六年级奥数题 (5)
- 格式:doc
- 大小:141.50 KB
- 文档页数:6
小学六年级奥数题(六篇)1、哥哥今年18岁,弟弟今年12岁。
当两人的年龄和是40岁时,兄弟两人各多少岁?2、甲、乙、丙三人各有若干本故事书,甲拿出自己的一部分书给乙、丙,例乙、丙两人的书增加一倍,乙拿出一部分书给甲、丙,使甲、丙两人的书增加一倍,丙也拿出一部分书给甲、乙,使甲、乙两人的书也增加一倍,这时甲、乙、丙三人的书都是16本。
甲、乙、丙原来各有多少本故事书?3、有一只水桶装满了8千克水,如果把这桶水平均分装在两只水桶内,两只水桶分别可装5千克与3千克。
最少需要倒多少次?4、甲、乙、丙三校在体育用品商店买了不同数目的足球,共48个。
第一次从甲校的足球中拿出与乙校个数相同的足球并入乙校;第二次再从乙校现有的足球中拿出与丙校个数相同的足球并入丙校;第三次又从丙校现有的'足球中拿出与这时甲校个数相同的足球并入甲校。
经过这样的变动后,三校足球的个数正好相等。
已知每个足球的售价是12元,问三校原来买的足球各值多少元?5、甲、乙两个油桶各装了15千克油,售货员卖了14千克。
后来,售货员从剩下较多油的甲桶倒一部分给乙桶,使乙桶的油增加一倍;然后又从乙桶倒一部分给甲桶,使甲桶的油也增加一倍;这时甲桶的油恰好是乙桶油的3倍。
问售货员从两个油桶里各卖了多少千克油?【篇二】小学六年级奥数题1、求下列时刻的时针与分针所形成的角的度数。
(1)9点整(2)2点整(3)5点30分(4)10点20分(5)7点36分2、从时针指向4点开始,再经过多少分钟,时针正好与分针重合?3、某人下午6点多外出时,看手表上两指针的夹角为1100,下午7点前回家时发现两指针夹角仍为1100,问:他外出多长时间?4、一点到两点之间,分针与时针在什么时候成直角?5、在3点至4点之间的什么时刻,钟表的时针和分针分别相互重合和相互垂直。
【篇三】小学六年级奥数题1、小明和小英各自在公路上往返于甲、乙两地。
设开始时他们分别从两地相向而行,若在距离甲地3千米处他们第一次相遇,第二次相遇的地点在距离乙地2千米处,则甲、乙两地的距离为多少千米?2、一列客车和货车从甲同时同向出发开往乙地,货车速度是80千米/时,经过1小时两车在丙地相遇,两车到达了两端后都立即返回,第二次相遇的地点也在丙地。
小学六年级奥数题100道及答案_小学六年级奥数练习题及答案【五篇】【第一篇:桥长】一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?求解:火车过桥所用的时间就是2分后5秒=125秒,共行的路程就是(8×125)米,这段路程就是(200米+桥长),所以,桥长为8×125-200=800(米)请问:大桥的长度就是800米。
【第二篇:列车长】一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开到桥至车尾返回桥共须要3分钟。
这列于火车短多少米?解:火车3分钟所行的路程,就是桥长与火车车身长度的和。
(1)火车3分钟行多少米?900×3=2700(米)(2)这列火车长多少米?2700-2400=300(米)highcut综合算式900×3-2400=300(米)答:这列火车长300米。
【第三篇:街道长度】甲、乙、丙三人步行的速度分别是:每分钟甲走90米,乙走75米,丙走60米。
甲、丙从某长街的西头、乙从该长街的东头同时出发相向而行,甲、乙相遇后恰好4分钟乙、丙相遇,那麽这条长街的长度是多少米?答案与解析:甲、乙碰面后4分钟乙、丙碰面,表明甲、乙碰面时乙、丙还差4分钟的路程,即为还差4×(75+60)=540米;而这540米也就是甲、乙碰面时间里甲、丙的路程高,所以甲、乙碰面=540÷(90-60)=18分钟,所以长街短=18×(90+75)=2970米。
【第四篇:相遇次数】甲,乙两人在一条长100米的直路上往复跑步,甲的速度3米/秒,乙的速度2米/秒。
如果他们同时分别从直路的两端启程,当他们走了10分钟后,共碰面多少次?答案与解析:10分钟两人共跑了(3+2)×60×10=3000米3000÷100=30个全程。
我们知道两人同时从两地相向而行,他们总是在奇数个全程时相遇(不包括追上)1、3、5、7。
六年级奥数题及答案.题目一:数字问题小明在计算一个数加上5,再减去3,最后乘以4的结果时,得到了48。
请问这个数是多少?解答:设这个数为x。
根据题意,我们有:4x = 48x = 48 ÷ 4x = 12所以这个数是12。
题目二:几何问题一个长方形的长是宽的两倍,如果将这个长方形的长和宽都增加5厘米,那么面积增加了85平方厘米。
求原来长方形的长和宽。
解答:设原来长方形的宽为w,那么长为2w。
根据题意,我们有:(2w + 5)(w + 5) - 2w * w = 852w^2 + 5w + 10w + 25 - 2w^2 = 8515w + 25 = 8515w = 60w = 4所以原来的宽是4厘米,长是2 * 4 = 8厘米。
题目三:逻辑问题有5个盒子,每个盒子里分别装有1个、2个、3个、8个和13个乒乓球。
