高三物理课时作业(35)
- 格式:doc
- 大小:167.50 KB
- 文档页数:4
课时作业(四十)(分钟:45分钟满分:100分)一、选择题(每小题7分,共63分)1.氦原子核由两个质子与两个中子组成,这两个质子之间存在着万有引力、库仑力和核力,则这3种力从大到小的排列顺序是( )A.核力、万有引力、库仑力B.万有引力、库仑力、核力C.库仑力、核力、万有引力D.核力、库仑力、万有引力[解析] 核力是强相互作用(强力),氦原子核内的2个质子是靠核力结合在一起的,可见核力远大于库仑力;微观粒子的质量非常小,万有引力小于库仑力.故D正确.[答案] D2.下列说法正确的是( )A.α射线与γ射线都是电磁波B.β射线为原子的核外电子电离后形成的电子流C.用加温、加压或改变其化学状态的方法都不能改变原子核衰变的半衰期D.原子核经过衰变生成新核,则新核的质量总等于原核的质量[解析] α射线为粒子流,γ射线为电磁波,故A错.β射线来自原子核内部,不是核外电子电离产生的,故B错.据放射性元素的衰变规律可知C项正确,D错误.[答案] C3.(2011·浙江三校联考)居室装修中经常用到的花岗岩都不同程度地含有放射性元素(含铀、钍等),会释放出α、β、γ射线,这些射线会导致细胞发生癌变及呼吸道疾病.根据有关放射性知识判断下列说法中正确的是( )A.α射线是发生α衰变时产生的,生成核与原来的原子核相比,中子数减少了4个B.β射线是发生β衰变时产生的,生成核与原来的原子核相比,质量数减少了1个C.γ射线是发生γ衰变时产生的,生成核与原来的原子核相比,中子数减少了1个D.在α、β、γ三种射线中,γ射线的穿透能力最强、电离能力最弱[解析] α射线是发生α衰变时产生的,生成核与原来的原子核相比,中子数减少了2个;β射线是发生β衰变时产生的,生成核与原来的原子核相比,质量数不变,中子数减少了1个;γ射线是发生γ衰变时产生的,生成核与原来的原子核相比,中子数不变,故ABC错误,D正确.[答案] D4.放射性同位素被用做示踪原子,主要是因为( )A.放射性同位素不改变其化学性质B.放射性同位素的半衰期比天然放射性元素的半衰期短得多C.其半衰期与元素所处的物理、化学状态无关D.放射性同位素容易制造[解析] 放射性同位素用做示踪原子,主要是用放射性同位素替代没有放射性的同位素参与正常的物理、化学、生物过程,既要利用化学性质相同,也要利用衰变规律不受物理、化学变化的影响,同时还要考虑放射性废料容易处理等,因此,选项A、B、C正确,D不正确.[答案] ABC5.(2011·温州五校联考)2010年7月25日早7时,美国“乔治·华盛顿”号核航母驶离韩南部釜山港赴东部海域参加军演,标志此次代号为“不屈的意志”的美韩联合军演正式开始.在现代兵器体系中,潜艇和航母几乎算得上是一对天生的冤家对头,整个二战期间,潜艇共击沉航母17艘,占全部沉没航母数量的40.5%.中国有亚洲最大的潜艇部队,拥有自行开发的宋级柴电动力潜艇和汉级核动力潜艇,核动力潜艇中核反应堆释放的核能被转化成动能和电能.核反应堆的工作原理是利用中子轰击重核发生裂变反应,释放出大量的核能.核反应方程23592U+n→14156Ba+9236Kr+a X是反应堆中发生的众多核反应中的一种,n为中子,X为待求粒子,a为X的个数,则( )A.X为质子a=3 B.X为质子a=2C.X为中子a=2 D.X为中子a=3[解析] 由重核裂变方程以及核反应方程中电荷数守恒可得出X电荷数为0,即X应为中子,又由质量数守恒可得a=3,D正确.[答案] D6.(2011·湖北孝感中学月考)μ子与氢原子核(质子)构成的原子称为μ氢原子(hydrogenmuon atom),它在原子核物理的研究中有重要作用.图为μ氢原子的能级示意图.假定光子能量为E的一束光照射容器中大量处于n=2能级的μ氢原子吸收光子后,发出频率为ν1、ν2、ν3、ν4、ν5和ν6的光,且频率依次增大,则E等于( )A.h(ν3-ν1) B.h(ν5+ν6)C.hν3D.hν4[解析] 处于n=2能级的μ氢原子受到光的照射后辐射出6种光,则应从2能级跃迁到4能级,由能量和频率的关系E=hν知,E4-E3=hν1,E3-E2=hν2,E4-E2=hν3,E2-E1=hν4,E3-E1=hν5和E4-E1=hν6,所以选项C正确.[答案] C7.(2011·佛山联考)铀裂变的产物之一氪90(9036Kr)是不稳定的,它经过一系列衰变最终成为稳定的锆90(9040Zr),这些衰变是( )A .1次α衰变,6次β衰变B .4次β衰变C .2次α衰变D .2次α衰变,2次β衰变[解析] 氪90(9036Kr)衰变成为锆90(9040Zr),质量数不发生变化,说明只发生β衰变,且发生4次,选项B 正确.[答案] B8.近代物理学研究表明,质子是由2个上夸克和1个下夸克组成,中子是由1个上夸克和2个下夸克组成,质子与中子间发生的转变实质就是上、下夸克发生了转变.已知上夸克电荷量为+2e /3,下夸克电荷量为-e /3,e 为元电荷.当发生β衰变时( )A .原子核内的一个中子转变为一个质子,同时放出一个电子B .原子核内的一个质子转变为一个中子,同时放出一个电子C .从夸克模型看,使质子内的一个上夸克转变为一个下夸克D .从夸克模型看,使中子内的一个下夸克转变为一个上夸克[答案] AD9.利用氦-3(32He)和氘进行的聚变安全无污染,容易控制.月球上有大量的氦-3,每个航天大国都将获取氦-3作为开发月球的重要目标之一.“嫦娥一号”探月卫星执行的一项重要任务就是评估月壤中氦-3的分布和储量.已知两个氘核聚变生成一个氦-3和一个中子的核反应方程是221H→32He +10n +3.26 MeV ,若有2 g 氘全部发生聚变,则释放的能量是(N A 为阿伏加德罗常数)( )A .0.5×3.26 MeVB .3.26 MeVC .0.5N A ×3.26 MeVD .N A ×3.26 MeV[解析] 2 g 氘含有1 mol 氘分子,则由聚变核反应221H→32He +10n +3.26 MeV 知2个氘核聚变释放能量3.26 MeV ,则2 g 氘聚变释放的能量是0.5N A ×3.26 MeV,选项C 正确.[答案] C二、非选择题(共37分)10.(10分)(1)放射性物质210 84Po 和6027Co 的核衰变方程分别为:21084Po→206 82Pb +X 1 6027Co→6028Ni +X 2 方程中的X 1代表的是________,X 2代表的是________.(2)如下图所示,铅盒内装有能释放α、β和γ射线的放射性物质,在靠近铅盒的顶部加上电场E 或磁场B ,在图(a)、(b)中分别画出射线运动轨迹的示意图.(在所画轨迹上须标明是α、β和γ中的哪种射线)[解析] (1)由质量数守恒可知X1、X2的质量数分别为4、0,由电荷数守恒可知X1、X2的电荷数分别为2、-1,故X1是42He,X2是0-1e.(2)α粒子带正电,在图(a)电场中向右偏,在图(b)的磁场受到指向左侧的洛伦兹力向左偏,β粒子带负电,故在图(a)中向左偏而在图(b)中向右偏,γ粒子不带电,故不发生偏转,如图所示(曲率半径不作要求,每种射线可只画一条轨迹).[答案] (1)42He 0-1e (2)见解析图11.(13分)(1)近期媒体报道,叛逃到英国的俄罗斯前特工利特维年科在伦敦离奇身亡.