l 为对称轴的“反射线段”,当M 点在圆上运动一周时,求反射轴l 未经过的区域的面积.(4)已知点M ,N 是在以(2,013MN 2=MN 是⊙O 的以直线l 为对称轴的“反射线段”,当M 点在圆上运动一周时,请直接写出反射轴l 与y 轴交点的纵坐标的取值范围.【参考答案】参考答案**科目模拟测试一、解答题31.(2)证明见解析(3)【解析】【分析】(1)如图所示,过点B作BG⊥AE交AE延长线于G,先证明∠ACF=∠GAB,即可证明△ABG≌△CAE得到BG=AE,由勾股定理得,再由,得到,则点B到AE的距离为(2)如图所示,延长AE到H使得,AE=HE,连接DH,CH,先证明△AEB≌△HED得到AB=HD=AC,∠ABE=∠HDE,则∠HCD=∠HDC,AB∥DH,从而推出∠BAC=∠HDC=∠HCD,再证明CE是AH的垂直平分线,得到AC=HC,则∠ACE=∠HCE,即∠HCA=2∠ACE,然后推出∠FGD=∠HCD=∠HDC=∠FAC=2∠GCD,GD=GC,即可证明△AFD≌△GFD(AAS),得到AF=GF,则CF=GF+CG=AF+DG;(3)如图所示,连接,延长交BC于F,作直线BE⊥BC,由翻折的性质可知,,,,然后证明,得到,则点D在线段BC的垂直平分线上,即AF⊥BC,求出,由H是的中点,得到直线A关于点H的对称点A'在直线BE上,则要使△AHC的周长最小,则要最小,即最小,即当A'、C、H、三点共线时有最小值,如图所示,连接交于,交AF于P,连接BP,先证明,得到,由平行线之间的间距相等,得到,然后求出,再证明,求出,由此求解即可.(1)解:如图所示,过点B作BG⊥AE交AE延长线于G,∵AE⊥CF,AG⊥BG,∴∠BAC=∠AGB=∠AEF=∠AEC=90°,∠AFC+∠ACF=90°,∴∠FAE+∠AFE=90°,∴∠ACF=∠GAB,又∵AB=CA,∴△ABG≌△CAE(AAS),∴BG=AE,在直角△AFC中,由勾股定理得,∵,∴,∴点B到AE的距离为32;(2)解:如图所示,延长AE到H使得,AE=HE,连接DH,CH,∵FD平分∠AFC,∴∠AFD=∠CFD,∵E是BD的中点,∴BE=DE,又∵AE=HE,∠AEB=∠HED,∴△AEB≌△HED(SAS),∴AB=HD=AC,∠ABE=∠HDE,∴∠HCD=∠HDC,∴∠BAC=∠HDC=∠HCD,∴∠ACE=∠HCE,即∠HCA=2∠ACE,∵∠GDC=∠GCD,∠FGD=∠GDC+∠GCD,∴∠FGD=∠HCD=∠HDC=∠FAC=2∠GCD,GD=GC,又∵FD=FD,∠AFD=∠GFD,∴△AFD≌△GFD(AAS),∴AF=GF,∴CF=GF+CG=AF+DG;(3)解:如图所示,连接,延长交BC于F,作直线BE⊥BC,由翻折的性质可知,,,,∴,又∵AB=AC,,∴,∴,∴点D在线段BC的垂直平分线上,即AF⊥BC,∴,∵H是的中点,∴直线A关于点H的对称点A'在直线BE上,∴,∴要使△AHC的周长最小,则要最小,即最小,∴当A'、C、H、三点共线时有最小值,如图所示,连接交于,交AF于P,连接BP,∵BE⊥BC,AF⊥BC,∴,∴,,又∵,∴,∴, ∵,BC ⊥BE , ∴,∵平行线之间的间距相等,∴∵AB =AC ,∠BAC =120°, ∴∠ABC =∠ACB =30°, ∴AB =2AF , ∴, ∴,∴,∵P 在线段BC 的垂直平分线上, ∴PB =PC , ∴∠PBC =∠PCB , ∵,∴,∴, ∴,∴,∴,∴,∴【点睛】本题主要考查了全等三角形的性质与判定,线段垂直平分线的性质,等腰三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,平行线的性质与判定等等,熟练掌握相关知识是解题的关键.2.(1)()()10,0,0,5B C -,10y x =-+;(2)5(,0)3;(3)15(0,)2【解析】 【分析】(1)分别令,0x y =进而求得直线与坐标轴的交点,根据已知条件待定系数法求解析式即可;(2)过点B 作BQ CP ⊥于点Q ,过B 点作ED x ⊥轴,过,C Q 分别作,CD QE 平行于x 轴,交ED 于点,E D ,证明CBD ≌BQE △,可得,CD BE BD QE ==,根据图形与坐标的关系,即可求得(10,10),(5,10)E Q ,设直线CQ 的直线解析式为y mx n =+,待定系数法求解析式即可,令0y =,进而求得P 点的坐标;(3)连接OD ,证明DMN 是等腰直角三角形,设DO 交MN 于点E ,设ADM α∠=,则2MBO α∠=过点N 作SN x ⊥轴,作OBM ∠的角平分线BS 交NS 于点S ,过点S 作,ST SR分别垂直于,MO MB ,垂足分别为,T R ,连接MS ,证明SNB NOM △≌△,SRB △≌SNB △,进而证明Rt STM △≌Rt SRM △,设ON x =,则,10,,AM x BN x SN ON x ==-==在Rt MOB 中,222MB MO OB =+,勾股定理列出方程,求得AM ,进而求得MO ,从而求得M 的坐标. 【详解】 (1)直线y =12x -5与x 轴、y 轴分别交于B 、C 两点,令0x =,则5y =-,令0y =,则10x =,()()10,0,0,5B C ∴- 10,5OB OC ∴== 75ABC S =△1752AC OB ∴⋅⨯= 15AC ∴=点A 为y 轴正半轴上一点,AC AO CO =+10AO(0,10)A ∴设直线AB 的解析式为y kx b =+,将(0,10)A ,()10,0B 代入,得10100b k b =⎧⎨+=⎩解得110k b =-⎧⎨=⎩∴直线AB 的解析式为10y x =-+故答案为:()()10,0,0,5B C -,10y x =-+(2)如图,过点B 作BQ CP ⊥于点Q ,过B 点作ED x ⊥轴,过,C Q 分别作,CD QE 平行于x 轴,交ED 于点,E D ,45,BCP BQ BC ∠=︒⊥45BQC ∴∠=︒BCQ ∴△是等腰直角三角形 BC BQ ∴=,90CBD QBE ∴∠+∠=︒ED x ⊥轴,//CD x 轴,//QE x 轴,,CD ED QE DE ∴⊥⊥90CBD BCD ∴∠+∠=︒,90D E ∠=∠=︒BCD QBE ∴∠=∠在CBD 与BQE △中D E BCD QBE CB QB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴CBD ≌BQE △ ,CD BE BD QE ∴== (10,0),(0,5)B C - 10,5CD BD ∴==5QE BD ∴==,10BE CD == (10,10),(5,10)E Q ∴设直线CQ 的直线解析式为y mx n =+,将(0,5)C -,(5,10)Q 代入,则5510n m n =-⎧⎨+=⎩解得35m n =⎧⎨=-⎩直线CQ 的直线解析式为35y x =- 令0y =,则53x =即5 (,0) 3P故答案为:5 (,0) 3(3)如图,连接OD,(0,10)A,()10,0BOA OB∴=90AOB∠=︒AOB∴是等腰直角三角形DN DM⊥90MDN∴∠=︒D点是AB的中点,AD DB OD∴==,OD AD⊥45DON DAM∴∠=∠=︒ODN ODM ODM ADM∴∠+=∠+∠ODN ADM∴∠=∠DAM DON∴△≌△AM ON∴=,DM DN=,ODN ADM∠=∠DMN∴是等腰直角三角形,设DO 交MN 于点E ,设ADM α∠=,则2MBO α∠=45EOM ∠=︒,45DNM ∠=︒MOE MND ∴∠=∠MEO NED ∠=∠OMN ODN ADM α∴∠=∠=∠=过点N 作SN x ⊥轴,作OBM ∠的角平分线BS 交NS 于点S ,过点S 作,ST SR 分别垂直于,MO MB ,垂足分别为,T R ,连接MS ,如图,22OBM ADM α∠=∠=,BS 平分OBM ∠SBN SBR α∴∠==∠OA OB =,AM ON =OM NB ∴=又90,MON BNS OMN SBN α∠=∠=︒∠=∠=SNB NOM ∴△≌△ST SN ∴=∴四边形STON 是正方形在SRB △与SNB △中90SBN SBR SB SBSRB SNB α∠=∠=⎧⎪=⎨⎪∠=∠=︒⎩∴SRB △≌SNB △NB RB ∴=,SR SN =SR ST ∴=,ST OA SR MB ⊥⊥90STM SRM ∴∠=∠=︒在Rt STM △和Rt SRM △中MS MS ST SR =⎧⎨=⎩∴Rt STM △≌Rt SRM △MT MR ∴=设ON x =,则,10,,AM x BN x SN ON x ==-==102MT MO TO AO AM TO x MR =-=--=-=,10NB OB ON x BR =-=-=在Rt MOB 中,222MB MO OB =+即()222MR RB OB OM +=+()()22210210=1010x x x ∴-+-+- 整理得2225500x x -+=即()()25100x x --= 解得125,102x x ==(舍) 52AM ON ∴== 5151022MO ∴=-= 15(0,)2M ∴ 【点睛】本题考查了一次函数,坐标与图形,等腰三角形的性质,勾股定理,三角形全等的性质与判定,角平分线的定义,解一元二次方程,添加辅助线是解题的关键.3.(1)2,1,5-;(2)①13或133;②存在,m 的值为2-或2. 【解析】【分析】(1)根据正整数的定义、绝对值的非负性、偶次方的非负性分别可求出,,b a c 的值;(2)①先求出运动t 秒后,点,A C 所表示的数,再分点A 在点C 左侧和点A 在点C 右侧两种情况,然后根据数轴的定义建立方程,解方程即可得;②先求出运动t 秒后,点,,A B C 所表示的数,从而可得AC 的长,再分点A 在点B 左侧和点A 在点B 右侧两种情况,分别求出AB 的值,代入化简,然后根据整式的无关型问题求解即可得.【详解】解:(1)b 是最小的正整数,1b ∴=,()2250a c ++-=,20,50a c ∴+=-=, 解得2,5a c =-=,故答案为:2,1,5-;(2)①由题意,运动t 后,点A 所表示的数是42t -,点C 所表示的数是5t +, 当点A 在点C 左侧时,5(42)6AC t t =+--=,解得13t =, 当点A 在点C 右侧时,42(5)6AC t t =--+=,解得133t =, 综上,t 的值为13或133; ②由题意,运动t 后,点A 所表示的数是42t -,点B 所表示的数是1t +,点C 所表示的数是5t +, 当421t t -=+时,13t =, 当425t t -=+时,73t =, 因为点A 在点C 左侧,所以5(42)73AC t t t =+--=-,当点A 在点B 左侧,即01t <<时,1(42)33AB t t t =+--=-,则22(73)(33)314(36)AC m AB t m t m m t +⋅=-+-=+-+,由360m +=得:2m =-,即在01t <<运动时间内,当2m =-时,2AC m AB +⋅的值不随t 的改变而改变;当点A 在点B 右侧,即713t <<时,42(1)33AB t t t =--+=-, 则22(73)(33)143(36)AC m AB t m t m m t +⋅=-+-=-+-,由360m -=得:2m =, 即在713t <<运动时间内,当2m =时,2AC m AB +⋅的值不随t 的改变而改变; 综上,存在一个常数m 使得2AC m AB +⋅的值在某段运动过程中不随t 的改变而改变,m 的值为2-或2.【点睛】本题考查了数轴、一元一次方程的应用、绝对值和偶次方的非负性、整式等知识点,较难的是题(2)②,正确分两种情况讨论是解题关键.4.(1)12;(2)证明见解析;(3)B ′的坐标为(1,1)-或. 【解析】【分析】(1)利用一次函数的解析式先求解,A B 的坐标,再求解,OA OB 的长度,再利用正切的定义可得答案;(2)由旋转的性质可得CBD CB D ∠=∠'',证明BEC B ED ∽ ,可得BE B E EC ED ''=,结合BEB CED ,从而可得结论;(3)当B '在y 轴左边,过点B '作B M y '⊥轴于点M ,过点C 作CNB M ,交B M '的延长线于点N ,先利用等角正切相等可得:1.32ab 可得32,b a 再利用勾股定理可得222(1)(2)a b -+-=,再解方程组即可,当B '在y 轴右边时,同理可得B '点坐标.