现在需要将这些盒子重新组合,使得每个盒子里的乒乓球数都是奇数,且每个盒子里的乒乓球数都不相同。
请问如何组合?解答:首先,我们知道奇数加奇数等于偶数,奇数加偶数等于奇数。
由于1、3、8、13都是奇数,2是偶数,我们需要将2个乒乓球与另一个奇数组合,以保持总数为奇数。
我们可以尝试以下组合:- 第一个盒子:1个乒乓球(奇数)- 第二个盒子:2 + 3 = 5个乒乓球(奇数)- 第三个盒子:8个乒乓球(奇数)- 第四个盒子:13个乒乓球(奇数)这样每个盒子里的乒乓球数都是奇数,并且各不相同。
题目四:时间问题小华从家到学校需要30分钟,如果他加快速度,每分钟走的距离增加25%,那么他需要多少时间到达学校?解答:设原来每分钟走的距离为d,那么30分钟内走的总距离为30d。
加快速度后,每分钟走的距离为1.25d。
由于总距离不变,我们有:30d = 时间 * 1.25d解这个方程,我们得到:时间 = 30 / 1.25时间 = 24分钟所以,加快速度后,小华需要24分钟到达学校。
题目五:比例问题一个班级有男生和女生,男生人数是女生人数的1.5倍。
六年级奥数题及答案20道题【题-001】抽屉原理有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的.【题-002】牛吃草:(中等难度)一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?【题-003】奇偶性应用:(中等难度)桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下.【题-004】整除问题:(中等难度)用一个自然数去除另一个整数,商40,余数是16.被除数.除数.商数与余数的和是933,求被除数和除数各是多少?【题-005】填数字:(中等难度)请在下图的每个空格内填入1至8中的一个数字,使每行.每列.每条对角线上8个数字都互不相同.【题-006】灌水问题:(中等难度)公园水池每周需换一次水.水池有甲.乙.丙三根进水管.第一周小李按甲.乙.丙.甲.乙.丙……的顺序轮流打开小1时,恰好在打开某根进水管1小时后灌满空水池.第二周他按乙.丙.甲.乙.丙.甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙.乙.甲.丙.乙.甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.【题-007】浓度问题:(中等难度)瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的A.B两种酒精溶液,瓶中的浓度变成了14%.已知A种酒精溶液浓度是B种酒精溶液浓度的2倍,那么A种酒精溶液的浓度是百分之几?【题-008】水和牛奶:(中等难度)一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体,而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶,而在结束时,每个桶里又有多少水和牛奶?【题-009】巧算:(中等难度)计算:【题-010】队形:(中等难度)做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人.问:原有多少人?【题-011】计算:(中等难度)一个自然数,如果它的奇数位上各数字之和与偶数位上各数字之和的差是11的倍数,那么这个自然数是11的倍数,例如1001,因为1+0=0+1,所以它是11的倍数;又如1234,因为4+2-(3+1)=2不是11的倍数,所以1234不是11的倍数.问:用0.1.2.3.4.5这6个数字排成不含重复数字的六位数,其中有几个是11的倍数?【题-012】分数:(中等难度)某学校的若干学生在一次数学考试中所得分数之和是8250分.第一.二.三名的成绩是88.85.80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?某个四位数有如下特点:①这个数加1之后是15的倍数;②这个数减去3是38的倍数;③把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除,求这个四位数.【题-014】行程:(中等难度)王强骑自行车上班,以均匀速度行驶.他观察来往的公共汽车,发现每隔12分钟有一辆汽车从后面超过他,每隔4分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车?【题-015】跑步:(中等难度)狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它.问:狗再跑多远,马可以追上它?【题-016】排队:(中等难度)有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()若干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去.