英国警方调查认为,毒杀利特维年科的是超级毒药——放射性元素钋(Po).Po的半衰期为138 d,经衰变生成稳定的铅(Pb),那么经过276 d,100 g Po已衰变的质量为__________g.(2)一个氘核(21H)和一个氚核(31H)结合成一个氦核并放出一个中子时,质量亏损为Δm,已知阿伏加德罗常数为N A,真空中的光速为c,若1 mol氘和1 mol氚完全发生上述核反应,则在核反应中释放的能量为__________.A.N AΔmc2B.2N AΔmc2C.12N A Δmc 2 D .5N A Δmc 2 (3)用速度为v 0、质量为m 1的42He 核轰击质量为m 2的静止的14 7N 核,发生核反应,最终产生两种新粒子A 和B.其中A 为17 8O 核,质量为m 3,速度为v 3;B 的质量为m 4.①计算粒子B 的速度v B .②粒子A 的速度符合什么条件时,粒子B 的速度方向与He 核的运动方向相反.[解析] (1)根据半衰期的定义,经过276 d(两个半衰期),100 g Po 已衰变的质量为1002+502=75 g. (2)根据爱因斯坦的质能方程,一个氘核(21H)和一个氚核(31H)结合成一个氦核并放出一个中子释放的能量为Δmc 2,1 mol 氘和1 mol 氚完全发生上述核反应,释放的能量为上述反应的N A 倍,即N A Δmc 2.(3)①由动量守恒定律有:m 1v 0=m 3v 3+m 4v B ,解得:v B =m 1v 0-m 3v 3m 4. ②B 的速度与He 核的速度方向相反,即:m 1v 0-m 3v 3<0,解得:v 3>m 1v 0m 3. [答案] (1)75 (2)A(3)①m 1v 0-m 3v 3m 4 ②v 3>m 1v 0m 312.(14分)(1)一个氡核222 86Rn 衰变成钋核21884Po 并放出一个粒子,其半衰期为3.8天.1 g 氡经过7.6天衰变掉的氡的质量以及222 86Rn 衰变成218 84Po 时放出的粒子是( )A .0.25 g ,α粒子B .0.75 g ,α粒子C .0.25 g ,β粒子D .0.75 g ,β粒子(2)在核反应堆里,中子的速度不能太快,否则会与铀235原子核“擦肩而过”,铀核不能“捉”住它,不能发生核裂变.科学家常用石墨作减速剂,使铀核裂变所产生的快中子通过与碳核不断的碰撞而被减速.假设中子与碳核发生的是没有机械能损失的弹性正碰,且碰撞前碳核是静止的.已知碳核的质量近似为中子质量的12倍,中子原来的动能为E 0,试求:经过一次碰撞后中子的能量变为多少?[解析] (1)经过一个半衰期,一半原子核发生衰变,1 g 氡经两个半衰期将有0.75 g 氡衰变掉;要据质量数守恒和电荷数守恒,可写出氡核衰变的核反应方程为222 86Rn→218 84Po +42He ,B 选项正确.(2)弹性正碰遵循动量守恒和能量守恒两个规律.设中子的质量m ,碳核的质量M .有:mv 0=mv 1+Mv 2,12mv 20=12Mv 21+12Mv 22 由上述两式整理得v 1=m -M m +M v 0=m -12m m +12m v 0=-1113v 0 则经过一次碰撞后中子的动能E 1=12mv 21=12m ⎝ ⎛⎭⎪⎫-1113v 02=121169E 0.[答案] (1)B (2)121169E 0。
题组一对洛伦兹力方向的判定1.在以下几幅图中,对洛伦兹力的方向判断正确的是()[答案]ABD2.一束混合粒子流从一发射源射出后,进入如图1所示的磁场,分离为1、2、3三束,则下列判断正确的是()图1A.1带正电B.1带负电C.2不带电D.3带负电[答案]ACD[解析]根据左手定则,带正电的粒子左偏,即1;不偏转说明不带电,即2;带负电的粒子向右偏,说明是3,因此[答案]为A、C、D.3.在学校操场的上空停着一个热气球,从它底部脱落一个塑料小部件,下落过程中由于和空气摩擦而带负电,如果没有风,那么它的着地点会落在热气球正下方地面位置的() A.偏东B.偏西C.偏南D.偏北[答案] B[解析]在北半球,地磁场在水平方向上的分量方向是水平向北,塑料小部件带负电,根据左手定则可得塑料小部件受到向西的洛伦兹力,故向西偏转,B正确.4.显像管原理的示意图如图2所示,当没有磁场时,电子束将打在荧光屏正中的O点,安装在管径上的偏转线圈可以产生磁场,使电子束发生偏转.设垂直纸面向里的磁场方向为正方向,若使电子打在荧光屏上的位置由a点逐渐移动到b点,下列变化的磁场能够使电子发生上述偏转的是()图2[答案] A[解析]电子偏转到a点时,根据左手定则可知,磁场方向垂直纸面向外,对应的B-t图的图线就在t轴下方;电子偏转到b点时,根据左手定则可知,磁场方向垂直纸面向里,对应的B-t图的图线应在t轴上方,A正确.题组二洛伦兹力的特点5.一个运动电荷在某个空间里没有受到洛伦兹力的作用,那么()A.这个空间一定没有磁场B.这个空间不一定没有磁场C.这个空间可能有方向与电荷运动方向平行的磁场D.这个空间可能有方向与电荷运动方向垂直的磁场[答案]BC[解析]由题意,运动电荷在某个空间里没有受到洛伦兹力,可能空间没有磁场,也可能存在磁场,磁场方向与电荷运动方向平行.故A错误,B、C正确.若磁场方向与电荷运动方向垂直,电荷一定受到洛伦兹力,不符合题意,故D错误.故选B、C.6.如图3所示,一束电子流沿管的轴线进入螺线管,忽略重力,电子在管内的运动应该是()图3A.当从a端通入电流时,电子做匀加速直线运动B.当从b端通入电流时,电子做匀加速直线运动C.不管从哪端通入电流,电子都做匀速直线运动D.不管从哪端通入电流,电子都做匀速圆周运动[答案] C[解析]电子的速度v∥B,F洛=0,电子做匀速直线运动.7.关于带电粒子在匀强电场和匀强磁场中的运动,下列说法中正确的是()A.带电粒子沿电场线方向射入,则电场力对带电粒子做正功,粒子动能一定增加B.带电粒子垂直于电场线方向射入,则电场力对带电粒子不做功,粒子动能不变C.带电粒子沿磁感线方向射入,洛伦兹力对带电粒子做正功,粒子动能一定增加D.不管带电粒子怎样射入磁场,洛伦兹力对带电粒子都不做功,粒子动能不变[答案] D[解析]带电粒子在电场中受到的电场力F=qE,只与电场有关,与粒子的运动状态无关,做功的正负由θ角(力与位移方向的夹角)决定.对选项A,只有粒子带正电时才成立;垂直射入匀强电场的带电粒子,不管带电性质如何,电场力都会做正功,动能增加.带电粒子在磁场中的受力——洛伦兹力F′=q v B sinθ,其大小除与运动状态有关,还与θ角(磁场方向与速度方向之间夹角)有关,带电粒子沿平行磁感线方向射入,不受洛伦兹力作用,粒子做匀速直线运动.在其他方向上由于洛伦兹力方向始终与速度方向垂直,故洛伦兹力对带电粒子始终不做功.综上所述,正确选项为D.8.长直导线AB附近,有一带正电的小球,用绝缘细线悬挂在M点,当导线AB通以如图4所示的恒定电流时,下列说法正确的是()图4A.小球受磁场力作用,方向与导线AB垂直且指向纸里B.小球受磁场力作用,方向与导线AB垂直且指向纸外C.小球受磁场力作用,方向与导线AB垂直向左D.小球不受磁场力作用[答案] D[解析]电场对其中的静止电荷、运动电荷都有力的作用,而磁场只对其中的运动电荷才有力的作用,且运动方向不能与磁场方向平行,所以D选项正确.题组三带电物体在磁场中的运动问题9.