【详解】解:(1)直线24y x =-+与x 轴、y 轴分别相交于A 、B 两点,令0,x = 则4,y =令0,y = 则2,x =(2,0)A ∴,(0,4)B ,即2OA =,4OB =,AB ∴= 21tan .42OAOBA OB (2)由旋转的性质可得CBD CB D ∠=∠'',又BEC B ED ∠=∠'',BEC ∴∆∽△B ED '',∴BE EC B E ED ='',∴BE B E EC ED ''=, 又BEB CED ∠=∠'',BEB CED ∆'∴∆'∽;(3)2,0,0,4,A B C 为AB 的中点,152BC B C AB ∴===',(1,2)C , 设(,)B a b ',①当B '在y 轴左侧时,如图,此时0a <,过点B '作B M y '⊥轴于点M ,过点C 作CN B M ,交B M '的延长线于点N ,ODB OBA ∠'=∠,tan tan ODB OBA ∴='∠∠, ∴12B M OA DM OB ='=, ∴132a b -=-, 32b a ∴=+,①1,2,C (,)B a b ',1B N a ∴'=-,2CN b =-,由勾股定理,得222B N CN B C '='+,即222(1)(2)(5)a b -+-=,②联立①②,解得11a b =-⎧⎨=⎩或35{215a b ==, 0a <,(1,1)B ∴-';②当B '在y 轴右侧时,如图,此时0a >,过点B '作B M y '⊥轴于点M ,过点C 作CN B M 于点N ,同理可得:12B M OA DM OB ='=, ∴132a b =-, 32b a ∴=-,①(1,2)C ,(,)B a b ', 1B N a ∴'=-,2CN b =-,由勾股定理,得222B N CN B C '='+, 即222(1)(2)(5)a b -+-=,② 联立①②,解得326{946a b +=-326{946a b -+=,0a >, 326(B '+∴946-; 综上,B ′的坐标为(1,1)-或326(+946-. 【点睛】本题主要考查一次函数的性质,相似三角形的判定和性质,勾股定理,一元二次方程的解法,锐角三角函数的应用等知识,熟练掌握相似三角形的判定和性质以及勾股定理等知识是解题的关键.5.(1)证明见解析;(2)353【解析】【分析】(1)通过证明△CEK≌△BEF及△KED≌△FED即可证明FD DK=;(2)延长CE到点P,使EP=CE,先证明点G在过点P且与CE垂直的直线PN上运动,再作点E关于点P的对称点Q,连接BQ交PN于点G,此时△BEG的周长最小,求出此时GE+GB+BE的值即可.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AB CD∥,∴∠K=∠ABE,∵BF⊥AB,,⊥BE CEBEF CEK∴∠ABF=90°,90,∴∠ABE=90°﹣∠EBF=∠BFE,∴∠K=∠BFE,∵BE=CE,∴△CEK≌△BEF(AAS),∴CK=BF,EK=EF,∵AD BC∥,∴∠KED=∠EBC,∠FED=∠ECB,∵BE=CE,∴∠EBC=∠ECB,∴∠KED=∠FED,∴ED=ED,∴△KED≌△FED(SAS),∴DK=DF,(2)如图,作BN⊥BE,GN⊥BN于点N,延长NG交射线CE于点P,则∠EBN=∠FBG=90°,∴∠NBG=∠EBF=90°﹣∠GBE,∵∠N=∠BEF=90°,BG=BF,∴△BNG ≌△BEF (AAS ),∴BN =BE ;∵∠EBN =∠N =∠BEP =90°,∴四边形BEPN 是正方形,∴PE =BE =CE ,∴当点F 在CE 上运动时,点G 在PN 上运动;延长EP 到点Q ,使PQ =PE ,连接BQ 交PN 于点G ,∵PN 垂直平分EQ ,∴点Q 与点E 关于直线PN 对称,∵两点之间,线段最短,∴此时GE +GB =GQ +GB =BQ 最小,∵BE 为定值,∴此时GE +GB +BE 最小,即△BEG 的周长最小;作DH ⊥CE 于点H ,则∠DHE =∠DHC =90°,∵∠ECB =∠EBC =45°,∴∠HED =∠ECB =45°,∴∠HDE =45°=∠HED ,∴DH =EH ,∴DH 2+EH 2=2DH 2=DE 2=2, ∴DH =EH =1;∴CH 2222512DH ,∴BE =CE =EH +CH =1+2=3,∴EQ =2PE =2BE =6,∵∠BEQ =90°,∴BQ =∴GE +GB +BE =3,∴△BEG 周长的最小值为3.【点睛】本题重点考查平行四边形的性质、正方形的判定与性质、等腰直角三角形的性质、全等三角形的判定与性质、勾股定理、以及运用轴对称的性质求线段和的最小值问题的求解等知识与方法,深入探究与挖掘题中的隐含条件并且正确地作出辅助线是解题的关键,此题综合性强,难度大,属于考试压轴题.6.(1)①见解析;②5m =;(2)m 的值为6;(3)CE =【解析】【分析】(1)①连接DE ,证明ADC ∆是等腰三角形,根据“三线合一”的性质可得ADE CDE ∠=∠,证得EC EF =,从而可得结论;②根据勾股定理得到AC 45=,由E 为AC 中点得EC 25=,再证明DEC CBA ,由相似三角形的性质列出比例式,求出m 的值即可;(2)分PF //AC 和PF //BC 两种情况求解即可; (3)设CE =x ,作PG ⊥AC ,则2x GE =,45AE x =- 证明PGE EAP '≅得AP GE '=,再证明AP EBAC ',列比例式求出x 的值即可.【详解】解:(1)如图,连接DE∵CD 是圆P 的直径,∴∠DEC =90°,即DE ⊥AC∵E 为CA 中点 ∴AE =CE∴AD =CD∴ADE CDE ∠=∠∴EC EF =∴E 是CF 的中点;②在Rt △ABC 中,∠B =90°,AB =4,BC =8, ∴22224845AC AB BC +=+∵E 是AC 的中点 ∴11452522EC AC ==⨯= ∵AB //CD ,90B ∠=︒∴90B DCB ∠+∠=︒∴90DCB ∠=︒,即90DCE BCA ∠+∠=︒∵90CDE DCE ∠+∠=︒∴CDE BCA ∠=∠又90B DEC ∠=∠=︒∴DEC CBA ∆∆∽∴CE DC AB AC =2545解得,5m =;(2)分两种情况:①当PF//AC时,如图,则有PDF CDA∆∆∴PF PDAC CD=,即245PF mm=∴25=PF∴25m=②当PF//BC时,如图,过点A作AH⊥DC,垂足为H,则四边形AHCB是矩形,∴AH//BC,HC=AB=4,AH=BC=8∴PF//AH∵90DCB∠=︒∴90FPD∠=︒∴45PDF PFD∠=∠=︒∴45HAD HDA∠=∠=︒∴DH=AH,即248m-=解得,6m=综上,m的值为256;(3)过点P作PG AC⊥于点G,如图,∵PE =PC∴1,2GE CE EPG CPG =∠=∠∵90PEP '∠=︒ ∴90P EA PEG '∠+∠=︒ 又90PEG GPE ∠+∠=︒ ∴P EA EPG '∠=∠又90P AE PGE '∠=∠=︒,PE P E '= ∴P AE EPG '∆≅∆ ∴AP GE '=设CE x =,则45,2x AE x GE AP '===∵90,90BCA DCA GPC PCH ∠+∠=︒∠+∠=︒ ∴GPC BCA ∠=∠ ∴EPG BCP ∠=∠ ∴P EA BCA '∠=∠ 又90P AE B '∠=∠=︒ ∴AP EBAC '∆∆∴AP ABAE BC'=42825x= ∴5x =25CE =【点睛】本题主要考查了全等三角形的判定与性质,圆的基本概念,相似三角形的判定与性质,正确作出辅助线以及进行分类讨论是解答本题的关键.7.(1)2315684y x x =-+;(2)143x =或34633x =【解析】 【分析】(1)由题意代入A (2,0),B (8,0)两点求出a 、b 的值,即可得出抛物线的解析式;(2)根据题意分点P 在BC 下方的抛物线上和点P 在BC 上方的抛物线上两种情况,结合全等三角形的判定与性质以及相似三角形的判定与性质进行分析即可得出答案. 【详解】解:(1)由题意代入A (2,0),B (8,0)两点,可得: 042606486a b a b =++⎧⎨=++⎩,解得:38154a b ⎧=⎪⎪⎨⎪=-⎪⎩, 所以抛物线的解析式为:2315684y x x =-+;(2)当点P 在BC 下方的抛物线上时,此时∠PCB 12=∠BCO 即CP 平分∠BCO ,如图,作CP 平分∠BCO ,交x 轴于点D ,过D 作DE BC ⊥垂足为E , ∵CP 平分∠BCO ,DE BC ⊥, ∴OD DE =,DCO DCE ∠=∠,∵OD DE =,DCO DCE ∠=∠,90COD CED ︒∠=∠=, ∴,6,DOC DEC CO CE ≅==∴22226810,4BC CO BO BE BC CE ++=-=, 设OD DE m ==,8BD m =-,勾股定理可得:222DE B D E B +=,即2224(8)m m +=-, 解得:3m =,即3OD DE ==,D 的坐标为(3,0), 设CD 的解析式为:(0)y kx b k =+≠,代入C 、D 可得:603b k b =⎧⎨=+⎩,解得:26k b =-⎧⎨=⎩,所以CD 的解析式为:26y x =-+, ∵P 为直线CD 与抛物线的交点,84解得:0x =(舍去)或143x =,即P 的横坐标为143x =, 当点P 在BC 上方的抛物线上时,此时∠PCB 12=∠BCO ,如图, 作∠PCB 12=∠BCO 交抛物线于点P ,延长DE 交CP 于点F ,过E 作EH ⊥x 轴交于点H ,∵∠PCB 12=∠BCO ,DCB DCO ∠=∠, ∴,PCB DCB ∠=∠∵,,PCB DCB CE CE DEC FEC ∠=∠=∠=∠, ∴,DEC FEC DE DF ≅=,∵,90CBO EBH COB EHB ︒∠=∠∠=∠=, ∴EHB COB ∽, ∴4,1068BE EH BH EH BHBC CO BO ====, 可得121624,,555EH BH OH BO BH ===-=, ∴2412(,)55E , 设F 为(,)m n ,由DE DF =可得324012,2525m n ++==,解得:3324,55m n ==, 即F 为3324(,)55, 设CF 的解析式为:(0)y kx b k =+≠,代入C 、F 可得:6243355b k b =⎧⎪⎨=+⎪⎩,解得:2116k b ⎧=-⎪⎨⎪=⎩,所以CD 的解析式为:2611y x =-+, ∵P 为直线CF 与抛物线的交点,1184解得:0x =(舍去)或34633x =,即P 的横坐标为34633x =, 综上所述P 的横坐标为143x =或34633x =.【点睛】本题考查二次函数的综合问题,熟练掌握待定系数法求二次函数解析式和全等三角形的判定与性质以及相似三角形的判定与性质和角平分线性质是解题的关键.8.