再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子?【题-018】自然数和:(中等难度)在整数中,有用2个以上的连续自然数的和来表达一个整数的方法.例如9:9=4+5,9=2+3+4,9有两个用2个以上连续自然数的和来表达它的方法.【题-019】准确值:(中等难度)【题-020】巧求整数部分题目:(中等难度)(第六届小数报决赛)A 8.8 8.98 8.998 8.9998 8.99998,A的整数部分是_________.【题目答案】【题-001解答】抽屉原理首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的【题-002解答】牛吃草这类问题,都有它共同的特点,即总水量随漏水的延长而增加.所以总水量是个变量.而单位时间内漏进船的水的增长量是不变的.船内原有的水量(即发现船漏水时船内已有的水量)也是不变的量.对于这个问题我们换一个角度进行分析.如果设每个人每小时的淘水量为"1个单位".则船内原有水量与3小时内漏水总量之和等于每人每小时淘水量×时间×人数,即1×3×10=30.船内原有水量与8小时漏水量之和为1×5×8=40.每小时的漏水量等于8小时与3小时总水量之差÷时间差,即(40-30)÷(8-3)=2(即每小时漏进水量为2个单位,相当于每小时2人的淘水量).船内原有的水量等于10人3小时淘出的总水量-3小时漏进水量.3小时漏进水量相当于3×2=6人1小时淘水量.所以船内原有水量为30-(2×3)=24.如果这些水(24个单位)要2小时淘完,则需24÷2=12(人),但与此同时,每小时的漏进水量又要安排2人淘出,因此共需12+2=14(人).从以上这两个例题看出,不管从哪一个角度来分析问题,都必须求出原有的量及单位时间内增加的量,这两个量是不变的量.有了这两个量,问题就容易解决了.【题-003解答】奇偶性应用要使一只杯子口朝下,必须经过奇数次"翻转".要使9只杯子口全朝下,必须经过9个奇数之和次"翻转".即"翻转"的总次数为奇数.但是,按规定每次翻转6只杯子,无论经过多少次"翻转",翻转的总次数只能是偶数次.因此无论经过多少次"翻转",都不能使9只杯子全部口朝下.∴被除数=21×40+16=856.答:被除数是856,除数是21.【题-004解答】整除问题∵被除数=除数×商+余数,即被除数=除数×40+16.由题意可知:被除数+除数=933-40-16=877,∴(除数×40+16)+除数=877,∴除数×41=877-16,除数=861÷41,除数=21,∴被除数=21×40+16=856.答:被除数是856,除数是21【题-005解答】填数字:解此类数独题的关键在于观察那些位置较特殊的方格(对角线上的或者所在行.列空格比较少的),选作突破口.本题可以选择两条对角线上的方格为突破口,因为它们同时涉及三条线,所受的限制最严,所能填的数的空间也就最小.副对角线上面已经填了2,3,8,6四个数,剩下1,4,5和7,这是突破口.观察这四个格,发现左下角的格所在的行已经有5,所在的列已经有1和 4,所以只能填7.然后,第六行第三列的格所在的行已经有5,所在的列已经有4,所以只能填1.第四行第五列的格所在的行和列都已经有5,所以只能填4,剩下右上角填5.再看主对角线,已经填了1和2,依次观察剩余的6个方格,发现第四行第四列的方格只能填7,因为第四行和第四列已经有了5,4,6,8,3.再看第五行第五列,已经有了4,8,3,5,所以只能填6.此时似乎无法继续填主对角线的格子,但是,可观察空格较少的行列,例如第四列已经填了5个数,只剩下1,2,5,则很明显第六格填2,第八格填1,第三格填5.此时可以填主对角线的格子了,第三行第三列填8,第二行第二列填3,第六行第六列填4,第七行第七列填5.继续依次分析空格较少的行和列(例如依次第五列.第三行.第八行.第二列……),可得出结果如下图.【题-006解答】灌水问题:如第一周小李按甲.乙.丙.甲.乙.丙……的顺序轮流打开1小时,恰好在打开丙管1小时后灌满空水池,则第二周他按乙.丙.甲.乙.丙.甲……的顺序轮流打开1小时,应在打开甲管1小时后灌满一池水.不合题意.如第一周小李按甲.乙.丙.甲.乙.丙……的顺序轮流打开1小时,恰好在打开乙管1小时后灌满空水池,则第二周他按乙.丙.甲.乙.丙.甲……的顺序轮流打开1小时,应在打开丙管45分钟后灌满一池水;第三周他按丙.乙.甲.丙.乙.甲……的顺序轮流打开1小时,应在打开甲管后15分钟灌满一池水.比较第二周和第三周,发现开乙管1小时和丙管45分钟的进水量与开丙管.乙管各1小时加开甲管15分钟的进水量相同,矛盾.所以第一周是在开甲管1小时后灌满水池的.比较三周发现,甲管1小时的进水量与乙管45分钟的进水量相同,乙管30分钟的进水量与丙管1小时的进水量相同.三管单位时间内的进水量之比为3:4:2.【题-007解答】浓度问题【题-008解答】水和牛奶【题-009解答】巧算:本题的重点在于计算括号内的算式:.