带电油滴以水平速度v0垂直进入磁场,恰做匀速直线运动,如图5所示,若油滴质量为m,磁感应强度为B,则下述说法正确的是()图5A .油滴必带正电荷,电荷量为mgv 0BB .油滴必带正电荷,比荷q m =qv 0BC .油滴必带负电荷,电荷量为mgv 0BD .油滴带什么电荷都可以,只要满足q =mgv 0B[答案] A[解析] 油滴水平向右匀速运动,其所受洛伦兹力必向上,与重力平衡,故带正电荷,其电荷量q =mgv 0B,A 正确.10.如图6所示,在竖直平面内放一个光滑绝缘的半圆形轨道,水平方向的匀强磁场与半圆形轨道所在的平面垂直.一个带负电荷的小滑块由静止开始从半圆轨道的最高点M 下滑到最右端,则下列说法中正确的是( )图6A .滑块经过最低点时的速度比磁场不存在时大B .滑块从M 点到最低点的加速度比磁场不存在时小C .滑块经过最低点时对轨道的压力比磁场不存在时小D .滑块从M 点到最低点所用时间与磁场不存在时相等 [答案] D[解析] 由于洛伦兹力不做功,故与磁场不存在时相比,滑块经过最低点时的速度不变,选项A 错误;由a =v 2R,与磁场不存在时相比,滑块经过最低点时的加速度不变,选项B 错误;由左手定则,滑块经最低点时受的洛伦兹力向下,而滑块所需的向心力不变,故滑块经最低点时对轨道的压力比磁场不存在时大,选项C错误;由于洛伦兹力始终与运动方向垂直,在任意一点,滑块经过时的速度均与不加磁场时相同,选项D正确.11.如图7所示,一带负电的滑块从绝缘粗糙斜面的顶端滑至底端时的速度为v,若加一个垂直纸面向外的匀强磁场,并保证滑块能滑至底端,则它滑至底端时的速度为()图7A.变大B.变小C.不变D.条件不足,无法判断[答案] B[解析]加上磁场后,滑块受一垂直斜面向下的洛伦兹力,使滑块所受摩擦力变大,做负功值变大,而洛伦兹力不做功,重力做功恒定,由能量守恒可知,速率变小.12.质量为m、带电荷量为+q的小球,用一长为l的绝缘细线悬挂在方向垂直纸面向里的匀强磁场中,磁感应强度为B,如图8所示,用绝缘的方法使小球位于使悬线呈水平的位置A,然后由静止释放,小球运动的平面与B的方向垂直,求小球第一次和第二次经过最低点C 时悬线的拉力F T1和F T2.图8[答案] 3mg -qB 2gl 3mg +qB 2gl[解析] 小球由A 运动到C 的过程中,洛伦兹力始终与v 的方向垂直,对小球不做功,只有重力做功,由动能定理有mgl =12m v 2C ,解得v C =2gl .在C 点,由左手定则可知洛伦兹力向上,其受力情况如图①所示. 由牛顿第二定律,有F T1+F 洛-mg =m v 2Cl .又F 洛=q v C B ,所以F T1=3mg -qB 2gl .同理可得小球第二次经过C 点时,受力情况如图②所示,所以F T2=3mg +qB 2gl . 13.如图9所示,质量为m =1kg 、电荷量为q =5×10-2C 的带正电的小滑块,从半径为R =0.4m 的光滑绝缘14圆弧轨道上由静止自A 端滑下.整个装置处在方向互相垂直的匀强电场与匀强磁场中.已知E =100V /m ,方向水平向右,B =1 T ,方向垂直纸面向里,g =10 m/s 2.图9求:(1)滑块到达C 点时的速度; (2)在C 点时滑块所受洛伦兹力. [答案] (1)2m/s ,方向水平向左 (2)0.1N ,方向竖直向下[解析] 以滑块为研究对象,自轨道上A 点滑到C 点的过程中,受重力mg ,方向竖直向下;静电力qE ,方向水平向右;洛伦兹力F 洛=q v B ,方向始终垂直于速度方向. (1)滑块从A 到C 的过程中洛伦兹力不做功,由动能定理得 mgR -qER =12m v 2C得v C =2(mg -qE )Rm=2m/s.方向水平向左. (2)根据洛伦兹力公式得:F =q v C B =5×10-2×2×1N =0.1N , 方向竖直向下.。
高三物理课时作业(35)(磁场对运动电荷的作用力)班级 姓名1.质谱仪的两大重要组成部分是加速电场和偏转磁场,如图为质谱仪的原理图。
设想有一个静止的质量为m 、 带电量为q 的带电粒子(不计重力) ,经电压为U 的加速电场加速后垂直进入磁感应强度为B 的偏转磁场中,带电粒子打到底片上的P 点,设OP =x ,则在图中能正确反映x 与U 之间的函数关系的是( )2.如图所示,摆球带负电荷的单摆,在一匀强磁场中摆动,匀强磁场的方向垂直纸面向里,摆球在AB 间摆动过程中,由A 摆到最低点C 时,摆线拉力的大小为F 1,摆球加速度大小为a 1;由B 摆到最低点C 时,摆线拉力的大小为F 2,摆球加速度大小为a 2,则( )A .F 1>F 2,a 1=a 2B .F 1<F 2,a 1=a 2C .F 1>F 2,a 1>a 2D .F 1<F 2,a 1<a 23.半径为r 的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A 点以速度v 0垂直于磁场方向射入磁场中,并从B 点射出。
∠AOB =120°,如图所示,则该带电粒子在磁场中运动的时间为( )A.2πr3v 0B.23πr 3v 0C.πr 3v 0D.3πr 3v 04.如图所示,在x >0、y >0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于Oxy 平面向里,大小为B 。
现有一质量为m 、电荷量为q 的带电粒子,在x 轴上到原点的距离为x 0的P 点,以平行于y 轴的初速度射入此磁场,在磁场力作用下沿垂直于y 轴的方向射出此磁场,不计重力的影响。
由这些条件可知下列判断错误的是( )A .能确定粒子通过y 轴时的位置B .能确定粒子速度的大小C .能确定粒子在磁场中运动所经历的时间D .以上三个判断都不对5.如图所示,长为L 、间距为d 的平行金属板间,有垂直于纸面向里的匀强磁场,磁感应强度为B ,两板不带电,现有质量为m 、电荷量为q 的带正电粒子(重力不计),从左侧两极板的中心处以不同速率v 水平射入,欲使粒子不打在板上,求粒子速率v 应满足什么条件?高三物理课时作业(35)答案1、解析:带电粒子先经加速电场加速,故qU =12m v 2,进入磁场后偏转,OP =x =2r =2m v qB ,两式联立得OP =x =8mUB 2q∝U ,所以B 正确。
课后课时精练1.下列说法中正确的是( )A.光波和物质波都是概率波B.实物粒子不具有波动性C.光的波动性是光子之间彼此作用引发的D.光通过狭缝后在屏上形成明暗相间的条纹,光子在空间出现的概率可以通过波动规律肯定E.粒子的动量越大,其波动性越易观察F.因实物粒子具有波动性,故其轨迹是波浪线解析:实物粒子也具有波动性,B错,光的波动性并非是由光子之间的彼此作用引发的,C 错,实物粒子的波动性不是指其轨迹是波浪线,F错。
粒子动量越大,波长越短波动性越不明显,D错。
答案:AD2.有关经典物理学中的粒子,下列说法正确的是( )A.有必然的大小,但没有必然的质量B.有必然的质量,但没有必然的大小C.既有必然的大小,又有必然的质量D.有的粒子还有必然量的电荷解析:按照经典物理学关于粒子的理论概念得C、D正确。