(1)AG =CH ;12;(2)'''CF A G 的值为12;(3【解析】 【分析】(1)由已知条件ASA 推论出CDH ADG ≅△△,得出AG =CH ;再推论出ACF AHF ≅△△,得出CF HF =,因为12CF CH =,所以12CF AG =; (2)过点A '作//A B AB '',同(1)理得:CH AG '='' 所以 12CF A G '=''; (3)①由已知条件推论出CD H A D G '''''△△,得出CH CD A G A D ''='''',因为30B ∠=︒,推出CH A G '='',由12CF CH '='可转化得,CF A G '='';②由CF A G '='','CF 6AG ''=,由面积公式得到12A G C S A G CF ''='''=△ 【详解】解:(1)AC AB = 90ACB ∠=︒ 点D 为AB 的中点CD AB ∴⊥ AD DB CD == 90DCH CHD ∴∠+∠=︒ CF AE ⊥90GAD CHD ∴∠+∠=︒ DCH GAD ∴∠=∠在CDH △和ADG 中90DCH GADCD AD CDH ADG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩CDH ADG ∴≅△△ CH AG ∴=AE ∵为BAC ∠的角平分线 CF AE ⊥CAF HAF CFA AFH ∴∠=∠∠=∠在ACF 和AHF △中 CAF HAF AF AFCFA AFH ∠=∠⎧⎪=⎨⎪∠=∠⎩ACF AHF ∴≅△△CF HF ∴=12CF CH ∴= 12CF AG ∴= (2)过点A '作//A B AB '',交CD 于D ',CH 于H ',CB 于B ′在CA B ''△中A E '为CAB ∠''的角平分线 CF A E ⊥''同(1)理得:CH AG '='' 12CF A G '∴='' '''CF A G ∴的值为12; (3)过点A '作//A B AB '',交CD 于D ',CH 于H ',CB 于B ′①AC AB = 30ABC ∠=︒ 点D 为AB 的中点CD AB ∴⊥ //A B AB ''CD A B ∴⊥'' 30A B C ABC ∠''=∠=︒ 30CA B CAB ∠''=∠=︒ 90D CH CH D ∴∠''+∠''=︒ 60AC D ∠'''=︒ CF A E '⊥''90G A D CH D ∴∠'''+∠''=︒ D CH G A D ∴∠''=∠''' 90CD H G D A ∠''=∠'''=︒ CD H A D G ∴'''''△△CH CD A G A D ''∴=''''tan 30CD A D '︒==''CH CD A G A D ''∴=='''CH A G ∴'='' 由题意知A E ''为B AC ∠''的角平分线 CF A E '⊥''CA F H A F CF A A F H ∴∠''=∠'''∠''=∠'''在A CF ''△和A H F '''△中 CA F H A F A F A F CF A A F H ∠''=∠'''⎧⎪''=''⎨⎪∠''=∠'''⎩ACF A H F ∴''≅'''△△ CF H F ∴'=''12CF CH '∴='12=CF A G '∴=''②CF A G '='''CF =6A G ∴''===11622A G C S A G CF ''∴='''=⨯=△【点睛】本题是相似形的综合题目,考察了等腰三角形、直角三角形以及全等三角形的判定和性质、和相似三角形判定和性质等知识;本题难度较大,综合性强.9.(1)(0,1)A ,32x =;(2)12a =或89a =-;(3)10a -<或2a . 【解析】 【分析】(1)把0x =代入抛物线的解析式求解抛物线与y 轴的交点坐标即可,再利用抛物线的对称轴方程2bx a=-求解抛物线的对称轴即可; (2)分两种情况讨论,①当0a >时,抛物线的开口向上,12x -≤≤且()353112,2222--=>-= 此时1x =-,y 取最大值;②当0a <时,抛物线的开口向下,12x -≤≤且()353112,2222--=>-=此时32x =,y 取最大值,再分别列方程求解a 即可;(3)分两种情况分别画出符合题意的图形,①当0a >时,如图,当点Q 在点A 的左侧(包括点)A 或点Q 在点B 的右侧(包括点)B 时,线段PQ 与抛物线只有一个公共点;②当0a <时,如图,当Q 在点A 与点B 之间(包括点A ,不包括点)B 时,线段PQ 与抛物线只有一个公共点,再根据点的位置列不等式即可得到答案. 【详解】解:(1)令0x =,则1y =.(0,1)A . 抛物线的对称轴为3322a x a -=-=. (2)2234931()24ay ax ax a x -=-+=-+, 抛物线的对称轴为32x =. ①当0a >时,抛物线的开口向上,12x -≤≤且()353112,2222--=>-= 此时1x =-,y 取最大值. ∴()213(1)13a a --⨯-+= ∴12a =. ②当0a <时,抛物线的开口向下,12x -≤≤且()353112,2222--=>-= ∴ 此时32x =,y取最大值. ∴233()31322a a -⨯+= ∴89a =-.综上所述,12a =或89a =-. (3)∵抛物线231y ax ax =-+的对称轴为32x =.设点A 关于对称轴的对称点为点B ,(3,1)B ∴.(1,1)Q a +, ∴点,,Q A B 都在直线1y =上.①当0a >时,如图,当点Q 在点A 的左侧(包括点)A 或点Q 在点B 的右侧(包括点)B 时,线段PQ 与抛物线只有一个公共点.10a ∴+或13a +.1a ∴-(不合题意,舍去)或2a∴ 2a .②当0a <时,如图,当Q 在点A 与点B 之间(包括点A ,不包括点)B 时,线段PQ 与抛物线只有一个公共点.013a ∴+<. 12a ∴-<.又0a <,10a ∴-<综上所述,a 的取值范围为10a -<或2a . 【点睛】本题考查的是抛物线与坐标轴的交点问题,求解抛物线的对称轴方程,抛物线的最值问题,抛物线与线段的交点问题,掌握数形结合的方法,清晰的分类讨论是解题的关键.10.(1)43; (2)见解析 (3)−3√6+3√2【解析】 【分析】(1)过点H 作HL ⊥EF ,交AF 于L ,根据菱形ABCD ,,得出∠DAB =180°-,AD ∥BC ,可得∠DAE =∠AEB ,可求∠DAE =15°,先证△AEF 为等边三角形,得出∠F=60°,根据余角性质可求∠HLF=90°-∠F=30°,利用30°直角三角形性质可求LF=2HF=2×4=8,根据勾股定理,再证∠AHL=∠HAF,得出AL=LH=(2)过B作BL⊥AC于L,过F作FK⊥AE于K,设AE=m,AC=n,将AE绕点A逆时针旋转60°得AF,得出△AEF为等边三角形,可得AF=EF,可求∠AFK=∠EFK=30°,AK=EK=,根据勾股定理在Rt△AKF中,,根据菱形ABCD,可求AL=CL=,∠CBL=∠ABL=60°,进而可求∠LCB=90°-∠CBL=30°,利用30°直角三角形性质得出BC=2BL,在Rt△BCL中,根据勾股定理,得出,根据点M为CE中点,可得CM=EM=,得出MK=ME-KE=,M L=MC-CL=,再利用勾股定理股定理即可;(3)连结SB,过E作TL⊥DE,,过G作GI⊥AD于I,过T作TJ⊥AB于J,在TD上截取TE′=TE,根据将AB沿AS翻折得,∠BAS=∠EAS,AB=AE,可证△ABS≌△AES(SAS),可得∠ABS=∠AES,根据四边形ABCD为菱形,证明A、S、B、D 四点共圆,得出点S在△ABD的外接圆劣弧AB上运动,当AS⊥AB时,DS长最大,∠ADH=90°-∠DAH=30°,AH=3,DH=,点T在以点A为圆3为半径的圆上运动,当点A关于TJ直线的对称点在∠ADH的角平分线DT上时,的值最大,设点A的对称点为G, Rt△AIG中,根据勾股定理即,解得,在Rt△DGH中,根据勾股定理求得DG,可求DT,再证四边形JTLH为矩形,可得JH=TL=,在DL上截取DN=TN,可得∠NDT=∠NTD=15°,得出∠FNL=∠NDT+∠NTD=30°可求DN=TN=2TL,根据在Rt△TNL 中,根据勾股定理NL=,在Rt△AHE中,∠EAH=60°,根据DE=sin60°×AEDE LE=DE-DL=TL求出TE即可.(1)解:过点H作HL⊥EF,交AF于L,∵菱形ABCD,∴∠DAB=180°-,AD∥BC,∴∠DAE=∠AEB,∵,∴∠DAE=15°,∵AE绕点A顺时针旋转60°得AF,∴△AEF为等边三角形,∴∠F=60°,∵HL⊥EF,∴∠HLF=90°-∠F=30°,∴LF=2HF=2×4=8,根据勾股定理,∵∠DAE+∠EAH=∠EAH+∠HAF=60°∴∠DAE=∠HAF=15°,∵∠HLF为△AHL的外角,∴∠AHL=∠HLF-∠HAF=30°-15°=15°,∴∠AHL=∠HAF,∴AL=LH=43,∴AE=AF=AL+LF=43+8;(2)证明:过B作BL⊥AC于L,过F作FK⊥AE于K,设AE=m,AC=n,∵将AE绕点A逆时针旋转60°得AF,∴AE=AF=m,∠EAF=60°,∴△AEF为等边三角形,∴AF=EF,∵FK⊥AE,∴∠AFK=∠EFK=30°,AK=EK=,在Rt△AKF中,,∵菱形ABCD,,BL⊥AC,∴AL=CL=,∠CBL=∠ABL=60°,。
一、解答题1.如图,已知正方形ABCD ,将AD 绕点A 逆时针方向旋转到AP 的位置,分别过点作,垂足分别为点E 、F .(1)求证:;(2)联结,如果,求的正切值; (3)联结,如果,求n 的值.2.在ABC 中,AB BC =,45B ∠=︒,AD 为BC 边上的高. (1)如图1,若1AD =,求线段CD 的长度;(2)如图2,点E ,点F 在AB 边上,且满足AE BF =,连接CE ,CF 分别交线段AD 于点M ,点N ,若点M 为线段CE 的中点,求证:2AN CD AB +=;(3)在(2)问条件下,若2AC =,点K 为AC 边上一动点,点Р为ACF 内一点且满足ACP CAD ∠=∠,当PK PA +取最小值时,请直接写出CPK S △的值.3.如图,点D 、E 分别在等边△ABC 的边AB 、BC 上,且BD =CE ,CD ,AE 交于点F . (1)求∠AFD 的度数;(2)如图2,若D ,E ,M ,N 分别是△ABC 各边上的三等分点,BM ,CD 交于Q .若△ABC 的面积为S ,则四边形ANQF 的面积为______;(只写出答案即可,不要求写解题过程)(3)如图3,延长CD 到点P ,使∠BPD =30°,设AF =a ,CF =b ,请用含a ,b 的式子表示PC 的长,并说明理由.4.如图1,在平面直角坐标系xOy中,矩形OABC的顶点A、C的坐标分别为(0,6)、(5,0),点P为线段OA上的一个动点,将矩形OABC在直线PC上方的部分沿直线PC翻折,点B落在点D处,点A落在点E处,直线CD交y轴于点F.(1)如图2,当点P与点A重合时,求点F的坐标;(2)点P从A向O运动的过程中,点D、P、C、B能否构成菱形,若能,求出符合条件的点D的坐标,若不能,请说明理由;(3)点P从A向O运动的过程中,当△DPC的重心刚好落在y轴上时,求出此时点P的坐标.5.问题提出(1)如图①,在△ABC中,BC=2,将△ABC绕点B顺时针旋转60°得到△A′B′C′,则CC′=;问题探究(2)如图②,在△ABC中,AB=BC=3,∠ABC=30°,点P为△ABC内一点,连接PA、PB、PC,求PA+PB+PC的最小值,并说明理由;问题解决(3)如图③,在四边形ABCD中,AD∥BC,AB=6,AD=4,∠ABC=∠BCD=60°.在四边形ABCD内部有一点,满足∠APD=120°,连接BP、CP,点Q为△BPC内的任意一点,是否存在一点P和一点Q,使得PQ+BQ+CQ有最小值?若存在,请求出这个最小值;若不存在,请说明理由.6.折叠变换是特殊的轴对称变换,我们生活中常对矩形纸片进行折叠,这其中蕴含着丰富的数学知识和思想.(1)如图1,矩形ABCD中,AB=6,BC=4,点E是DC的中点,将矩形ABCD沿BE折叠,点C落在点F的位置.①求证:DF∥BE;②求DF的长度.(2)如图2,在直角坐标系中,把矩形OABC沿对角线AC所在的直线折叠,点B落在点D处,AD与y轴交于点E,OA=2,OC=23,点G是直线AC上的一个动点,在坐标平面内存在点H,使得以点E,A,G,H为顶点的四边形是菱形,请直接写出点H坐标.7.“数学建模”是中学数学的核心素养,平时学习过程中能归纳一些几何模型,解决几何问题就能起到事半功倍的作用.(1)如图1,正方形ABCD中,45=;∠=︒,且DE BFEAF=,求证:EG AG(2)如图2,正方形ABCD中,45∠=︒,延长EF交AB的延长线于点G,(1)中的EAF结论还成立吗?请说明理由;⊥,垂足为点Q,交AF于点N,连结DN,求(3)如图3在(2)的条件下,作GQ AE证:45∠=︒.NDC8.如图,在平面直角坐标系中,点B的坐标是(0,2),动点A从原点O出发,沿着x 轴正方向移动,△ABP是以AB为斜边的等腰直角三角形(点A、B、P顺时针方向排列),当点A与原点O重合时,得到等腰直角△OBC(此时点P与点C重合).(1)BC=;当OA=2时,点P的坐标是;(2)设动点A的坐标为(t,0)(t≥0).