这个算式不同于我们常见的分数裂项的地方在于每一项的分子依次成等差数列,而非常见的分子相同.或分子是分母的差或和的情况.所以应当对分子进行适当的变形,使之转化成我们熟悉的形式.法一:观察可知5=2+3,7=3+4,……即每一项的分子都等于分母中前两个乘数的和,所以【题-010解答】队形当扩大方阵时,需补充10+15人,这25人应站在扩充的方阵的两条邻边处,形成一层人构成的直角拐角.补充人后,扩大的方阵每边上有(10+15+1)÷2=13人.因此扩大方阵共有13×13=169人,去掉15人,就是原来的人数169-15=154人【题-011解答】计算答案:用1.2.3.4.5组成不含重复数字的六位数,,它能被11整除,并设a1+a3+a5≥a2+a4+a6,则对某一整数k≥0,有:a1+a3+a5-a2-a4-a6=11k (*)也就是:a1+a2+a3+a4+a5+a6=11k+2(a2+a4+a6)15=0+1+2+3+4+5=11k+2(a2+a4+a6)(**)由此看出k只能是奇数由(*)式看出,0≤k<2 ,又因为k为奇数,所以只可能k=1,但是当k=1时,由(**)式看出a2+a4+a6=2.但是在0.1.2.3.4.5中任何三个数之和也不等于2,可见k≠1.因此(*)不成立.对于a2+a4+a6>a1+a3+a5的情形,也可类似地证明(a2+a4+a6)-(a1+a3+a5)不是11的倍数.根据上述分析知:用0.1.2.3.4.5不能组成不包含重复数字的能被11整除的六位数.【题-012解答】分数:(中等难度)除得分88.85.80的人之外,其他人的得分都在30至79分之间,其他人共得分:8250-(88+85+80)=7997(分).为使不低于60分的人数尽量少,就要使低于60分的人数尽量多,即得分在30~59分中的人数尽量多,在这些分数上最多有3×(30+31+…+59)= 4005分(总分),因此,得60~79分的人至多总共得7997-4005=3992分.如果得60分至79分的有60人,共占分数3×(60+61+ …+ 79)= 4170,比这些人至多得分7997-4005= 3992分还多178分,所以要从不低于60分的人中去掉尽量多的人.但显然最多只能去掉两个不低于60分的(另加一个低于60分的,例如,178=60+60+58).因此,加上前三名,不低于60分的人数至少为61人.【题-013解答】四位数:(中等难度)四位数答案:因为该数加1之后是15的倍数,也是5的倍数,所以d= 4或d=9.因为该数减去3是38的倍数,可见原数是奇数,因此d≠4,只能是d=9.这表明m=27.37.47;32.42.52.(因为38m的尾数为6)又因为38m+3=15k-1(m.k是正整数)所以38m+4=15k.由于38m的个位数是6,所以5|(38m+4),因此38m+4=15k等价于3|(38m+4),即3除m余1,因此可知m=37,m=52.所求的四位数是1409,1979.【题-014解答】行程答案:汽车间隔距离是相等的,列出等式为:(汽车速度-自行车速度)×12=(汽车速度+自行车速度)×4得出:汽车速度=自行车速度的2倍.汽车间隔发车的时间=汽车间隔距离÷汽车速度=(2倍自行车速度-自行车速度)×12÷2倍自行车速度=6(分钟).【题-015解答】跑步:(中等难度)根据"马跑4步的距离狗跑7步",可以设马每步长为7x米,则狗每步长为4x米.根据"狗跑5步的时间马跑3步",可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20x 米.可以得出马与狗的速度比是21x:20x=21:20根据"现在狗已跑出30米",可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是30÷(21-20)×21=630米【题-016解答】排队:(中等难度)根据乘法原理,分两步:第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种.第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种综合两步,就有24×32=768种【题-017解答】分数方程:(中等难度)设原来小球数最少的盒子里装有a只小球,现在增加了b只,由于小聪没有发现有人动过小球和盒子,这说明现在又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.同样,现在另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.现在变成:将42分拆成若干个连续整数的和,一共有多少种分法,每一种分法有多少个加数?因为42=6×7,故可以看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数;又因为42=14×3,故可将42:13+14+15,一共有3个加数;又因为42=21×2,故可将42=9+10+11+12,一共有4个加数.