答案:CD3.按照不肯定性关系ΔxΔp≥h4π,判断下列说法正确的是( )A. 采取办法提高测量Δx精度时,Δp的精度下降B. 采取办法提高测量Δx精度时,Δp的精度上升C. Δx与Δp测量精度与测量仪器及测量方式是不是完备有关D. Δx与Δp测量精度与测量仪器及测量方式是不是完备无关解析:不肯定性关系表明无论采用什么方式试图肯定坐标和相应动量中的一个,必然引发另一个较大的不肯定性,这样的结果与测量仪器及测量方式是完备无关,无论如何改善测量仪器和测量方式,都不可能逾越不肯定关系所给出的限度。
故A、D正确。
答案:AD4.如下图所示,弧光灯发出的光经一狭缝后,在锌板上形成亮暗相间的条纹,与锌板相连的验电器的铝箔有张角,则该实验不能证明( )A .光具有波动性B .从锌板上逸出带正电的粒子C .光能发生衍射D .光具有波粒二象性解析:在锌板形成明暗相间的条纹,证明光发生了衍射,也说明了光具有波动性,与锌板相连的验电器的铝箔有张角,证明了光电效应的发生,说明了光粒子性的一面,因此,证明了光具有波粒二象性。
答案:B5.经150 V 电压加速的电子束沿同一方向射出,穿过铝箔后射到其后的屏上,则( ) A .所有电子的运动轨迹均相同B .所有电子抵达屏上的位置坐标均相同C .电子抵达屏上的位置坐标可用牛顿运动定律肯定D .电子抵达屏上的位置受波动规律支配,无法用肯定的坐标来描述它的位置解析:电子属于微观粒子,由不肯定关系可知A 、B 、C 均错。
课时作业(三十五)1.(2012·济宁模拟)水平放置的金属框架cdef 处于如图所示的匀强磁场中,金属棒ab 处于粗糙的框架上且接触良好,从某时刻开始,磁感应强度均匀增大,金属棒ab 始终保持静止,则 ( )A .ab 中电流增大,ab 棒所受摩擦力增大B .ab 中电流不变,ab 棒所受摩擦力不变C .ab 中电流不变,ab 棒所受摩擦力增大D .ab 中电流增大,ab 棒所受摩擦力不变[解析] 由法拉第电磁感应定律E =ΔΦΔt =ΔB Δt·S 知,磁感应强度均匀增大,则ab 中感应电动势和电流不变,由F f =F 安=BIL 知摩擦力增大,选项C 正确.[答案] C2.如图所示,闭合金属线框从一定高度自由下落进入匀强磁场中,磁场足够大,从ab 边开始进入磁场到cd 边刚进入磁场的这段时间内,线框运动的速度-时间图象不可能是[解析] 当ab 边刚进入磁场时,若线框所受安培力等于重力,则线框在从ab 边开始进入磁场到cd 边刚进入磁场前做匀速运动,故A 是可能的;当ab 边刚进入磁场时,若线框所受安培力小于重力,则线框做加速度逐渐减小的加速运动,最后可能做匀速运动,故C 情况也可能;当ab 边刚进入磁场时,若线框所受安培力大于重力,则线框做加速度逐渐减小的减速运动,最后可能做匀速运动,故D 可能;线框在磁场中不可能做匀变速运动,故B 项是不可能的,故选B.[答案] B3.如右图所示,在粗糙绝缘水平面上有一正方形闭合线框abcd ,其边长为l ,质量为m ,金属线框与水平面的动摩擦因数为μ.虚线框a ′b ′c ′d ′内有一匀强磁场,磁场方向竖直向下.开始时金属线框的ab 边与磁场的d ′c ′边重合.现使金属线框以初速度v 0沿水平面滑入磁场区域,运动一段时间后停止,此时金属线框的dc 边与磁场区域的d ′c ′边距离为l .在这个过程中,金属线框产生的焦耳热为( ) A.12mv 20+μmgl B.12mv 20-μmgl C.12mv 20+2μmgl D.12mv 20-2μmgl [解析] 依题意知,金属线框移动的位移大小为2l ,此过程中克服摩擦力做功为2μmgl ,由能量守恒定律得金属线框中产生的焦耳热为Q =12mv 20-2μmgl ,故选项D 正确. [答案] D4.如图(甲)、(乙)、(丙)中,除导体棒ab 可动外,其余部分均固定不动,(甲)图中的电容器C 原来不带电.设导体棒、导轨和直流电源的电阻均可忽略,导体棒和导轨间的摩擦也不计,图中装置均在水平面内,且都处于方向垂直水平面(即纸面)向下的匀强磁场中,导轨足够长.现给导体棒ab 一个向右的初速度v 0,在(甲)、(乙)、(丙)三种情况下导体棒ab 的最终运动状态是 ( )A .三种情形下导体棒ab 最终都做匀速运动B .(甲)、(丙)中,ab 棒最终将以不同速度做匀速运动;(乙)中,ab 棒最终静止C .(甲)、(丙)中,ab 棒最终将以相同速度做匀速运动;(乙)中,ab 棒最终静止D .三种情形下导体棒ab 最终都静止[解析] 题图(甲)中ab 棒运动后给电容器充电,当充电完成后,棒以一个小于v 0的速度向右匀速运动.题图(乙)中构成了回路,最终棒的动能完全转化为电热,棒停止运动.题图(丙)中棒先向右减速为零,然后反向加速至匀速.故正确选项为B.[答案] B5.(2012·温州模拟)如图所示电路,两根光滑金属导轨,平行放置在倾角为θ的斜面上,导轨下端接有电阻R ,导轨电阻不计,斜面处在竖直向上的匀强磁场中,电阻可略去不计的金属棒ab 质量为m ,受到沿斜面向上且与金属棒垂直的恒力F 的作用,金属棒沿导轨匀速下滑,则它在下滑高度h 的过程中,以下说法正确的是A .作用在金属棒上各力的合力做功为零B .重力做的功等于系统产生的电能C .金属棒克服安培力做的功等于电阻R 上产生的焦耳热D .金属棒克服恒力F 做的功等于电阻R 上产生的焦耳热[解析] 根据动能定理可知,合力做的功等于动能的变化量,故选项A 正确;重力做的功等于重力势能的变化量,重力做的功等于克服F 所做的功与产生的电能之和,而克服安培力所做的功等于电阻R 上产生的焦耳热,故选项B 、D 均错误,C 正确.[答案] AC6.如右图所示,匀强磁场的磁感应强度为B ,方向竖直向下,在磁场中有一个边长为L 的正方形刚性金属框,ab 边的质量为m ,电阻为R ,其他三边的质量和电阻均不计.cd 边上装有固定的水平轴,将金属框自水平位置由静止释放,第一次转到竖直位置时,ab 边的速度为v ,不计一切摩擦,重力加速度为g ,则在这个过程中,下列说法正确的是A .通过ab 边的电流方向为a →bB .ab 边经过最低点时的速度v =2gLC .a 、b 两点间的电压逐渐变大D .金属框中产生的焦耳热为mgL -12mv 2 [解析] ab 边向下摆动过程中,磁通量逐渐减小,根据楞次定律及右手定则可知感应电流方向为b →a ,选项A 错误;ab 边由水平位置到达最低点过程中,机械能不守恒,所以选项B 错误;金属框摆动过程中,ab 边同时受安培力作用,故当重力与安培力沿其摆动方向分力的合力为零时,a 、b 两点间电压最大,选项C 错误;根据能量转化和守恒定律可知,金属框中产生的焦耳热应等于此过程中机械能的损失,故选项D 正确.[答案] D7.如右图所示,光滑的“Π”形金属导体框竖直放置,质量为m 的金属棒MN 与框架接触良好.磁感应强度分别为B 1、B 2的有界匀强磁场方向相反,但均垂直于框架平面,分别处在abcd 和cdef 区域.现从图示位置由静止释放金属棒MN ,当金属棒进入磁场B 1区域后,恰好做匀速运动.以下说法中正确的是 ( )A .若B 2=B 1,金属棒进入B 2区域后将加速下滑B .若B 2=B 1,金属棒进入B 2区域后仍将保持匀速下滑C .若B 2<B 1,金属棒进入B 2区域后将先加速后匀速下滑D .若B 2>B 1,金属棒进入B 2区域后将先减速后匀速下滑[解析] 当金属棒MN 进入磁场B 1区域时,金属棒MN 切割磁感线而使回路中产生感应电流,当金属棒MN 恰好做匀速运动时,其重力和安培力平衡,即有B 21l 2v R=mg .