①点A在移动过程中,△ABP的顶点P在射线OC上吗?请说明理由;②用含t的代数式表示点P的坐标为:(,);(3)分别过点P、A做x轴、y轴的平行线,两条平行线交于点Q,是否存在这样的Q,使得△AQB是等腰三角形?若存在,请直接写出Q的坐标,若不存在,请说明理由.9.抛物线y=ax2+b经过点A(4,0),B(0,﹣4),直线EC过点E(4,﹣1),C (0,﹣3),点P是抛物线上点A、B间的动点(不含端点A、B),过P作PD⊥x轴于点D,连接PC、PE.(1)求抛物线与直线CE的解析式;(2)求证:PC+PD为定值;(3)若△PEC的面积为1,求满足条件的点P的坐标.10.如图,在直角梯形ABCD中,AB∥CD,∠B=90°,AB=4,BC=8,CD=2m(m>2),P为CD中点,以P为圆心,CP为半径作半圆P,交线段AC于点E,交线段AD于点F.(1)当E为CA中点时,①求证:E是弧CF的中点.②求此时m的值.(2)连结PF,若PF平行△ABC的某一边时求出满足条件的m值.(3)连结PE,将PE绕着点E顺时针旋转90°得到EP',连结AP',当AP'⊥AC时,求此时CE的长.11.已知抛物线214y x bx c =-++与直线AC 相交于A 、C 两点,且()2,0A -、()4,3C .(1)填空:b =______,c =______;(2)长度为5的线段DE 在线段AC 上移动,点G 与点F 在上述抛物线上,且线段DG 与EF 始终平行于y 轴.①连接FG ,求四边形DEFG 的面积的最大值,并求出对应点D 的坐标;②CH AB ⊥,垂足为点H ,线段DE 在移动的过程中,是否存在点D ,使△DEG 与△ACH 相似?若存在,请求出此时点D 的坐标;若不存在,试说明理由. 12.如图,抛物线交x 轴于A ,B 两点,交y 轴于点C ,直线经过点B ,C .(1)求抛物线的解析式;(2)抛物线的对称轴l 与直线BC 相交于点P ,连接AC ,AP ,判定△APC 的形状,并说明理由;(3)在直线BC 上是否存在点M ,使AM 与直线BC 的夹角等于∠ACB 的2倍?若存在,请求出点M 的坐标;若不存在,请说明理由.13.如图,在平面直角坐标系中,矩形OABC ,点A 在y 轴上,点C 在x 轴上,其中B(﹣2,3),已知抛物线y=﹣34x2+bx+c经过点A和点B.(1)求抛物线解析式;(2)如图1,点D(﹣2,﹣1)在直线BC上,点E为y轴右侧抛物线上一点,连接BE、AE,DE,若S△BDE=4S△ABE,求E点坐标;(3)如图2,在(2)的条件下,P为射线DB上一点,作PQ⊥直线DE于点Q,连接AP,AQ,PQ,若△APQ为直角三角形,请直接写出P点坐标.14.如图,已知二次函数的解析式为y=﹣12x2+bx+c,A(-1,0),C(4,0),P为二次函数上的动点.(1)求二次函数的解析式.(2)若P在第一象限上,求S△BCP的最大值.(3)在x轴上是否存在点Q,使得BQ=BP且BP⊥BQ若存在,请直接写出所有点Q的坐标,若不存在,请说明理由.15.(1)[感知]如图1,在正△ABC的外角∠CAH内引射线AM,作点C关于AM的对称点E(点E在∠CAH内),连接BE,BE、CE分别交AM于点F、G.求∠FEG的度数.(2)[探究]把(1)中的“正△ABC”改为“正方形ABDC,其余条件不变,如图2,类比探究,可得:①∠FEG=°;②猜想线段BF、AF、FG之间的数量关系,并说明理由.(3)[拓展]如图3,点A在射线BH上,AB=AC,∠BAC=α(0°<α<180°),在∠CAH 内引射线AM,作点C关于AM的对称点E(点E在∠CAH内),连接BE,BE、CE分别交AM于点F.G.则线段BF、AF、GF之间的数量关系为.16.在平面直角坐标系中,抛物线:与x轴交于点A,B(点B 在点A的右侧).抛物线顶点为C点,△ABC为等腰直角三角形.(1)求此抛物线解析式.(2)若直线与抛物线有两个交点,且这两个交点与抛物线的顶点所围成的三角形面积等于6,求k的值.(3)若点,且点E,D关于点C对称,过点D作直线2l交抛物线于点M,N,过点E作直线轴,过点N作于点F,求证:点M,C,F三点共线.17.在平面直角坐标系中,抛物线交x轴于A、B两点(点A在点B的左),交y轴于点C(1)当3a =时,①如图1,求△ABC 的面积; ②如图2,若抛物线上有一点P ,且,求点P 的坐标(2)过点B 且与抛物线仅有一个交点的直线y kx b =+交y 轴于点D ,求的值.18.已知:在⊙O 中,弦AC ⊥BD 于点E ,连接OC 、BC 、CD .(1)如图1,求证:∠B +∠OCD =90°.(2)如图2,连接OE 、OD ,若EO 平分∠AED ,求证:2=CD OC .(3)如图3,在(2)的条件下,延长OE 交⊙O 于点F ,连接FC 、FD ,点K 为OD 上一点,KC 交FD 于点H ,FD 交OC 于点G ,若CK =5,552DG =,∠ODF =2∠KCD 时,求FC 的长. 19.问题提出:如图①所示,在矩形AOCB 和矩形ODEF 中,CO FOk AO DO==,点A ,O ,D 不在同一直线上,连接,AD CF .HO 是AOD △的中线,那么,HO CF 之间存在怎样的关系?HO CF的数量关(1)问题探究:先将问题特殊化,如图②所示,当1k=且90AOD∠=︒时,,系是________,位置关系是________.(2)问题拓展:再探究一般情形如图③所示,当1k=,90∠≠︒时,证明(1)中的结论AOD仍然成立.HO CF之间存在怎样的关系(数量关系用k表示)?(3)问题解决:回归图①所示,探究,20.如图,△ABC为等腰三角形,AB=AC,将CA绕点C顺时针旋转至CD,连接AD,E 为直线CD上一点,连接AE;(1)如图1,若∠BAC=60°,∠ACD=90°,E为CD中点,23AB=,求△BCE的面积;(2)如图2,若∠ACD=90°,点E在线段CD上且∠DAE+∠ABC=90°,AE的延长线与BC的延长线交于点F,连接DF,求证:2=;BC DF(3)如图3,AB=1,∠BAC=90°,∠ACD=105°,若BE恰好平分∠AEC,点P为线段AE上的动点,点E′与点E关于直线DP对称,AE′与CD交于点Q,连接CE′,当'+-''的值最小时,直接写出CQ的值.2CE AE CE【参考答案】**科目模拟测试一、解答题1.(1)证明见解析;(2)2;3(3)30【解析】【分析】(1)作CG⊥CE,交FD延长线于G点,可根据题意得出四边形FECG为矩形,再结合矩形和正方形的性质推出△BCE≌△DCG,从而得到CE=CG,即四边形FECG为正方形,即可证得结论;(2)在(1)的基础之上,连接CF,首先通过旋转的性质和三角形的内角定理推出△CEF 和△DFP均为等腰直角三角形,进而利用相似三角形的判定与性质推出PF和EF之间的关系,从而表示出BE的长度,即可求出∠BCE的正切值,再根据余角的关系证明∠ABP=∠BCE,即可得出结论;(3)根据正方形的性质以及前面两个问题的求解过程推断出A、C、D、F四点共圆,即可得到在变化过程中,∠AFC始终为90°,从而在Rt△ACF中运用特殊角的三角函数值求解角度即可得出结论.(1):如图所示,作CG⊥CE,交FD延长线于G点,∵CE⊥BP,DF⊥BP,CG⊥CE,∴∠EFG=∠FEC=∠ECG=∠BEC=90°,∴四边形FECG为矩形,∠G=90°,∵四边形ABCD为正方形,∴∠BCD=90°,BC=DC,∵∠BCD=∠BCE+∠ECD,∠ECG=∠ECD+∠DCG,∴∠BCE+∠ECD=∠ECD+∠DCG,即:∠BCE=∠DCG,在△BCE和△DCG中,∴△BCE≌△DCG(AAS),∴CE=CG,∴四边形FECG为正方形,∴CE=EF;(2)解:如图所示,连接CF,由(1)知,CE=EF,CE⊥EF,则△CEF为等腰直角三角形,由旋转的性质得:∠PAD=n°,AP=AD,∴∠PAB=90°+n°,∠APD=12(180°-∠PAD)=90°-12n°,∵AP=AB,∴∠APB=12(180°-∠PAB)=45°-12n°,∴∠FPD=∠APD-∠APB=45°,∵DF⊥AB,∴∠DFP=90°,∴△DFP也为等腰直角三角形,PF=DF,∴△DFP∽△CEF,∵,∴,设PF= DF=x,则FE=CE=3x,由(1)知四边形CEFG为正方形,∴FG=FE=3x,∴DG=FG-DF=2x,∵△BCE≌△DCG,∴BE=DG=2x,∴在Rt△BEC中,,∵∠ABP+∠EBC=90°,∠EBC+∠BCE=90°,∴∠ABP=∠BCE,∴;(3)解:∵,∴如图所示,连接AF和对角线AC,由(2)可知,∠EFC=45°,∠EFD=90°,∴∠CFD=45°,∵AC为正方形ABCD的对角线,∴∠CAD=45°,AC2,∴∠CAD=∠CFD,∴点A、C、D、F四点共圆,∴∠AFC=∠ADC=90°,∵AF=22AB,∴AF=12AC,则在Rt△AFC中,,∵∠ACF为锐角,∴∠ACF=30°,∠FAC=90°-30°=60°,∵∠CAD=45°,∴∠FAD=60°-45°=15°,∵AP=AD,AF=AF,PF=DF,∴△AFP≌△AFD,∴∠FAD=∠FAP=15°,∴∠PAD=30°,∴n=30.【点睛】本题考查正方形的判定与性质,相似三角形的判定与性质,以及旋转的性质和解直角三角形等,掌握图形的基本性质和判定方法,具有较强的综合分析能力是解题关键.2.(121;(2)证明见解析;(321- 【解析】【分析】(1)证明,AD BD = 再利用勾股定理求解,,AB BC 从而可得答案;(2)如图,过E 作EH AD ⊥于,H 过F 作FQ BC ⊥于,Q 而,AD CD ⊥ 证明,EHM CDM ≌ 可得22,AE EH CD == 同理:22,BF FQ BQ == 而,AE BF = 再证明,FQC DCA ≌ 可得,FCQ CAD ∠=∠ 再证明,AF AN = 从而可得结论;(3)如图,记CP 与AB 的交点为,L 由(2)得:45,ACF BAD ∠=∠=︒ 证明,22.5,CF CA CAD =∠=︒ 可得CP 平分,ACF ∠ 则,A F 关于直线CP 对称,,PF PA = 过F 作FK AC ⊥于,K 则此时,PA PK PF PK FK +=+= 所以PA PK +最短,设,PK n = 则1,21,PF PA n AK ==-= 再利用勾股定理求解,n 即可得到答案.【详解】解:(1)45B ∠=︒,AD 为BC 边上的高,90,45,ADB B BAD ∴∠=︒∠=∠=︒221,112,AD BD AB ∴==+=AB BC =,2,2 1.BC CD BC BD ∴=-=(2)如图,过E 作EH AD ⊥于,H 过F 作FQ BC ⊥于,Q 而,AD CD ⊥则90,EHM CDM ∠=∠=︒ M 为CE 的中点,,HME DMC ∠=∠,EM CM ∴=,EHM CDM ∴≌,EH CD ∴=45,90,BAD AHE EHM ∠=︒∠=∠=︒22,AE EH CD ∴==同理:22,BF FQ BQ == 而,AE BF =,FQ BQ CD EH ∴===,BD CQ AD ∴==90,ADC CQF ∠=∠=︒,FQC DCA ∴≌,FCQ CAD ∴∠=∠,AB BC =,BAC BCA ∴∠=∠,BAD ACF ∴∠=∠ 而,B BAD ∠=∠,,B FCQ AFN ANF ACF CAD ∠+∠=∠∠=∠+∠,AFN ANF ∴∠=∠,AF AN ∴=2.AN CD AF AE AF BF AB ∴=+=+=(3)如图,记CP 与AB 的交点为,L 由(2)得:45,ACF BAD ∠=∠=︒,45,BA BC B =∠=︒67.5,BAC BCA ∴∠=∠=︒67.5,CFA BAC ∴∠=︒=∠,22.5,CF CA CAD ∴=∠=︒22.5,ACP CAD ∠=∠=︒CP ∴平分,ACF ∠,,CP AF AL FL ∴⊥=则,A F 关于直线CP 对称,,PF PA =过F 作FK AC ⊥于,K 则此时,PA PK PF PK FK +=+=所以PA PK +最短,2,AC ∴= 则2,CF = 而45,ACF ∠=︒1,CK FK ∴==设,PK n = 则1,21,PF PA n AK ==-=())222121,n n ∴-=+ 解得:21,n = )121121.22CPK S ∴=⨯⨯= 【点睛】本题考查的是全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形的判定与性质,勾股定理的应用,本题综合性较强,是压轴题,知识的系统化是解题的关键.3.