所以原问题有三个解:一共有7只盒子.4只盒子或3只盒子.【题-018解答】自然数和:(中等难度)(1)请写出只有3种这样的表示方法的最小自然数.(2)请写出只有6种这样的表示方法的最小自然数.关于某整数,它的"奇数的约数的个数减1",就是用连续的整数的和的形式来表达种数.根据(1)知道,有3种表达方法,于是奇约数的个数为3+1=4,对4分解质因数4=2×2,最小的15(1.3.5.15);有连续的2.3.5个数相加;7+8;4+5+6;1+2+3+4+5;根据(2)知道,有6种表示方法,于是奇数约数的个数为6+1=7,最小为729(1.3.9.27.81.243.729),有连续的2,3.6.9.10.27个数相加:364+365;242+243+244;119+120+…+124;77+78+79+…+85;36+37+…+45;14+15+…+40【题-019解答】准确值:(中等难度)【题-020解答】巧求整数部分题目:(中等难度)。
小学六年级奥数题 10道思维训练题你能答对几道一起进入头
脑风暴
奥数题并不适合所有学生,因为题本身的难度,远远超出了教材的范围。
孩子不做奥数题很正常,因为很多数学老师要研究一道奥数题很久,甚至找不到答案。
如果孩子在这方面有天赋,我们可以好好培养。
如果孩子不感兴趣,不要勉强。
下面是10道小学六年级的奥数题,难度适中。
你想试试你的手吗?
小学六年级奥数题1.——计数问题
打开,查看更多图片
小学六年级奥数题1.——计数问题
1.答案——
小学六年级奥数题1.——计数问题答案
小学六年级奥数题2.——工程问题
小学六年级奥数题2.——工程问题
2.答案——
答案2
小学六年级奥数题3.——逻辑推理小学六年级奥数题3
3.答案——
答案3
小学六年级奥数题4.——排列组合小学六年级奥数题4
4.答案——
答案4
小学六年级奥数题5.——应用题小学六年级奥数题5
5.答案——
答案5
小学六年级奥数题6.——扶梯问题小学六年级奥数题6
6.答案——
6答案
小学六年级奥数题7.——行程问题小学六年级奥数题7
7.答案——
7.答案
小学六年级奥数题8.——浓度问题
小学六年级奥数题8
8.答案——
8.答案
小学六年级奥数题9.——数论+逻辑推理小学六年级奥数题9
9.答案——
9.答案
小学六年级奥数题10.——分百应用题小学六年级奥数题10
10.答案——
10 答案
祝福孩子们快乐学习,健康成长!。
六年级上册奥数题大全及答案六年级上册奥数题大全及答案 11、李明的爸爸经营个水果店,按开始的定价,每买出1千克水果,可获利0.2元。
后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。
问:每千克水果降价多少元?答案:设以前卖出X千克降价a元。
那么0.2X×(1+0.5)=(0.2-a)×2x则0.1X=2aXa=0.05答:每千克水果降价0.05元2、有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
解析与答案:首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉。
把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果。
把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉。
由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
六年级上册奥数题大全及答案 2猎狗发现在离它10米的前方有一只奔跑着的兔子,马上追上去,兔跑9步的路程狗只需跑5步,但狗跑2步的时间,兔却跑3步。
问狗追上兔时,共跑了多少米路程?答案与解析:60米对于追及问题,我们知道:10米=速度差×追及时间狗追上兔时,所跑路程应为:总路程=狗的速度×追及时间这就是要弄清狗的速度与兔的速度差之间的倍数关系。
另一方面,在分析速度时,一定是相同时间内狗与兔的速度之间的倍数,而不是相同的步数或相同的路程。
只要分析清楚这些,就可以解出本题了。
详解1:为了看相同时间的路程关系,也就是速度关系,我们进行如下处理:狗跑2步的时间兔跑3步,则狗跑6步的时间兔子跑了9步,也就是兔子跑了狗的5步,那么在这段时间内,狗追上了兔子,狗的一步或狗兔间的距离缩短了狗的1步,而狗跑了6步,所以狗的速度是速度差的6倍。