金属棒MN 刚进入B 2区域时,速度仍为v ,若B 2=B 1,则仍满足B 22l 2v R=mg ,金属棒MN 仍保持匀速下滑,选项A 错误,B 正确;若B 2<B 1,则金属棒MN 刚进入B 2区域时B 22l 2v R<mg ,金属棒MN 先加速运动,当速度增大到使安培力等于mg 时,金属棒MN 在B 2区域内匀速下滑,故选项C 正确;同理可知选项D 也正确.[答案] BCD9.如图所示,水平地面上方矩形区域内存在垂直纸面向里的匀强磁场,两个边长相等的单匝闭合正方形线圈Ⅰ和Ⅱ,分别用相同材料、不同粗细的导线绕制(Ⅰ为细导线).两线圈在距磁场上界面h 高处由静止开始自由下落,再进入磁场,最后落到地面.运动过程中,线圈平面始终保持在竖直平面内且下边缘平行于磁场上边界.设线圈Ⅰ、Ⅱ落地时的速度大小分别为v 1、v 2,在磁场中运动时产生的热量分别为Q 1、Q 2.不计空气阻力,则A .v 1<v 2,Q 1<Q 2B .v 1=v 2,Q 1=Q 2C .v 1<v 2,Q 1>Q 2D .v 1=v 2,Q 1<Q 2[解析] 线圈进入磁场前机械能守恒,进入磁场时速度均为v =2gh ,设线圈材料的密度为ρ1,电阻率为ρ2,线圈边长为L ,导线横截面积为S ,则线圈的质量m =ρ14LS ,电阻R =ρ24LS ,由牛顿第二定律得mg -B 2L 2v R =ma ,解得a =g -B 2v 16ρ1ρ2,可见两线圈在磁场中运动的加速度相同,两线圈落地时速度相同,即v 1=v 2,故A 、C 选项错误;线圈在磁场中运动时产生的热量等于克服安培力做的功,Q =W 安,而F 安=B 2L 2v R =B 2Lv 4ρ2S ,线圈Ⅱ横截面积S 大,F 安大,故Q 2>Q 1,故选项D 正确,B 错误.[答案] D10.(2012·海淀一模)光滑平行金属导轨M 、N 水平放置,导轨上放一根与导轨垂直的导体棒PQ .导轨左端与由电容为C 的电容器、单刀双掷开关和电动势为E 的电源组成的电路相连接,如图所示.在导轨所在的空间存在方向垂直于导轨平面的匀强磁场(图中未画出).先将开关接在位置a ,使电容器充电并达到稳定后,再将开关拨到位置b ,导体棒将会在磁场的作用下开始向右运动,设导轨足够大,则以下说法中正确的是A .空间存在的磁场方向竖直向下B .导体棒向右做匀加速运动C .当导体棒向右运动的速度达到最大值,电容器的电荷量为零D .导体棒运动的过程中,通过导体棒的电荷量Q <CE[解析] 充电后电容器的上极板带正电,将开关拨向位置b ,PQ 中的电流方向是由P →Q ,由左手定则判断可知,导轨所在处磁场的方向竖直向下,选项A 正确;随着放电的进行,导体棒速度增大,由于它所受的安培力大小与速度有关,所以由牛顿第二定律可知导体棒不能做匀加速运动,选项B 错误;运动的导体棒在磁场中切割磁感线,由右手定则判断可知,感应电动势方向由Q →P ,当其大小等于电容器两极板间电势差大小时,导体棒速度最大,此时电容器的电荷量并不为零,故选项C 错误;由以上分析可知,导体棒从开始运动到速度达到最大时,电容器所带电荷量并没有放电完毕,故通过导体棒的电荷量Q <CE ,选项D 正确.[答案] AD11.如图所示,足够长的光滑平行金属导轨cd 和ef ,水平放置且相距L ,在其左端各固定一个半径为r 的四分之三光滑金属圆环,两圆环面平行且竖直.在水平导轨和圆环上各有一根与导轨垂直的金属杆,两金属杆与水平导轨、金属圆环形成闭合回路,两金属杆质量均为m ,电阻均为R ,其余电阻不计.整个装置放在磁感应强度大小为B 、方向竖直向上的匀强磁场中.当用水平向右的恒力F =3mg 拉细杆a ,达到匀速运动时,杆b 恰好静止在圆环上某处,试求:(1)杆a 做匀速运动时,回路中的感应电流;(2)杆a 做匀速运动时的速度;(3)杆b 静止的位置距圆环最低点的高度.[解析] (1)匀速时,拉力与安培力平衡,F =BIL得:I =3mgBL(2)金属棒a 切割磁感线,产生的电动势E =BLv回路中电流I =E 2R联立得:v =23mgR B 2L2 (3)设平衡时棒b 和圆心的连线与竖直方向的夹角为θ则tan θ=Fmg=3,得θ=60° h =r (1-cos θ)=r 2[答案] (1)3mg BL (2)23mgR B 2L 2 (3)r 212.(2012·安徽六校联考)相距L =1.5 m 的足够长金属导轨竖直放置,质量为m 1=1 kg 的金属棒ab 和质量为m 2=0.27 kg 的金属棒cd 均通过棒两端的套环水平地套在金属导轨上,如图(甲)所示,虚线上方磁场方向垂直纸面向里,虚线下方磁场方向竖直向下,两处磁场磁感应强度大小相同.ab 棒光滑,cd 棒与导轨间动摩擦因数为μ=0.75,两棒总电阻为1.8 Ω,导轨电阻不计.ab 棒在方向竖直向上、大小按图(乙)所示规律变化的外力F 作用下,从静止开始沿导轨匀加速运动,同时cd 棒也由静止释放.(g =10 m/s 2)(1)求磁感应强度B 的大小和ab 棒加速度的大小;(2)已知在2 s 内外力F 做功40 J ,求这一过程中两金属棒产生的总焦耳热;(3)判断cd 棒将做怎样的运动,求出cd 棒达到最大速度所需的时间t 0,并在图(丙)中定性画出cd 棒所受摩擦力F f cd 随时间变化的图象.[解析] (1)经过时间t ,ab 棒的速率:v =at ,此时,回路中的感应电流为:I =E R =BLv R, 对ab 棒,由牛顿第二定律得:F -BIL -m 1g =m 1a ,由以上各式整理得:F =m 1a +m 1g +B 2L 2Rat , 在题图(乙)图线上取两点:t 1=0,F 1=11 N ;t 2=2 s ,F 2=14.6 N ,代入上式得a =1 m/s 2,B =1.2 T.(2)在2 s 末ab 棒的速率v 1=at =2 m/s ,所发生位移x =12at 2=2 m , 由动能定理得 W F -m 1gx -W 安=12m 1v 21,又Q =W 安,联立以上方程,解得:Q =18 J.(3)cd 棒先做加速度逐渐减小的加速运动,当cd 棒所受重力与滑动摩擦力相等时,速度达到最大;然后做加速度逐渐增大的减速运动,最后停止运动.当cd 棒速度达到最大时,有m 2g =μF N 又F N =F 安,F 安=BIL ,I =E R =BLv m R,v m =at 0,整理解得: t 0=m 2gR μB 2L 2a=2 s. F f cd 随时间变化的图象如图所示.[答案] (1)1.2 T 1 m/s 2(2)18 J (3)见解析。