(1)60°;(2)13S ;(3)a +2b ,理由见解析 【解析】【分析】(1)由等边三角形的性质AB =AC =BC ,∠ABC =∠ACE =∠BAC =60°,且BD =CE ,可证△BDC ≌△CEA ,由三角形的外角性质可求∠AFD 的度数;(2)由等边三角形的性质可得BD =CE =AM =DN ,且AB =AC =BC ,∠ABC =∠ACE =∠BAC =60°,可证△ABM ≌△CAE ≌△BCD 和△BDQ ≌△CEF ,由全等三角形的性质和三等分点性质,可求四边形ANQF 的面积;(3)在AC 上截取AM =CE ,由题意可证△BHC ≌△CFA ,可得BH =CF =b ,AF =CH =a ,∠PHB =60°,即可求PC 的长.【详解】解:(1)∵△ABC 是等边三角形∴AB =AC =BC ,∠ABC =∠ACE =∠BAC =60°,且BD =CE ,∴△BDC≌△CEA(SAS),∴∠CAE=∠BCD,∵∠AFD=∠CAE+∠ACF=∠BCD+∠ACD=∠ACB,∴∠AFD=60°;(2)∵D,E,M,N分别是△ABC各边上的三等分点,∴BD=CE=AM=DN,且AB=AC=BC,∠ABC=∠ACE=∠BAC=60°,∴△ABM≌△CAE≌△BCD(SAS),∴∠CAE=∠ABM=∠BCD,∠AMB=∠AEC=∠BDC,且BD=CE,∴△BDQ≌△CEF(ASA),∴S△BDQ=S△CEF,∵BD=DN,∴S△BDQ=S△DNQ=S△CEF,∵D,E是AB,BC上三等分点,∴S△BDC=S△CEA=13S△ABC=13S,∵四边形ANQF的面积=S△ABC-S△AEC-S△DNQ-S四边形DFEB=S-13S-13S=13S;(3)PC=a+2b.理由如下:如图,在AC上截取AM=CE,即AM=CE=BD,∵AM=CE=BD,∠ABC=∠BAC=∠ACB=60°,AB=AC=CB.∴△CBD≌△ACE≌△BAM(SAS),∴∠CAE=∠BCD=∠ABM,且∠ABC=∠ACE,∴∠MBC=∠ACD,且BC=AC,∠EAC=∠BCD,∴△BHC≌△CFA(ASA),∴BH=CF=b,AF=CH=a,∵∠PHB=∠MBH+∠HCB=∠ABM+∠MBC=∠ABC,∴∠PHB=60°,且∠BPD=30°,∴∠PBH=90°,且∠BPH=30°,∴PH=2BH=2b,∴PC=PH+HC=a+2b.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等边三角形的性质,三角形的外角的性质,添加恰当的辅助线构造全等三角形是本题的关键.4.(1)F(0,3112);(2)能,D(0,-31);(3)P的坐标为(0,5)或(0,1).【解析】【分析】(1)由矩形的性质和折叠的性质,求出AF=CF,设OF=x,然后利用勾股定理求出x,即可得到答案;(2)当四边形DPBC为菱形时,PB∥DC,PD∥BC,利用菱形的性质和勾股定理求出31AP ,然后求出OD的长度,即可得到答案;(3)当重心在y轴上时,F一定是DC的中点,过D作DH⊥x轴于H,利用勾股定理求出DH=4,然后得到点D的坐标,即可求出点P的坐标.【详解】解:(1)如图:在矩形OABC中,OA∥BC,∴∠1=∠2,又∵∠2=∠3,∴∠1=∠3,∴AF=FC,设OF=x,∴AF=FC=6-x,∴(6-x)2=x2+52,解得:x=31 12,∴F(0,31 12)(2)能,当四边形DPBC为菱形时,PB∥DC,PD∥BC,∴点D在y轴上,且PB=BC=6,在Rt△APB中,AP2+AB2=PB2,∴AP2=62-(5)2,∴AP=31,∵AO=PD=6,∴OD=31,∴D(0,-31);(3)当重心在y轴上时,F一定是DC的中点,过D作DH⊥x轴于H,∴OH=OC5∴CH=5∴DH2246(25)∴D5454)当D54)时,F(0,2),∴AP=1(6-4)=12∴OP=5,∴P(0,5)当D(-5,-4)时,F(0,-2),AP=12(6+4)=5,∴OP=1,∴P(0,1)综上,P的坐标为(0,5)或(0,1).【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,坐标与图形等知识,解题的关键是熟练掌握所学的知识,正确的作出辅助线进行解题.5.(1)2;(2)32;(3)存在,223 3【解析】【分析】(1)如图①,根据等边三角形的判定和性质解决问题即可.(2)如图②,将△ABP绕点B逆时针旋转60°得到△BFE,连接PF,EC.易证PA+PB+PC=PC+PF+EF,因为PC+PF+EF≥EC,推出当P,F在直线EC上时,PA+PB+PC的值最小,求出EC的长即可解决问题.(3)如图③−1中,将△PBQ绕点B逆时针旋转60°得到△EBG,则PQ=EG,△BQG是等边三角形,易知PQ+BQ+CQ=EG+GQ+QC≥EC,推出EC的值最小时,QP+QB+QC的值最小,如图③−2中,延长BA交CD的延长线于J,作△ADJ的外接圆⊙O,将线段BO,BP绕点B逆时针旋转60°得到线段BO′,BE,连接EO′,OB,OP.易证△BEO′≌△BPO(SAS),推出EO′=OP=433,推出点E的运动轨迹是以O′为圆心,433为半径的圆,推出当点E在线段CO′上时,EC的值最小,最小值=CO′−EO′.【详解】(1)如图①,由旋转的性质可知:△BCC′是等边三角形,∴CC′=BC=2,故答案为2.(2)如图②,将△ABP 绕点B 逆时针旋转60°得到△BFE ,连接PF ,EC .由旋转的性质可知:△PBF 是等边三角形,∴PB =PF ,∵PA =EF ,∴PA +PB +PC =PC +PF +EF ,∵PC +PF +EF ≥EC ,∴当P ,F 在直线EC 上时,PA +PB +PC 的值最小,根据旋转以及翻折的性质可得BC =BE =BA =3,∵,30EBF ABP ABP PBC ∠=∠∠+∠=︒,∴90FBP EBF PBC ∠+∠+=︒,∵EB ⊥BC ,∴EC =2BC =32,∴PA +PB +PC 的最小值为32.(3)如图③﹣1中,将△PBQ 绕点B 逆时针旋转60°得到△EBG ,则PQ =EG ,△BQG 是等边三角形,∴BQ =QG ,PQ =EG ,∴PQ +BQ +CQ =EG +GQ +QC ≥EC ,∴EC 的值最小时,QP +QB +QC 的值最小,如图③﹣2中,延长BA 交CD 的延长线于J ,作△ADJ 的外接圆⊙O ,将线段BO ,BP 绕点B 逆时针旋转60°得到线段BO ′,BE ,连接EO ′,OB ,OP .∵,,BO BO BE BP O BE OBP ==∠=∠'',∴△BEO ′≌△BPO (SAS ),∴EO ′=OP ,∵∠APD +∠AJD =180°,∴A ,P ,D ,J 四点共圆,∴OP 43 ∴EO 43, ∴点E 的运动轨迹是以O 43为半径的圆, ∴当点E 在线段CO ′上时,EC 的值最小,最小值=CO ′﹣EO ′,连接OO ′,延长OO ′到R ,使得O ′R =OO ′,连接BR ,则∠OBR =90°,作RH ⊥CB 交CB 的延长线于H ,O ′T ⊥CH 于T ,OM ⊥BC 于M .在Rt △OBM 中,BM =5,OM 113 ∴OB 22OM BM +113 ∴BR 3=14,由△BHR ∽△OMB , ∴RH BM =BR OB, ∴RH =3∵HR ∥O ′T ∥OM ,OO ′=RO ′,∴TM =TH ,∴O ′T =2RH OM +133 ∴BT 22O B O T -''3,∴CO ,∴CO ′﹣EO∴QP +QB +QC 【点睛】 本题属于四边形综合题,考查了旋转变换,全等三角形的判定和性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.6.(1)①见解析;②185;(2)在坐标平面内存在点2,03H ⎛⎫ ⎪⎝⎭或4,H ⎛ ⎝⎭或2H ⎫⎪⎝⎭或2H ⎛⎫+ ⎪⎝⎭使得以点E ,A ,G ,H 为顶点的四边形是菱形. 【解析】【分析】(1)①由折叠的性质可知EF =EC ,∠BEF =∠BEC ,E 是CD 的中点,得到DE =EC =EF ,则∠EDF =∠EFD ,即可证明∠EDF =∠BEC ,得到DF ∥BE ;②过点E 作EG ⊥DF 于G ,先证明△EGD ∽△BCE ,得到DE DG BE CE=,利用勾股定理求出5BE ,由此求解即可;(2)先证明△CDE ≌△AEO 得到AE =CE ,设OE x =,则AE CE OC OE x ==-=,由222AE OE OA =+,得到()2222x x =+,可求得E ⎛ ⎝⎭,AE =求出直线AC的解析式为y =+,设(,G a +,(),H m n ,然后分当AE 是菱形的对角线时,则AG =EG ,当AG 是菱形的对角线时,AE =EG ,当AH 为菱形对角线时,AE =AG ,三种情况进行讨论求解即可.【详解】解:(1)①由折叠的性质可知EF =EC ,∠BEF =∠BEC ,∵E 是CD 的中点,∴DE =EC =EF ,∴∠EDF =∠EFD ,∵∠FEC =∠EDF +∠EFD =∠BEF +∠BEC ,∴∠EDF =∠BEC ,∴DF ∥BE ;②如图所示,过点E 作EG ⊥DF 于G ,∴FD=2DG,∵四边形ABCD是矩形,∴CD=AB=6,∠C=90°,∵∠EGD=∠BCE,∠EDG=∠BEC,∴△EGD∽△BCE,∴DE DG BE CE=,∵E为CD中点,∴132DE CE CD===,∴225 BE BC CE=+=,∴353DG =,∴95 DG=,∴185 DF=;(2)∵2OA=,3OC=∴A(2,0),C(0,23∵四边形OABC是矩形,∴BC=OA,∠ABC=90°,由折叠的性质可知CD=CB=OA,∠CDE=∠AOE=90°,又∵∠CED=∠AEO,∴△CDE≌△AOE(AAS),∴AE=CE,设OE x=,则3AE CE OC OE x==-=,∵222AE OE OA=+,∴()222232x x=+,解得23 x=∴23E⎛⎝⎭,43AE=设直线AC的解析式为y kx b=+,∴20k b b +=⎧⎪⎨=⎪⎩,∴k b ⎧=⎪⎨=⎪⎩, ∴直线AC的解析式为y =+设(,G a +,(),H m n ,∴AGEG =当AE 是菱形的对角线时,则AG =EG ,∴()(222a -++=22a ⎛++ ⎝⎭,解得43a =, 由AE 与HG的中点坐标相同得:0222032a m ++⎧=⎪⎪⎨⎪=⎪⎩ 解得230m n ⎧=⎪⎨⎪=⎩; ∴2,03H ⎛⎫ ⎪⎝⎭当AG 是菱形的对角线时,AE =EG ,22163a ⎛++= ⎝⎭, 解得2a =或0a =(舍去),由AG 与EH的中点坐标相同得2202232m n ++⎧=⎪⎪= 解得4m n =⎧⎪⎨=⎪⎩∴4,H ⎛ ⎝⎭; 当AH 为菱形对角线时,AE =AG ,∴()()221623233a a -+-+=, 解得2323a =±, 由AH 与EG 的中点坐标相同得2022233230322m a a n ++⎧=⎪⎪⎨-++⎪+=⎪⎩, 解得2332323m n ⎧=⎪⎪⎨⎪=-⎪⎩或2332323m n ⎧=-⎪⎪⎨⎪=+⎪⎩; ∴2323,233H ⎛⎫- ⎪⎝⎭或2323,233H ⎛⎫-+ ⎪⎝⎭; ∴综上所述,在坐标平面内存在点2,03H ⎛⎫ ⎪⎝⎭或234,3H ⎛⎫- ⎪⎝⎭或2323,233H ⎛⎫- ⎪⎝⎭或2323,233H ⎛⎫-+ ⎪⎝⎭使得以点E ,A ,G ,H 为顶点的四边形是菱形.【点睛】本题主要考查了坐标与图形,一次函数与几何综合,全等三角形的性质与判定,等腰三角形的性质与判定,平行线的判定,矩形的性质,菱形的性质等等,解题的关键在于能够熟练掌握相关知识进行求解.7.