六年级奥数题及答案(五篇)六年级奥数题及答案 1某造纸厂在100天里共生产2024吨纸,开始阶段,每天只能生产10吨纸.中间阶段由于改进了技术,每天的产量提高了一倍.最后阶段由于购置了新设备,每天的产量又比中间阶段提高了一倍半.已知中间阶段生产天数的2倍比开始阶段多13天,那么最后阶段有几天?中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天六年级奥数题及答案 2从花城到太阳城的公路长12公里.在该路的2千米处有个铁道路口,是每关闭3分钟又开放3分钟的.还有在第4千米及第6千米有交通灯,每亮2分钟红灯后就亮3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?答案与解析:画出反映交通灯红绿情况的s-t图,可得出小糊涂的行车图像不与实线相交情况下速度最大可以是0.5千米/分钟,此时恰好经过第6千米的红绿灯由红转绿的点,所以他到达太阳城最快需要24分钟.六年级奥数题及答案 3分母不大于60,分子小于6的'最简真分数有____个?答案与解析:分类讨论:(1)分子是1,分母是2~60的最简真分数有59个:(2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个);(3)分子是3,分母是4~60,其中非3的倍数有57-57÷3-38(个);(4)分子是4,分母是5~60,其中非2的倍数有56-56÷2-28c个);(5)分子是5,分母是6~60,其中非5的倍数有55-55÷5―44(个).这样,分子小于6,分母不大于60的最简真分数一共有59+29+38+28+44=198(个).六年级奥数题及答案 4甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米.如果甲、乙、丙同时出发,那么经过几分钟,甲第一次与乙、丙的距离相等?答案与解析:甲与乙、丙的距离相等有两种情况:一种是乙追上丙时;另一种是甲位于乙、丙之间.⑴乙追上丙需:280(80-72)=35(分钟).⑵甲位于乙、丙之间且与乙、丙等距离,我们可以假设有一个丁,他的速度为乙、丙的速度的*均值,即(80+72)2=76(米/分),且开始时丁在乙、丙之间的中点的位置,这样开始时丁与乙、丙的距离相等,而且无论经过多长时间,乙比丁多走的路程与丁比丙多走的路程相等,所以丁与乙、丙的距离也还相等,也就是说丁始终在乙、丙的中点.所以当甲遇上丁时甲与乙、丙的距离相等,而甲与丁相遇时间为:(280+2802)(90-76)=30(分钟).经比较,甲第一次与乙、丙的距离相等需经过30分钟.六年级奥数题及答案 5王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?答案与解析:本题相当于去的时候速度为每小时50千米,而整个行程的*均速度为每小时60千米,求回来的时候的速度.根据例题中的分析,可以假设甲地到乙地的路程为300千米,那么往返一次需时间__*2=10(小时),现在从甲地到乙地花费了时间__=6(小时),所以从乙地返回到甲地时所用的时间是10-6=4(小时).如果他想按时返回甲地,他应以3004=75(千米/时)的速度往回开.。
小学六年级数学奥数题100题附答案(完整版)题目1甲、乙两车分别从A、B 两地同时相向而行,在距A 地80 千米处相遇,相遇后两车继续前进,甲车到达B 地、乙车到达A 地后均立即按原路返回,第二次在距B 地60 千米处相遇。
A、B 两地相距多少千米?答案:第一次相遇时,甲、乙两车共行了A、B 两地的距离,其中甲行了80 千米。
第二次相遇时,甲、乙两车共行了A、B 两地距离的3 倍,则甲车行了80×3 = 240 千米。
此时甲行的路程是一个A、B 两地的距离加上60 千米,所以A、B 两地相距240 - 60 = 180 千米。
题目2一项工程,甲单独做12 天完成,乙单独做18 天完成。
两人合作多少天可以完成这项工程的2/3 ?答案:甲的工作效率为1/12,乙的工作效率为1/18,两人合作的工作效率为1/12 + 1/18 = 5/36 。
完成工程的2/3 需要的时间为2/3 ÷5/36 = 24/5 = 4.8 天。
题目3一个分数,分子与分母的和是68,约分后是8/9,原来这个分数是多少?答案:设分子为8x,分母为9x,则8x + 9x = 68,17x = 68,x = 4 。
分子为8×4 = 32,分母为9×4 = 36,原来的分数是32/36 。
题目4在一个周长为62.8 米的圆形花坛周围铺一条 2 米宽的小路,这条小路的面积是多少平方米?答案:花坛的半径:62.8÷3.14÷2 = 10 米加上小路后的半径:10 + 2 = 12 米小路的面积:3.14×(12²- 10²) = 138.16 平方米题目5有浓度为20%的糖水300 克,要使其浓度变为40%,需要加糖多少克?答案:原来糖水中糖的质量:300×20% = 60 克设加糖x 克,(60 + x)÷(300 + x) = 40% ,解得x = 100 克题目6一本书,第一天看了全书的1/4,第二天看了120 页,这时已看的页数与未看的页数比是2:3,这本书共有多少页?答案:已看的页数占全书的2/(2 + 3) = 2/5第二天看的占全书的2/5 - 1/4 = 3/20全书页数:120÷3/20 = 800 页题目7一个长方体的棱长总和是120 厘米,长、宽、高的比是5:3:2,这个长方体的体积是多少立方厘米?答案:一组长、宽、高的和:120÷4 = 30 厘米长:30×5/(5 + 3 + 2) = 15 厘米宽:30×3/(5 + 3 + 2) = 9 厘米高:30×2/(5 + 3 + 2) = 6 厘米体积:15×9×6 = 810 立方厘米题目8甲、乙两个仓库共存粮90 吨,其中甲仓库的存粮是乙仓库的4/5。