课时作业三十五分钟:45分钟满分:100分一、选择题每小题7分,共63分1.2022·安徽高考一边沿轴正方向传播的简谐横波,某时刻的波形如图所示.0.25 m0.1 m10 cm30 cm50 cm70 cm0.25 m50 cm 4 m6 m4m4 m 1 m1 m2 mB.波速为1 m/C.3 末A、B两质点的位移相同D.1 末A质点的振动速度大于B质点的振动速度[解析] 由A、B两质点的振动图象及传播可画出t=0时刻的波动图象如图所示,由此可得λ=错误! m,A正确;由振动图象得周期T=4 ,故v=错误!=错误! m/=错误! m/,B错误;由振动图象知3 末A质点位移为-2 cm,B质点位移为0,故C错误;由振动图象知1 末A质点处于波峰,振动速度为零,B质点处于平衡位置,振动速度最大,故D错误.[答案] A8.如图所示,在平面内有一沿水平轴正方向传播的简谐横波,波速为3.0 m/,频率为H,振幅为×10-2m,已知t=0时刻2m1m2m2m= 1.2 m, 4 km9 km36 km25 km36 km25 km36 km40 cm50 cm20 cm[解析] 1声源靠近A处的人,由多普勒效应知,他接收到的频率变大,即f1>f2;相反,声源远离B处的人,则他接收到的频率变小,即f2<f2Δt=\to50 cm40 cm10 cm20 cm30 cm40 cm70 cm0.4 m2 m4 cm120cm2.5 cm2 m120 cm2.5 cm 3 m4 m=10 m/2由图上可以看出波向右传播,t=0时,离A点最近的波峰在=2 m处,该点距Q点距离为=4 m,因此再经过t1时间,Q点第一次出现波峰,t1=错误!=错误!=3坐标为=3 m的质点此时处在平衡位置,由于波沿轴正方向传播,所以质点向上运动,周期为,所以质点的振动周期也为,从图上可以看出振幅为0.5 m,因此坐标为=3 m的质点的位移与时间关系式为=t=πt[答案] 110 m/ 2 3=πt。
课时作业(四十九)1.下列说法正确的是( )A .α射线与γ射线都是电磁波B .β射线为原子的核外电子电离后形成的电子流C .用加温、加压或改变其化学状态的方法都不能改变原子核衰变的半衰期D .原子核经过衰变生成新核,则新核的质量总等于原核的质量[解析] α射线为粒子流,γ射线为电磁波,故A 错.β射线来自原子核内部,不是核外电子电离产生的,故B 错.据放射性元素的衰变规律可知C 项正确,D 错误.[答案] C2.14C 测年法是利用14C 衰变规律对古生物进行年代测定的方法,若以横坐标t 表示时间,纵坐标m 表示任意时刻14C 的质量,m 0为t =0时14C 的质量.下面四幅图中能正确反映14C 衰变规律的是 ( )[解析] 由公式m =m 0·(12)tτ并结合数学知识可知C 正确.[答案] C3.原子核A Z X 与氘核21H 反应生成一个α粒子和一个质子.由此可知 ( ) A .A =2,Z =1 B .A =2,Z =2 C .A =3,Z =3D .A =3,Z =2[解析] 写出核反应方程:AZ X +21H→42He +11H ,由质量数守恒和电荷数守恒,列方程:A +2=4+1,Z +1=2+1,解得:A =3,Z =2,故选项D 正确.[答案] D4.(2012·绍兴检测)我国最新一代核聚变装置“EAST”在安徽合肥首次放电、显示了EAST 装置具有良好的整体性能,使等离子体约束时间达1000 s ,温度超过1亿度,标志着我国磁约束核聚变研究进入国际先进水平.合肥也成为世界上第一个建成此类全超导非圆截面核聚变实验装置并能实际运行的地方.核聚变的主要原料是氘,在海水中含量极其丰富.已知氘核的质量为m 1,中子的质量为m 2,32He 的质量为m 3,质子的质量为m 4,则下列说法中正确的是( )A .两个氘核聚变成一个32He 所产生的另一个粒子是质子 B .两个氘核聚变成一个32He 所产生的另一个粒子是中子 C .两个氘核聚变成一个32He 所释放的核能为(2m 1-m 3-m 4)c 2D .与受控核聚变比较,现行的核反应堆产生的废物具有放射性[解析] 由核反应方程知221H ―→32He +10X ,X 应为中子,释放的核能应为ΔE =(2m 1-m 3-m 2)c 2,聚变反应的污染非常小.而现实运行的裂变反应的废料具有很强的放射性,故A 、C 错误,B 、D 正确.[答案] BD5.(2012·西安检测)由于放射性元素23793Np 的半衰期很短,所以在自然界一直未被发现,只是在使用人工的方法制造后才被发现.已知23793Np 经过一系列α衰变和β衰变后变成20983Bi ,下列论断中正确的是( )A.20983Bi 的原子核比23793Np 的原子核少28个中子 B.20983Bi 的原子核比23793Np 的原子核少18个中子 C .衰变过程中共发生了7次α衰变和4次β衰变 D .衰变过程中共发生了4次α衰变和7次β衰变 [解析]20983Bi 的中子数为209-83=126,237 93Np 的中子数为237-93=144,20983Bi 的原子核比23793Np 的原子核少18个中子,A 错、B 对;衰变过程中共发生了α衰变的次数为237-2094=7次,β衰变的次数是2×7-(93-83)=4次,C 对、D 错.[答案] BC6.我国科学家研制“两弹”所涉及的基本核反应方程有: (1)23592U +10n→9038Sr +13654Xe +k 10n ; (2)21H +31H→42He +d 10n ;关于这两个方程,下列说法正确的是 ( )A .方程(1)属于α衰变B .方程(2)属于轻核聚变C .方程(1)中k =10,方程(2)中d =1D .方程(1)中k =6,方程(2)中d =1[解析] 本题考查核反应方程.(1)式为典型的裂变方程,故A 选项错误.(2)为聚变反应,故B 项正确.根据质量数守恒和电荷数守恒定律可得k =10,d =1,故C 选项正确.[答案] BC7.(2012·河北石家庄市模拟)正电子发射型计算机断层显像(PET)的基本原理是:将放射性同位素158O 注入人体,158O 在人体内衰变放出的正电子与人体内的负电子相遇而湮灭转化为一对γ光子,被探测器采集后,经计算机处理生成清晰图象.则根据PET 原理判断下列表述正确的是( )A.158O 在人体内衰变的方程是158O→157N +01e B .正、负电子湮灭的方程是01e + 0-1e→2γ C .在PET 中,158O 主要用途是作为示踪原子 D .在PET 中,15 8O 主要用途是参与人体的新陈代谢[解析] 由题意知A 、B 正确,显像的原理是采集γ光子,即注入人体内的158O 衰变放出正电子和人体内的负电子湮灭转化为γ光子,因此158O 主要用途是作为示踪原子,故C 对,D 错.[答案] ABC8.(2011·天津理综)回旋加速器在核科学、核技术、核医学等高新技术领域得到了广泛应用,有力地推动了现代科学技术的发展.当今医学影像诊断设备PET/CT 堪称“现代医学高科技之冠”,它在医疗诊断中,常利用能放射正电子的同位素碳11作示踪原子.碳11可由小型回旋加速器输出的高速质子轰击氮14获得,同时还会产生另一粒子,试写出核反应方程.若碳11的半衰期τ为20 min ,经2.0 h 剩余碳11的质量占原来的百分之几?(结果取2位有效数字)[解析] 核反应方程为147N +11H ―→11 6C +42He设碳11原有质量为m 0,经过t 1=2.0 h ,剩余的质量为m r ,根据半衰期定义有[答案]147N +11H→11 6C +42He 1.6%9.238 92U 放射性衰变有多种可能途径,其中一种途径是先变成210 83Bi ,而21083Bi 可以经一次衰变变成210a X(X 代表某种元素),也可以经一次衰变变成 b81Ti ,210a X 和 b81Ti 最后都变成20682Pb ,衰变路径如右图所示.则图中( )A .a =84,b =206B .①是β衰变,②是α衰变C .