(1)见解析;(2)结论依然成立,理由见解析;(3)见解析【解析】【分析】(1)根据半角旋转模型,把△ABF 逆时针旋转90°,则AB 与AD 重合,设F 对应的点为M ,即可证明AME AFE ≅,得到AEM AEF ∠=∠,再结合AEM EAG ∠=∠,可得AEM AEF ∠=∠,可得EG AG =;(2)结论依然成立,证明方法与(1)一样;(3)又等腰三角形三线合一的性质可得GQ 垂直平分EA ,可得△ANE 是等腰直角三角形,可得A 、D 、E 、N 四点共圆,根据圆周角45NDC EAN ∠=∠=︒【详解】(1)把△ABF 逆时针旋转90°,则AB 与AD 重合,设F 对应的点为M ,∴AMD AFB ≅∴90,,MDA FBA AM AF MAD FAB ∠=∠=︒=∠=∠∴M 、D 、C 三点共线∵45EAF ∠=︒∴45EAD FAB EAD MAD MAE ∠+∠=∠+∠=∠=︒∴()AME AFE SAS ≅∴AEM AEG ∠=∠∵AB ∥CD∴AEM EAG ∠=∠∴AEG EAG ∠=∠∴EG AG =(2)结论依然成立,EG AG =把△ABF 逆时针旋转90°,则AB 与AD 重合,设F 对应的点为M ,∴AMD AFB ≅∴90,,MDA FBA AM AF MAD FAB ∠=∠=︒=∠=∠∴M 、D 、C 三点共线∵45EAF ∠=︒∴45EAD FAB EAD MAD MAE ∠+∠=∠+∠=∠=︒∴()AME AFE SAS ≅∴AEM AEG ∠=∠∵AB ∥CD∴AEM EAG ∠=∠∴AEG EAG ∠=∠∴EG AG =(3)连接EN由(2)得EG AG =∵GQ AE ⊥∴GQ 垂直平分AE∴EN =AN∵45EAF ∠=︒∴90ANE ADE ∠=︒=∠∴A 、D 、E 、N 四点在以AE 为直径的同一个圆上,∴45NDC EAN ∠=∠=︒.【点睛】本题考查半角旋转模型,熟练根据模型做出辅助线是解题的关键.第(3)问根据四点共圆证明是本题的难点.8.(12 ;(2,2);(2)① 在,理由见解析; ②22t +,22t +;(3)存在,(2,2)(6,4)【解析】【分析】(1)作PM ⊥y 轴于M ,PN ⊥OA 于N ,根据全等三角形的判定及性质可得:PMB PNA ≌,PM PN =,BM AN =,再依据正方形的判定及性质即可得出结果;(2)①利用角平分线的判定定理证明OP 平分AOB ∠即可;②由(1)可知:22OM OB OA t =+=+,即可得出点P 的坐标;(3)过点A 作平行于y 轴的直线交过点M 作平行于x 轴的直线于点Q ,连接QB ,由(1)(2)结论可知:2,2t Q t +⎛⎫ ⎪⎝⎭,可得22t QA +=,根据点坐标及勾股定理确定QB 、AB 长度,然后分三种情况讨论三角形为等腰三角形,得出一元二次方程求解即可得.【详解】 解:(1)作PM ⊥y 轴于M ,PN ⊥OA 于N .∵OBC 是等腰直角三角形,2OB =,∴222BC OC OB +=,∴2BC =∵90PMB PNA PNO MON ∠=∠=∠=∠=︒,∴90MPN BPA ∠=∠=︒,四边形PMON 是矩形,∴MPB NPA ∠=∠,∵PBA △是等腰直角三角形,∴PB PA =,在PMB △与PNA 中,PMB PNA MPB NPA PB PA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴PMB PNA ≌,∴PM PN =,BM AN =,∴24OB OA OM BM ON AN OM +=-++==,∴2OM ON ==,∴四边形PMON 是正方形,∴()2,2P ,2,(2,2);(2)①由(1)可知:四边形PMON 是正方形,PM PN =,如图所示,∵PM OB ⊥,PN OA ⊥,∴OP 平分AOB ∠,∵45BOC ∠=︒,∴OC 平分AOB ∠,∴点P 在射线OC 上;②由(1)可知:22OM OB OA t =+=+, ∴22t OM ON +==, ∴22,22t t P ++⎛⎫ ⎪⎝⎭, 故答案为22,22t t ++; (3)如图,过点A 作平行于y 轴的直线交过点M 作平行于x 轴的直线于点Q ,连接QB ,由(1)可知:四边形PMON 是正方形,PM PN =,点()0,2B ,(),0A t ,由(2)可知:22,22t t P ++⎛⎫ ⎪⎝⎭, ∴点2,2t Q t +⎛⎫ ⎪⎝⎭, ∴22t QA +=, 根据勾股定理可得:222252124t QB t t t +⎛⎫=+-=-+ ⎪⎝⎭ 22224AB t t ++①当QA QB =时,即22t += 化简可得:220t t -=,解得:2t =或0=t (题中已给,舍去), ∴222t +=, 故点()2,2Q ;②当QA AB =时,即22t +, 化简可得:234120t t -+=, ()2443120∆=--⨯⨯<,方程无解,故这种情况不存在;③当QB AB =时,= 化简可得:24120t t --=,解得:6t =或2t =-(舍去), ∴242t +=, 故点()6,4Q ;综上可得:点()6,4Q 或()2,2Q .【点睛】题目主要考查等腰直角三角形的性质,全等三角形的判定和性质,正方形的判定和性质角平分线的性质、勾股定理等知识点,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.9.(1)2144y x =-,132y x =-;(2)见解析;(3)1(12)P +,2(13)P 【解析】【分析】(1)将A (4,0),B (0,﹣4)的坐标代入y =ax 2+b ,利用待定系数法得抛物线解析式,再将点E (4,﹣1),C (0,﹣3)的坐标代入y =mx +n 可得问题的答案;(2)设点21,44P t t ⎛⎫- ⎪⎝⎭ ,0<t <4,如图,过点P 作PF ⊥y 轴于点F ,从而得PF 、PD 、PC 、FC 的长度,从而得到答案;(3)设DP 与EC 的交点为G ,设21,44P x x ⎛⎫- ⎪⎝⎭,①当点G 在点P 上方时,根据三角形面积公式可得答案;②当点G 在点P 下方时,根据三角形面积公式可得答案. 【详解】解:(1)将A (4,0),B (0,﹣4)的坐标代入y =ax 2+b ,得1604a b b +=⎧⎨=-⎩,解得,144a b ⎧=⎪⎨⎪=-⎩ ,∴抛物线的解析式为2144y x =-, 设直线CE 为y =mx +n ,将点E (4,﹣1),C (0,﹣3)的坐标代入y =mx +n 得,413m n n +=-⎧⎨=-⎩, 解得,123m n ⎧=⎪⎨⎪=-⎩ ,∴直线CE 的解析式是132y x =-;(2)证明:设点21,44P t t ⎛⎫- ⎪⎝⎭,0<t <4,如图,过点P 作PF ⊥y 轴于点F ,则PF =t ,221143144FC t t =-+=- ,2144PD t =- ,222222111111444PC t t t t ⎛⎫⎛⎫=+-=+=+ ⎪ ⎪⎝⎭⎝⎭ ,所以221114544PC PD t t ⎛⎫⎛⎫+=++-= ⎪ ⎪⎝⎭⎝⎭ 为定值;(3)解:方法一:设DP 与EC 的交点为G ,设21,44P x x ⎛⎫- ⎪⎝⎭,①如图,当点G 在点P 上方时,()2211115434122422PEC S x x x ⎡⎤⎛⎫⎛⎫=⨯⨯---=--+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦△ ,∵S △PEC =1 , ∴()2151122x --+=, 解得:113x =+ ,213x =- (负根舍去), ∴()213134342y =+-=- ,即1313,32P ⎛⎫=+- ⎪ ⎪⎝⎭, ②如图,当点G 在点P 下方时,()2211115443124222PEC S x x x ⎡⎤⎛⎫⎛⎫=⨯⨯---=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦△,∵S △PEC =1, ∴()2151122x --= , 解得:317x =,417x =(负根舍去),∴()217174242y =⨯+-=-,即2717,22P ⎛⎫+- ⎪ ⎪⎝⎭, 综上所述,满足条件的点有1313,32P ⎛⎫=+- ⎪ ⎪⎝⎭,2717,22P ⎛⎫+- ⎪ ⎪⎝⎭. 方法二:如图,分别过点P ,E 作PF ⊥CE ,EH ⊥y 轴,垂足为F ,H ,PD 交CE 于点G ,在Rt △EHC 中,EH =4,HC =2, ∴2225CE EH HC +=, ∵S △PEC =1, ∴12CE PF =1, 即5PF =, ∵PF ⊥CE ,PG ⊥EH , ∴△PFG ∽△CHE , ∴PG ECPF EH= , 255= , 解得12PG =, ∴过点P 与直线CE 平行,且与直线CE 5的直线有两条:1522y x =- 或1722y x =- ,依题意得:21441522y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得:1x =(负根舍去),∴1x =+2y =- ,∴112P ⎛⎫ ⎪ ⎪⎝⎭, 21441722y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得:1x =∴1x =+3y = ,∴2(13)P +,综上所述,满足条件的点有1(12)P +,2(13)P +-. 【点睛】此题考查的是二次函数综合题目,掌握待定系数法求解析式、由坐标得线段长度、相似三角形的判定与性质是解决此题关键.10.(1)①见解析;②5m =;(2)m的值为6;(3)CE =【解析】 【分析】(1)①连接DE ,证明ADC ∆是等腰三角形,根据“三线合一”的性质可得ADE CDE ∠=∠,证得EC EF =,从而可得结论;②根据勾股定理得到AC =,由E 为AC 中点得EC =DEC CBA ,由相似三角形的性质列出比例式,求出m 的值即可;(2)分PF //AC 和PF //BC 两种情况求解即可; (3)设CE =x ,作PG ⊥AC ,则2xGE =,AE x = 证明PGE EAP '≅得AP GE '=,再证明AP E BAC ',列比例式求出x 的值即可.【详解】解:(1)如图,连接DE∵CD是圆P的直径,∴∠DEC=90°,即DE⊥AC∵E为CA中点∴AE=CE∴AD=CD∴ADE CDE∠=∠∴EC EF=∴E是CF的中点;②在Rt△ABC中,∠B=90°,AB=4,BC=8,∴22224845AC AB BC=+=+=∵E是AC的中点∴114525 22EC AC==⨯=∵AB//CD,90B∠=︒∴90B DCB∠+∠=︒∴90DCB∠=︒,即90DCE BCA∠+∠=︒∵90CDE DCE∠+∠=︒∴CDE BCA∠=∠又90B DEC∠=∠=︒∴DEC CBA∆∆∽∴CE DCAB AC=,即252=445m解得,5m=;(2)分两种情况:①当PF//AC时,如图,则有PDF CDA∆∆∴PF PDAC CD =,即245PF m m=∴25=PF ∴25m =②当PF //BC 时,如图,过点A 作AH ⊥DC ,垂足为H ,则四边形AHCB 是矩形, ∴AH //BC ,HC =AB =4,AH =BC =8 ∴PF //AH ∵90DCB ∠=︒ ∴90FPD ∠=︒ ∴45PDF PFD ∠=∠=︒ ∴45HAD HDA ∠=∠=︒ ∴DH =AH ,即248m -= 解得,6m =综上,m 的值为25或6;(3)过点P 作PG AC ⊥于点G ,如图,∵PE =PC∴1,2GE CE EPG CPG =∠=∠∵90PEP '∠=︒ ∴90P EA PEG '∠+∠=︒ 又90PEG GPE ∠+∠=︒ ∴P EA EPG '∠=∠又90P AE PGE '∠=∠=︒,PE P E '= ∴P AE EPG '∆≅∆ ∴AP GE '=设CE x =,则,2x AE x GE AP '===∵90,90BCA DCA GPC PCH ∠+∠=︒∠+∠=︒ ∴GPC BCA ∠=∠ ∴EPG BCP ∠=∠ ∴P EA BCA '∠=∠ 又90P AE B '∠=∠=︒ ∴AP EBAC '∆∆∴AP ABAE BC'=48x=∴x =CE =【点睛】本题主要考查了全等三角形的判定与性质,圆的基本概念,相似三角形的判定与性质,正确作出辅助线以及进行分类讨论是解答本题的关键.11.