六年级奥数试题及解析〔精选12篇〕假设干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去.再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子?分析^p :设原来小球数最少的盒子里装有a只小球,如今增加了b只,由于小聪没有发现有人动过小球和盒子,这说明如今又有了一只装有a个小球的'盒子,而这只盒子里原来装有(a+1)个小球.同样,如今另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.所以将42分拆成假设干个连续整数的和,一共有多少种分法,每一种分法有多少个加数,据此解答.解:设原来小球数最少的盒子里装有a只小球,如今增加了b只,由于小聪没有发现有人动过小球和盒子,这说明如今又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.同样,如今另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.将42分拆成假设干个连续整数的和,因为42=6×7,故可以看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数;又因为42=14×3,故可将42:13+14+15,一共有3个加数;又因为42=21×2,故可将42=9+10+11+12,一共有4个加数.所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子.答:一共有7只、4只或3只盒子.点评:解答此题的关键是将问题归结为把42分拆成假设干个连续整数的和.篇8:六年级奥数模拟试题六年级奥数模拟试题一、填空题。
第5讲容斥原理知识网络我们经常会遇到这样一类问题,题目中涉及到包含与排除,也就是说有重叠部分。
解答此类问题的主要依据是容斥原理。
容斥原理一:设A、B是两类有重叠部分的量(如图1所示),若A对应的量为a,B对应的量为b,A与B重叠部分对应的量为ab,那么这两类量的总量可以用下面的公式进行计算:总量=a+b-ab容斥原理二:设A、B、C是三类有重叠部分的量(如图2所示),若A对应的量为a,B 对应的量为b,C以应的量为c,A与B重叠部分以应的量为ab,B与C重叠部分对应的量为bc,C与A重叠部分对应的量为ca,A、B、C三部分重叠部分对应的量为abc,则这三类量的总量可以用下面的公式进行计算:总量=a+b+c-ab-bc-ca+abc重点·难点容斥原理的表述虽然简单,但涉及容斥原理的题型很多,范围很广。
我们往往会遇到一些看似与容斥原理无关的问题,然而通过恰当的转化,便可利用容斥原理顺利求解。
如何分析题目,准确找到重叠部分,将问题转化成可用容斥原理解决的问题是本节的难点。
学法指导解决本节问题的最基本方法是示意图法,即通过示意图来表示题目中的数量关系,使分析、推理与计算结合起来,达到使题目的内容形象化,数量之间关系直观化的目的。
因此,这就要求我们在解题过程中,仔细分析,找出所需量并用示意图表示出来,进而通过观察示意图,确定几类量的重叠部分,然后运用容斥原理解决问题。
经典例题[例1]分母是1001的最简真分数,共有多少个?思路剖析分母是1001的真分数有共1000个,为了方便计算,增加一个分数在1001个分数中考虑问题。
由于1001=7×11×13,所心1~1001的分子里只要含有7、11、13的倍数的就一定能同分母约分,即不是最简真分数,应排除掉。
因此,首先应考虑1~1001中,有多少个7、11或13的倍数。
解答因为1001=7×11×13,所以在1~1001的自然数中,7的倍数共有(11×13)个,11的倍数共有(7×13)个,13的倍数共有(7×11)个;7、11年公倍数有13个,7、13的公倍数有11个,11、13的公倍数有7个;7、11、13的公倍数有1个(即1001)。
六年级奥数题练习:
126
25
2
⨯
36
11
35⨯
75
74
73⨯1999
1998
1997
⨯20
1
20
1
22⨯
6
1
57
7
1
⨯
5
4
4
1
51
4
3
3
1
41⨯
+
⨯
2
1
3
15
1
16
7
15
1
8
3
15
7
⨯
+
⨯
+
⨯
13
6
18
5
13
2
9
5
13
1
6
5
⨯
+
⨯
+
⨯
例41
20
1
166÷
1999
1998
1998
1998÷17
5
2
54÷
239
238
238
238÷
39
1
41
13
1
163÷
转化单位“1”复习题
1.某小学低年级原有少先队员是非少先队员的1/3,后来又有39名同学加入了少先
队组织。
这样,少先队员的人数是非少先队员的7/8。
低年级有多少学生?