①是α衰变,②是β衰变 D. b81Ti 经过一次α衰变变成20682Pb[解析] 由21083Bi 衰变为210a X ,质量数没有变化,所以①是β衰变,根据核电荷数守恒,同时可判断a =84;由210 83Bi 衰变为 b81Ti ,因为核电荷数减2,可判断②为α衰变,根据质量数守恒,同时可判断b =206,所以A 、B 正确,C 项错误; b81Ti 经过一次β衰变变成20682Pb ,D 项错误.[答案] AB10.(2012·山西太原市调测)钴60是金属元素钴的放射性同位素之一,其半衰期为5.27年.它会通过β衰变放出能量高达315 keV 的高速电子衰变为镍60,同时会放出两束γ射线,其能量分别为1.17 MeV 及1.33 MeV.钴60的应用非常广泛,几乎遍及各行各业.在农业上,常用于辐射育种、食品辐射保藏与保鲜等;在工业上,常用于无损探伤、辐射消毒、辐射加工、辐射处理废物以及自动控制等;在医学上,常用于癌症和肿瘤的放射治疗.关于钴60下列说法正确的是( )A .衰变方程为6027Co→6028Ni + 0-1eB .利用钴60对人体肿瘤进行放射治疗是利用其衰变放出的电子流C .钴60可以作为示踪原子研究人体对药物的吸收D .钴60衰变过程中不会有质量亏损[解析] 据质量数守恒及电荷数守恒,可判断A 项正确.钴60半衰期太长,且衰变放出的高能粒子对人体伤害太大,不能作为药品的示踪原子,C 项不正确;利用钴60对人体肿瘤进行放射治疗是利用其衰变放出的γ射线,因为衰变释放能量,必然存在质量亏损,B 、D 两项都不正确.[答案] A11.太阳中含有大量的氘核,因氘核不断发生核反应释放大量的核能,以光和热的形式向外辐射.已知氘核质量为 2.0136 u ,氦核质量为 3.0150 u ,中子质量为 1.0087 u,1 u 的质量相当于931.5 MeV 的能量则:(1)完成核反应方程:21H +21H→________+10n. (2)求核反应中释放的核能.(3)在两氘核以相等的动能0.35 MeV 进行对心碰撞,并且核能全部转化为机械能的情况下,求反应中产生的中子和氦核的动能.[解析] (1)32He(2)ΔE =Δmc 2=(2×2.0136 u-3.0150 u -1.0087 u)×931.5 MeV=3.26 MeV. (3)两核发生碰撞时:0=Mv 1-mv 2 由能量守恒可得:ΔE +2E k =12Mv 21+12mv 22由以上两式解得:E He =12Mv 21=0.99 MeV ,E 中=12mv 22=2.97 MeV[答案] (1)32He (2)3.26 MeV (3)0.99 MeV 2.97 MeV12.(2012·浙江金丽衢联考)如右图所示,有界的匀强磁场磁感应强度为B =0.05 T ,磁场方向垂直于纸面向里,MN 是磁场的左边界.在磁场中A 处放一个放射源,内装22688Ra ,22688Ra 放出某种射线后衰变成22286Rn.(1)写出上述衰变方程.(2)若A 处距磁场边界MN 的距离OA =1.0 m 时,放在MN 左侧边缘的粒子接收器收到垂直于边界MN 方向射出的质量较小的粒子,此时接收器距过OA 的直线1.0 m .求一个静止22688Ra 核衰变过程中释放的核能有多少?(取1 u =1.6×10-27kg ,e =1.6×10-19C ,结果保留三位有效数字)[解析] (1)22688Ra→22286Rn +42He(2)衰变过程中释放的α粒子在磁场中做匀速圆周运动,半径R =1.0 m ,由2evB =mv 2R得α粒子的速度v =2eBRm,衰变过程中系统动量守恒,222 86Rn 、42He 质量分别为222 u 、4 u ,则222 u×v ′=4 u×v , 得22286Rn 的速度v ′=2111v ,释放的核能E =12×222 u×v ′2+12×4 u×v 2=113e 2B 2R 2222 u代入数据解得E =2.04×10-14J.[答案] (1)22688Ra →22286Rn +42He (2)2.04×10-14J。
(分钟:45分钟满分:100分)一、选择题(每小题7分,共63分)1.(2010·安徽高考)一边沿x轴正方向传播的简谐横波,某时刻的波形如图所示.P 为介质中的一个质点,从该时刻开始的一段极短时间内,P的速度v和加速度a的大小变化情况是( )A.v变小,a变大B.v变小,a变小C.v变大,a变大D.v变大,a变小[解析] 本题主要考查机械波和机械振动的知识,意在考查考生对机械波的传播方向和质点的振动方向关系的理解.由波的传播方向及P点位置,可知P点此时正向平衡位置振动,速度增大,加速度减小.[答案] D2.下列关于简谐运动和简谐波的说法,正确的是( )A.媒质中质点振动的周期一定和相应的波的周期相等B.媒质中质点振动的速度一定和相应的波的波速相等C.波的传播方向一定和媒质中质点振动的方向一致D.横波的波峰与波谷在振动方向上的距离一定是质点振幅的两倍[解析] 波传播过程中每个质点都在前面质点的驱动力作用下做受迫振动,A正确.波速是波在介质中传播的速度,在同种均匀介质中波速是个常量;质点振动速度随质点振动所处位置不断变化,B、C错误.波峰、波谷分别是平衡位置上方、下方最大位移处,而振幅是振动中偏离平衡位置的最大距离,D正确.[答案] AD3.同一音叉发出的声波同时在水和空气中传播,某时刻的波形曲线如下图所示.以下说法正确的是( )A.声波在水中波长较大,b是水中声波的波形曲线B.声波在空气中波长较大,b是空气中声波的波形曲线C.水中质点振动频率较高,a是水中声波的波形曲线D.空气中质点振动频率较高,a是空气中声波的波形曲线[解析] 波的频率取决于波源的振动频率,与介质无关,故同一音叉发出的声波在水中与在空气中传播时频率相同.但机械波在介质中传播的速度只取决于介质性质,与波的频率无关.声波在水中传播的速度大于在空气中传播的速度,再由v=λf知,声波应在水中的波长较大,对应于题图中波形曲线b,故只有A正确.[答案] A4.如图所示,实线为一列横波某时刻的波形图象,这列波的传播速度为0.25 m/s ,经过时间1 s 后的波形为虚线所示.那么这列波的传播方向与这段时间内质点P (x =0.1 m 处)所通过的路程是( )A .向左,10 cmB .向右,30 cmC .向左,50 cmD .向右,70 cm[解析] 波的传播距离x =vt =0.25 m =54λ,故波向左传播,P 所通过的路程为5倍振幅,即50 cm.[答案] C5.(2011·邯郸模拟)一列简谐波沿x 轴传播,某时刻的波形如图所示.关于波的传播方向与质点a 、b 、c 、d 、e 、f 的运动情况,下列说法正确的是( )A .若波沿x 轴正方向传播,则质点a 此时的速度方向与加速度方向相同B .若波沿x 轴正方向传播,再过半个周期,质点b 将运动到质点a 现在的位置C .若质点c 此时的速度方向向下,则波沿x 轴正方向传播D .若质点f 比质点e 先回到平衡位置,则波沿x 轴正方向传播[解析] 若波沿x 轴正方向传播,此时刻,质点a 的速度方向沿y 轴负方向。