(1)1,3;(2)①4;D (0,1);②存在这样的D 使△DEG 与△ACH相似,坐标为1⎛ ⎝ 【解析】 【分析】(1)将A (-2,0),C (4,3)代入抛物线方程214y x bx c =-++得b 与c 的值即可;(2)①过D 作EF 垂线交FE 延长线于P ,过C 作CH LAB 于H ,从而求出EP =1,DP =2,再求出直线AC 的函数关系式,D (x ,12x +1),则E (x +2,12x +2),G (x ,2134x x -++),F (x +2,()()212234x x -++++),最后列出关于四边形DEFG 的面积的关系式,再求其最大值;②分∠DGE =∠CAH 及∠GDE =∠CAH 两种情况进行讨论,设1,12D m m ⎛+⎫ ⎪⎝⎭,则21,34G m m m ⎛⎫-++ ⎪⎝⎭,根据三角函数值求出GD 的长,令其等于用坐标表示的GD 长,解方程求出满足要求的解即可,进而可得坐标. (1)将A (-2, 0),C (4, 3)代入抛物线方程214y x bx c =-++得:()221443412204b c b c ⎧-⨯++=⎪⎪⎨⎪-⨯--+=⎪⎩, 解得:13b c =⎧⎨=⎩,故答案为 1,3; (2)①解:如图,过D 作EF 垂线交FE 延长线于P ,过C 作CH ⊥AB 于H则DP AB ∥,∠EDP = ∠CAH ,且CH =3,AH =4+2=6, 故tan ∠EDP =tan ∠CAH =CH :AH =12,又DE 5 ∴EP =1,DP =2设直线AC 方程y =kx +a ,将A ,C 坐标代入得:2043k a k a -+=⎧⎨+=⎩,解得112a k =⎧⎪⎨=⎪⎩,设D (x ,12x +1),则E (x +2,12x +2),G (x ,2134x x -++),F (x +2,()()212234x x -++++), ∴1S S S ()2DEFG DPFG DEP DP GD FP EP =-=+- 22111131(2)(2)324242x x x x x x ⎛⎫⎛⎫=-++-+-++++-+ ⎪ ⎪⎝⎭⎝⎭ 2142x =-+ 故当x =0时,四边形面积最大为4,此时D (0,1); ②解:由题意知,DG CH ∥ ∴GDE ACH ∠=∠ ∵6AH =,3CH = ∴2235AC AH CH +∴sinCH CAH AC ∠==1tan 2CH CAH AH ∠== 由题意知△DEG 与△ACH 相似分两种情况求解: 情况一:90DGE ∠=︒时,DEG CAH ∽ ∴1tan tan 2DG DEG CAH GE ∠==∠= ∴2GE DG =∵DE 解得1DG =设1,12D m m ⎛+⎫ ⎪⎝⎭,则21,34G m m m ⎛⎫-++ ⎪⎝⎭∴21131142m m m -++--=整理得2240m m --=∴m =解得11m =21m =当1m =(1112y =⨯+=∴1D ⎛ ⎝⎭; 情况二:90DEG ∠=︒时,DGE CAH ∽ ∴sin sinDE DGE CAH DG ∠==∠=∴5DG =∴21131542m m m -++--=整理得22120m m -+= ∵()224120=--⨯< ∴方程无解,此时不存在;综上所述,存在这样的D 使△DEG 与△ACH 相似,坐标为1⎛ ⎝⎭. 【点睛】本题考查了二次函数综合,二次函数与几何图形面积问题及二次函数与相似相结合问题,勾股定理,三角函数值等知识.解题的关键在于熟练掌握二次函数的性质及几何图形有关性质.12.(1)(2)ACP △为直角三角形,理由见解析 (3)存在,点M 的坐标为或【解析】 【分析】(1)根据一次函数的解析式可求得()5,0B ,,再把这两点的坐标分别代入二次函数解析式,即可求得; (2) 抛物线的对称轴为直线3x =,可分别求得点A 、C 、P 的坐标,分别求得、、,根据勾股定理的逆定理即可证得;(3)分点M 在PA 左边和右边两种情况分别计算,根据两点间距离公式及等腰三角形判定与性质即可分别求得. (1) 解:由,得点B 的坐标为,点C 的坐标为.把()5,0B ,代入抛物线,得,解得1a =-,,∴抛物线的解析式为;(2)解:ACP △为直角三角形. 理由如下: 抛物线的对称轴为直线3x =, 当3x =时,, ∴点P 的坐标为,当0y =时,,得1x =或5,∴点A 的坐标为.∵, ∴. 同理,,,∴, ∴ACP △为直角三角形;(3)解:存在点M ,使AM 与直线BC 的夹角等于ACB ∠的2倍. 分两种情况:①点M 在PA 左边时,如图, ∵,,∴,∴,M在直线上,∵点1M的坐标为.设点1根据题意,得,,∴,解得,M的坐标为.∴点1②点M在PA右边时,如图,此时,∴,∵,∴点P是的中点∵,,∴.综上所述,点M的坐标为或.【点睛】本题考查了利用待定系数法求二次函数的解析式,两点间距离公式,勾股定理的逆定理,解决(3)的关键是分两种情况分别计算13.(1)(2)E(23,53)(3)(﹣2,1)或(﹣2,3)或(﹣2,9)【解析】【分析】(1)由矩形的性质及已知,易得点A的坐标,把A、B两点的坐标代入解析式中可得关于b、c的方程组,解方程组即可;(2)设E(m,﹣34m2﹣32m+3),由题意易得BD、AB的长,则可把△BDE、△ABE的面积表示出来,由S△BDE=4S△ABE得关于m的方程,解方程即可;(3)用待定系数法可求得直线DE的解析式;分三种情况:当P、B重合时,易得△APQ 是等腰直角三角形,从而问题解决;当点P在线段DB的延长线,且AP⊥AQ时,过点Q 作QM⊥AB交BA的延长线于点M,易证△PAB∽△AQM,设P(﹣2,t),由相似三角形的性质可得关于t的方程,解方程即可求得t;当PQ⊥AQ时,易得AP∥DE,则可求得直线AP的解析式,易得点P的坐标.(1)∵B(﹣2,3),矩形OABC,∴A(0,3),∵抛物线y=﹣34x2+bx+c经过点A和点B,∴,∴,∴y=﹣34x2﹣32x+3;(2)∵D(﹣2,﹣1),∴BD=4,设E(m,﹣34m2﹣32m+3),∴S△BDE=12×4×(m+2)=2(m+2),∵AB=2,∴,∵S△BDE=4S△ABE,∴2(m+2)=4(),。
中考数学压轴题100题精选【含答案】【001】如图,已知抛物线2(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【002】如图16,在Rt △ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由;(4)当DE经过点C 时,请直接写出t的值.【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值。
精品基础教育教学资料,仅供参考,需要可下载使用!一.解答题(共30小题)1.(顺义区)如图,直线l1:y=kx+b平行于直线y=x﹣1,且与直线l2:相交于点P(﹣1,0).(1)求直线l1、l2的解析式;(2)直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动,…照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,…,B n,A n,…①求点B1,B2,A1,A2的坐标;②请你通过归纳得出点A n、B n的坐标;并求当动点C到达A n处时,运动的总路径的长?2.(莆田)如图1,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D在边OC上且OD=.(1)求直线AC的解析式;(2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得△DMC为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3)抛物线y=﹣x2经过怎样平移,才能使得平移后的抛物线过点D和点E(点E在y轴的正半轴上),且△ODE沿DE折叠后点O落在边AB上O′处.3.(资阳)已知Z市某种生活必需品的年需求量y1(万件)、供应量y2(万件)与价格x (元/件)在一定范围内分别近似满足下列函数关系式:y1=﹣4x+190,y2=5x﹣170.当y1=y2时,称该商品的价格为稳定价格,需求量为稳定需求量;当y1<y2时,称该商品的供求关系为供过于求;当y1>y2时,称该商品的供求关系为供不应求.(1)求该商品的稳定价格和稳定需求量;(2)当价格为45(元/件)时,该商品的供求关系如何?为什么?4.(哈尔滨)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.5.(桂林)如图已知直线L:y=x+3,它与x轴、y轴的交点分别为A、B两点.(1)求点A、点B的坐标.(2)设F为x轴上一动点,用尺规作图作出⊙P,使⊙P经过点B且与x轴相切于点F(不写作法,保留作图痕迹).(3)设(2)中所作的⊙P的圆心坐标为P(x,y),求y关于x的函数关系式.(4)是否存在这样的⊙P,既与x轴相切又与直线L相切于点B?若存在,求出圆心P的坐标;若不存在,请说明理由.6.(防城港)如图,在平面直角坐标系,直线y=﹣(x﹣6)与x轴、y轴分别相交于A、D两点,点B在y轴上,现将△AOB沿AB翻折180°,使点O刚好落在直线AD的点C处.(1)求BD的长;(2)设点N是线段AD上的一个动点(与点A、D不重合),S△NBD=S1,S△NOA=S2,当点N运动到什么位置时,S1•S2的值最大,并求出此时点N的坐标;(3)在y轴上是否存在点M,使△MAC为直角三角形?若存在,请写出所有符合条件的点M的坐标,并选择一个写出其求解过程;若不存在,简述理由.7.(大兴安岭)直线y=kx+b(k≠0)与坐标轴分别交于A、B两点,OA、OB的长分别是方程x2﹣14x+48=0的两根(OA>OB),动点P从O点出发,沿路线O⇒B⇒A以每秒1个单位长度的速度运动,到达A点时运动停止.(1)直接写出A、B两点的坐标;(2)设点P的运动时间为t(秒),△OPA的面积为S,求S与t之间的函数关系式(不必写出自变量的取值范围);(3)当S=12时,直接写出点P的坐标,此时,在坐标轴上是否存在点M,使以O、A、P、M为顶点的四边形是梯形?若存在,请直接写出点M的坐标;若不存在,请说明理由.8.(云南)如图,在直角坐标系中,半圆直径为OC,半圆圆心D的坐标为(0,2),四边形OABC是矩形,点A的坐标为(6,0).(1)若过点P(2,0)且与半圆D相切于点F的切线分别与y轴和BC边交于点H与点E,求切线PF所在直线的解析式;(2)若过点A和点B的切线分别与半圆相切于点P1和P2(点P1、P2与点O、C不重合),请求P1、P2点的坐标并说明理由.(注:第(2)问可利用备用图作答).9.(厦门)如图,在直角梯形OABD中,DB∥OA,∠OAB=90°,点O为坐标原点,点A 在x轴的正半轴上,对角线OB,AD相交于点M.OA=2,AB=2,BM:MO=1:2.(1)求OB和OM的值;(2)求直线OD所对应的函数关系式;(3)已知点P在线段OB上(P不与点O,B重合),经过点A和点P的直线交梯形OABD 的边于点E(E异于点A),设OP=t,梯形OABD被夹在∠OAE内的部分的面积为S,求S关于t的函数关系式.10.(天门)如图①,在平面直角坐标系中,A点坐标为(3,0),B点坐标为(0,4).动点M从点O出发,沿OA方向以每秒1个单位长度的速度向终点A运动;同时,动点N从点A出发沿AB方向以每秒个单位长度的速度向终点B运动.设运动了x秒.(1)点N的坐标为(_________,_________);(用含x的代数式表示)(2)当x为何值时,△AMN为等腰三角形;(3)如图②,连接ON得△OMN,△OMN可能为正三角形吗?若不能,点M的运动速度不变,试改变点N的运动速度,使△OMN为正三角形,并求出点N的运动速度.11.(乐山)如图,在平面直角坐标系中,△ABC的边AB在x轴上,且OA>OB,以AB 为直径的圆过点C.若点C的坐标为(0,2),AB=5,A,B两点的横坐标x A,x B是关于x的方程x2﹣(m+2)x+n﹣1=0的两根.(1)求m,n的值;(2)若∠ACB平分线所在的直线l交x轴于点D,试求直线l对应的一次函数解析式;(3)过点D任作一直线l′分别交射线CA,CB(点C除外)于点M,N.则的是否为定值?若是,求出该定值;若不是,请说明理由.12.