2.王师傅生产一批零件,不合格产品是合格产品的1/19,后来从合格产品中又发现2
个不合格产品,这时算出产品的合格率是94%。
合格产品共有多少个?
3.某校六年级上学期男生占总人数的54%,本学期初转进3女生,转走3名男生,这
时女生占总人数的48%,现有男生多少人?
例1:某学校原有长跳绳的根数占长、短跳绳总数的3/8。
后来又买进20跟长跳绳,这时长跳绳的根数占长、短跳绳总数的7/12。
这个学校现有长、短绳总数是多少根?
例2:有两段布,一段布长40米,另一段布长30米,把两段布都用去同样长的一部分后,发现短的一段布剩下的长度是长的一段布所剩长度的3/5,每段布用去多少米?
例3:某商店原有黑白、彩色电视机共630台,其中黑白电视机占1/5,后来又运进一些黑白电视机。
这时黑白电视机占两种电视机总台数的30%,问:又运进黑白电视机多少台?
例4:甲数是乙数、丙数、丁数之和的1/2,乙数是甲数、丙数、丁数之和的1/3,丙数是甲数、乙数、丁数之和的1/4。
已知丁数是260,求甲、乙、丙、丁四数之和。
练习:
1.阅览室看书的同学中,女同学占3/5,从阅览室走出5位女同学后,看书的同学中,
女同学占4/7,原来阅览室里一共有多少名同学在看书?
2.一堆什锦糖,其中奶糖占45%,再放入16千克其他糖后,奶糖只占25%,这堆糖中
有奶糖多少千克?
3.数学课外兴趣小组,上学期男生占5/9,这学期增加21名女生后,男生就占2/5
了,这个小组现有女生多少人?
4.今年父亲40岁,儿子12岁,当儿子的年龄是父亲的5/12时,儿子多少岁?
5.有两根塑料绳,一根长80米,另一根长40米,如果从两根绳上各剪去同样长的一
段后,短绳剩下的长度是长绳剩下的2/7,两根绳各剪去多少米?
6.仓库里原来存的大米和面粉袋数相等,运出800袋大米和500袋面粉后,仓库里所
剩的大米袋数是面粉的3/4,仓库里原有大米和面粉各多少袋?
7.把12千克盐溶解于120千克水中,得到132千克盐水,如果要使盐水中含盐8%,
要往盐水中加盐还是加水?加多少千克?
例:△△=□□□□,△☆=□□□□,那么☆☆□=()个△
已知△=○○,△○=□□,☆=□□□,问△☆□=()个○
例:足球赛门票15元一张,降价后观众增加一倍,收入增加1/5,问一张门票降价多少元?
练习:
1.五个人比较身高,甲比乙高3厘米,乙比并矮7厘米,丙比丁高10厘米,丁比戊
矮5厘米,甲与戊相比谁高,高几厘米?
2.甲、乙、丙三个仓库原有同样多的货,从甲仓库运60吨到乙仓库,从乙仓库运45
吨到丙仓库,从丙仓库运55吨到甲仓库,这时三个仓库的货哪个最多?哪个最少?
最多的比最少的多多少吨?
3.某班一次考试,平均分为70分,其中3/4及格,及格的同学平均分为80分,那么
不及格的同学平均分是多少?
4.游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加20%,
小学生占学生总数的40%,小学生增加百分之几?
5.五年级三个班的人数相等。
一班的男生人数和二班的女生的人数相等,三班的男生
人数是全部男生人数的2/5,全部女生人数占全年级人数的几分之几?
6.小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路
下山的平均速度。