(黄冈)已知:如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A,B,C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC 的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为t秒.(1)求直线BC的解析式;(2)若动点P在线段OA上移动,当t为何值时,四边形OPDC的面积是梯形COAB面积的;(3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S与t的函数关系式,并指出自变量t的取值范围;(4)试探究:当动点P在线段AB上移动时,能否在线段OA上找到一点Q,使四边形CQPD 为矩形?并求出此时动点P的坐标.13.(遵义)如图,已知一次函数的图象与x轴,y轴分别相交于A,B两点,点C在AB上以每秒1个单位的速度从点B向点A运动,同时点D在线段AO上以同样的速度从点A向点O运动,运动时间用t(单位:秒)表示.(1)求AB的长;(2)当t为何值时,△ACD与△AOB相似并直接写出此时点C的坐标;(3)△ACD的面积是否有最大值?若有,此时t为何值;若没有,请说明理由.14.(株洲)已知Rt△ABC,∠ACB=90°,AC=4,BC=3,CD⊥AB于点D,以D为坐标原点,CD所在直线为y轴建立如图所示平面直角坐标系.(1)求A,B,C三点的坐标;(2)若⊙O1,⊙O2分别为△ACD,△BCD的内切圆,求直线O1O2的解析式;(3)若直线O1O2分别交AC,BC于点M,N,判断CM与CN的大小关系,并证明你的结论.15.(镇江)探索、研究:下图是按照一定的规律画出的一列“树型”图,下表的n表示“树型”图的序号,a n表示第n个“树型”图中“树枝”的个数.图:表:n 1 2 3 4 …a n 1 3 7 15 …(1)根据“图”、“表”可以归纳出a n关于n的关系式为_________.若直线l1经过点(a1,a2)、(a2,a3),求直线l1对应的函数关系式,并说明对任意的正整数n,点(a n,a n+1)都在直线l1上.(2)设直线l2:y=﹣x+4与x轴相交于点A,与直线l1相交于点M,双曲线y=(x>0)经过点M,且与直线l2相交于另一点N.①求点N的坐标,并在如图所示的直角坐标系中画出双曲线及直线l1、l2.②设H为双曲线在点M、N之间的部分(不包括点M、N),P为H上一个动点,点P的横坐标为t,直线MP与x轴相交于点Q,当t为何值时,△MQA的面积等于△PMA的面积的2倍又是否存在t的值,使得△PMA的面积等于1?若存在,求出t的值;若不存在,请说明理由.③在y轴上是否存在点G,使得△GMN的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.16.(咸宁)如图,在平面直角坐标系xoy中,已知矩形ABCD的边AB、AD分别在x轴、y轴上,点A与坐标原点重合,且AB=2,AD=1.操作:将矩形ABCD折叠,使点A落在边DC上.探究:(1)我们发现折痕所在的直线与矩形的两边一定相交,那么相交的情形有几种请你画出每种情形的图形;(只要用矩形草稿纸动手折一折你会有发现的!)(2)当折痕所在的直线与矩形的边OD相交于点E,与边OB相交于点F时,设直线的解析式为y=kx+b.①求b与k的函数关系式;②求折痕EF的长(用含k的代数式表示),并写出k的取值范围.17.(厦门)已知点P(m,n)(m>0)在直线y=x+b(0<b<3)上,点A、B在x轴上(点A在点B的左边),线段AB的长度为b,设△PAB的面积为S,且S=b2+b.(1)若b=,求S的值;(2)若S=4,求n的值;(3)若直线y=x+b(0<b<3)与y轴交于点C,△PAB是等腰三角形,当CA∥PB时,求b的值.18.(乌鲁木齐)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,6),点B坐标为,BC∥y轴且与x轴交于点C,直线OB与直线AC相交于点P.(1)求点P的坐标;(2)若以点O为圆心,OP的长为半径作⊙O(如图2),求证:直线AC与⊙O相切于点P;(3)过点B作BD∥x轴与y轴相交于点D,以点O为圆心,r为半径作⊙O,使点D在⊙O 内,点C在⊙O外;以点B为圆心,R为半径作⊙B,若⊙O与⊙B相切,试分别求出r,R 的取值范围.19.(随州)如图,直角梯形ABCD的腰BC所在直线的解析式为y=﹣x﹣6,点A 与坐标原点O重合,点D的坐标为(0,﹣4),将直角梯形ABCD绕点O顺时针旋转180°,得到直角梯形OEFG(如图1).(1)直接写出E,F两点的坐标及直角梯形OEFG的腰EF所在直线的解析式;(2)将图1中的直角梯形ABCD先沿x轴向右平移到点A与点E重合的位置,再让直角顶点A紧贴着EF,向上平移直角梯形ABCD(即梯形ABCD向上移动时,总保持着AB∥FG),当点A与点F重合时,梯形ABCD停止移动.观察得知:在梯形ABCD移动过程中,其腰BC始终经过坐标原点O.(如图2)①设点A的坐标为(a,b),梯形ABCD与梯形OEFG重合部分的面积为S,试求a与何值时,S的值恰好等于梯形OEFG面积的;②当点A在EF上滑动时,设AD与x轴的交点为M,试问:在y轴上是否存在点P,使得△PAM是底角为30°的等腰三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.(利用图3进行探索)20.(邵阳)如图,直线y=﹣x+2与x轴,y轴分别相交于点A,B.将△AOB绕点O 按顺时针方向旋转α角(0°<α≤360°),可得△COD.(1)求点A,B的坐标;(2)当点D落在直线AB上时,直线CD与OA相交于点E,△COD和△AOB的重叠部分为△ODE(图①).求证:△ODE∽△ABO;(3)除了(2)中的情况外,是否还存在△COD和△AOB的重叠部分与△AOB相似,若存在,请指出旋转角α的度数;若不存在,请说明理由;(4)当α=30°时(图②),CD与OA,AB分别相交于点P,M,OD与AB相交于点N,试求△COD与△AOB的重叠部分(即四边形OPMN)的面积.21.(韶关)如图,在平面直角坐标系中,四边形OABC是矩形,OA=4,AB=2,直线与坐标轴交于D、E.设M是AB的中点,P是线段DE上的动点.(1)求M、D两点的坐标;(2)当P在什么位置时,PA=PB求出此时P点的坐标;(3)过P作PH⊥BC,垂足为H,当以PM为直径的⊙F与BC相切于点N时,求梯形PMBH 的面积.22.(衢州)如图,点B1(1,y1),B2(2,y2),B3(3,y3)…,B n(n,y n)(n是正整数)依次为一次函数y=x+的图象上的点,点A1(x1,0),A2(x2,0),A3(x3,0),…,A n(x n,0)(n是正整数)依次是x轴正半轴上的点,已知x1=a(0<a<1),△A1B1A2,△A2B2A3,△A3B3A4…△A n B n A n+1分别是以B1,B2,B3,…,B n为顶点的等腰三角形.(1)写出B2,B n两点的坐标;(2)求x2,x3(用含a的代数式表示);分析图形中各等腰三角形底边长度之间的关系,写出你认为成立的两个结论;(3)当a(0<a<1)变化时,在上述所有的等腰三角形中,是否存在直角三角形?若存在,求出相应的a的值;若不存在,请说明理由.23.(黔东南州)某商厦试销一种成本为50元/件的商品,规定试销时的销售单价不低于成本,又不高于80元/件,试销中销售量y(件)与销售单价x(元/件)的关系可近似的看作一次函数(如图).(1)求y与x的关系式;(2)设商厦获得的毛利润(毛利润=销售额﹣成本)为s(元),则销售单价定为多少时,该商厦获利最大,最大利润是多少?此时的销售量是多少件?24.(牡丹江)如图,在平面直角坐标系中,已知点A(﹣3,6),点B,点C分别在x轴的负半轴和正半轴上,OB,OC的长分别是方程x2﹣4x+3=0的两根(OB<OC).(1)求B,C两点的坐标;(2)在坐标平面内是否存在点Q和点P(点P在直线AC上),使以O、P、C、Q为顶点的四边形是正方形?若存在,请直接写出Q点的坐标;若不存在,请说明理由;(3)若平面内有M(1,﹣2),D为线段OC上一点,且满足∠DMC=∠BAC,∠MCD=45°,求直线AD的解析式.25.(梅州)如图,直角梯形ABCD中,AB∥CD,∠A=90°,AB=6,AD=4,DC=3,动点P从点A出发,沿A→D→C→B方向移动,动点Q从点A出发,在AB边上移动.设点P移动的路程为x,点Q移动的路程为y,线段PQ平分梯形ABCD的周长.(1)求y与x的函数关系式,并求出x,y的取值范围;(2)当PQ∥AC时,求x,y的值;(3)当P不在BC边上时,线段PQ能否平分梯形ABCD的面积?若能,求出此时x的值;若不能,说明理由.26.(聊城)某市为了进一步改善居民的生活环境,园林处决定增加公园A和公园B的绿化面积.已知公园A,B分别有如图1,图2所示的阴影部分需铺设草坪,在甲、乙两地分别有同种草皮1608m2和1200m2出售,且售价一样.若园林处向甲、乙两地购买草皮,其路程和运费单价见下表:公园A 公园B路程(千米)运费单价(元)路程(千米)运费单价(元)甲地30 0.25 32 0.25乙地22 0.3 30 0.3(注:运费单价指将每平方米草皮运送1千米所需的人民币)(1)分别求出公园A,B需铺设草坪的面积;(结果精确到1m2)(2)请设计出总运费最省的草皮运送方案,并说明理由.27.(佳木斯)如图,在平面直角坐标系中,已知点A(﹣3,6),点B,点C分别在x轴的负半轴和正半轴上,OB,OC的长分别是方程x2﹣4x+3=0的两根(OB<OC).(1)求点B,点C的坐标;(2)若平面内有M(1,﹣2),D为线段OC上一点,且满足∠DMC=∠BAC,求直线MD 的解析式;(3)在坐标平面内是否存在点Q和点P(点P在直线AC上),使以O,P,C,Q为顶点的四边形是正方形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.28.(济南)已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D 的坐标;(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.29.(黑龙江)如图,点A为x轴负半轴上一点,点B为x轴正半轴上一点,OA,OB(OA <OB)的长分别是关于x的一元二次方程x2﹣4mx+m2+2=0的两根,C(0,3),且S△ABC=6 (1)求∠ABC的度数;(2)过点C作CD⊥AC交x轴于点D,求点D的坐标;(3)在第(2)问的条件下,y轴上是否存在点P,使∠PBA=∠ACB?若存在,请直接写出直线PD的解析式;若不存在,请说明理由.30.(哈尔滨)如图,梯形ABCD在平面直角坐标系中,上底AD平行于x轴,下底BC 交y轴于点E,点C(4,﹣2),点D(1,2),BC=9,sin∠ABC=.(1)求直线AB的解析式;(2)若点H的坐标为(﹣1,﹣1),动点G从B出发,以1个单位/秒的速度沿着BC边向C点运动(点G可以与点B或点C重合),求△HGE的面积S(S≠0)随动点G的运动时间t′秒变化的函数关系式(写出自变量t′的取值范围);(3)在(2)的条件下,当秒时,点G停止运动,此时直线GH与y轴交于点N.另一动点P开始从B出发,以1个单位/秒的速度沿着梯形的各边运动一周,即由B到A,然后由A到D,再由D到C,最后由C回到B(点P可以与梯形的各顶点重合).设动点P 的运动时间为t秒,点M为直线HE上任意一点(点M不与点H重合),在点P的整个运动过程中,求出所有能使∠PHM与∠HNE相等的t的值.答案与评分标准一.解答题(共30小题)1.(顺义区)如图,直线l1:y=kx+b平行于直线y=x﹣1,且与直线l2:相交于点P(﹣1,0).(1)求直线l1、l2的解析式;(2)直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动,…照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,…,B n,A n,…①求点B1,B2,A1,A2的坐标;②请你通过归纳得出点A n、B n的坐标;并求当动点C到达A n处时,运动的总路径的长?考点:一次函数综合题。