第2节 放射性元素的衰变1.衰变:原子核放出α粒子或β粒子,变成另一种新的________,这种变化叫做原子 核的衰变.衰变的类型:原子核的自发衰变有两种,一种是______衰变,一种是______衰变.而γ 射线是伴随着α衰变或β衰变时产生的.2.衰变方程: 在衰变过程中遵守________守恒和________守恒.3.半衰期:放射性元素的原子核有______发生衰变所需的时间,叫做这种元素的半衰期.根据半衰期的概念可得:剩余原子核数目:N 余=N 原(12)t τ,剩余元素质量m 余=m 原(12)tτ.半衰期由放射性元素的______________的因素决定,跟原子所处的物理状态(如压强、温度等)或化学状态(如单质或化合物)无关.不同的放射性元素,半衰期______. 4.对天然放射现象,下列说法中正确的是( )A .α粒子带正电,所以α射线一定是从原子核中射出的B .β粒子带负电,所以β粒子有可能是核外电子C .γ射线是光子,所以γ射线有可能是原子发光产生的D .α射线、β射线、γ射线都是从原子核内部释放出来的 5.一个放射性原子核,发生一次β衰变,则它的( ) A .质子数减少一个,中子数不变 B .质子数增加一个,中子数不变C .质子数增加一个,中子数减少一个D .质子数减少一个,中子数增加一个6.下列关于放射性元素的半衰期的几种说法,正确的是( ) A .同种放射性元素,在化合物中的半衰期比单质中长 B .把放射性元素放在低温处,可以减缓放射性元素的衰变C .放射性元素的半衰期与元素所处的物理和化学状态无关,它是一个统计规律,只对 大量的原子核适用D .氡的半衰期是3.8天,若有4个氡原子核,则经过7.6天后就只剩下一个【概念规律练】知识点一 原子核的衰变1.放射性元素发生β衰变时所释放的电子是( ) A .原子最外层电子 B .原子的最内层电子C .原子核内的中子变化为质子时产生的电子D .原子核内的质子变化为中子时产生的电子2.原子核238 92U 经放射性衰变①变为原子核23490Th ,继而经放射性衰变②变为原子核234 91Pa ,再经放射性衰变③变为原子核23492U .放射性衰变①、②和③依次为( ) A .α衰变、β衰变和β衰变 B .β衰变、α衰变和β衰变C.β衰变、β衰变和α衰变D.α衰变、β衰变和α衰变知识点二半衰期3.关于半衰期,下面各种说法中正确的是()A.所有放射性元素都有一定的半衰期,半衰期的长短与元素的质量有关B.半衰期是放射性元素的原子核有半数发生衰变需要的时间C.一块纯净的放射性元素的矿石,经过一个半衰期以后,它的总质量仅剩下一半D.放射性元素在高温和高压的情况下,半衰期要变短,但它与其他物质化合后,半衰期要变长4.若放射性元素A的半衰期为4天,放射性元素B的半衰期为5天,则相同质量的放射性元素A和B经过20天,剩下的两元素质量的比m A∶m B为()A.30∶31 B.31∶30C.1∶2 D.2∶1【方法技巧练】一、α、β衰变次数的确定方法5.放射性同位素钍232经α、β衰变会生成氡,其衰变方程为23290Th→22086Rn+xα+yβ,其()A.x=1,y=3B.x=2,y=3C.x=3,y=1 D.x=3,y=26.天然放射性元素(钍)经过一系列α衰变和β衰变之后,变成(铅).下列论断中正确的是()A.衰变过程共有6次α衰变和4次β衰变B.铅核比钍核少8个质子C.β衰变所放出的电子来自原子核外轨道D.钍核比铅核多24个中子二、半衰期在考古学中的应用方法7.某考古队发现一古生物骸骨.考古专家根据骸骨中146C的含量推断出了该生物死亡的年代,已知此骸骨中146C的含量为活着的生物体中146C的1/4,146C的半衰期为5 730年,该生物死亡时距今约________年.1.由原子核的衰变规律可知()A.放射性元素一次衰变可同时产生α射线和β射线B.放射性元素发生β衰变时,新核的化学性质不变C.放射性元素发生衰变的速率跟它所处的物理、化学状态无关D.放射性元素发生正电子衰变时,新核质量数不变,核电荷数增加12.下列关于放射性元素半衰期的几种说法中,正确的是()A.利用半衰期,我们能预言某个原子核何时发生衰变B.我们不能预计为数很少的原子核(如几个或几十个)衰变掉一半需要多少时间C.同种放射性元素在化合物中的半衰期比在单质中长D.升高温度可以使半衰期缩短3.某放射性元素的原子核A经α衰变得到新核B,B经β衰变得到新核C,则() A.原子核C的中子数比A少2B.原子核C的质子数比A少1C.原子核C的中子数比B多1D.原子核C的质子数比B少14.下列说法中正确的是()A .把放射性元素放在低温处,可以减缓放射性元素的衰变B .把放射性元素同其他稳定元素结合变成化合物,放射性元素的半衰期不变C .半衰期是放射性元素的原子核全部衰变所需时间的一半D .某一铅的矿石中发现有20个氡原子核,经过3.8天(氡的半衰期),此矿石中只剩下 10个氡原子核5.铀裂变的产物之一氪90(9036Kr )是不稳定的,它经过一系列衰变最终成为稳定的锆90(9040 Zr ),这些衰变是( )A .1次α衰变,6次β衰变B .4次β衰变C .2次α衰变D .2次α衰变,2次β衰变6.放射性原子核经3次α衰变和2次β衰变后,新原子核中含有的中子数是( ) A .226 B .138 C .92 D .887.朝鲜“核危机”的焦点问题是朝鲜核电站采用轻水堆还是重水堆,重水堆核电站在发电的同时还可以生产出可供研制核武器的钚239(239 94Pu ),这种239 94Pu 可由铀239(23992U )经过 n 次β衰变而产生,则n 为( ) A .2 B .239 C .145 D .928.一个氡核222 86Rn 衰变成钋核21884Po 并放出一个粒子,其半衰期为3.8天.1 g 氡经过7.6天衰变掉氡的质量,以及222 86Rn 衰变成21884Po 的过程放出的粒子是( ) A .0.25 g ,α粒子 B .0.75 g ,α粒子 C .0.25 g ,β粒子 D .0.75 g ,β粒子9.本题中用大写字母代表原子核.E 经α衰变成为F ,再经β衰变成为G ,再经α衰变成为H .上述系列衰变可记为下式: E ――→αF ――→βG ――→αH 另一系列衰变如下:P ――→βQ ――→βR ――→αS已知P 是F 的同位素,则( )A .Q 是G 的同位素,R 是H 的同位素B .R 是E 的同位素,S 是F 的同位素C .R 是G 的同位素,S 是H 的同位素D .Q 是E 的同位素,R 是F 的同位素图110.在垂直于纸面的匀强磁场中,有一原来静止的原子核,该核衰变后,放出的带电粒 子和反冲核的运动轨迹分别如图1中a 、b 所示,由图可以判定( ) A .该核发生的是α衰变 B .该核发生的是β衰变C .磁场方向一定垂直纸面向里(1)→+( )____________; (2)→+( )____________.12.静止状态的镭原子核经一次α衰变后变成一个新核 (1)写出衰变方程式;(2)若测得放出的α粒子的动能为E 1,求反冲核的动能E 2及镭核衰变时放出的总能量E.第2节 放射性元素的衰变课前预习练1.原子核 α β2.42He0-1e 质量数 电荷数 3.半数 原子核内部自身 不同4.AD [α衰变的实质是原子核中的两个质子和两个中子结合在一起形成一个氦核发射出来的,β衰变的实质是原子核内的一个中子变成一个质子和电子,然后释放出电子,γ射线是伴随α衰变和β衰变产生的,所以这三种射线都是从原子核内部释放出来的.]5.C [β衰变的实质是一个中子变成一个质子和一个电子,故中子减少一个而质子增加一个,故A 、B 、D 错,C 对.]6.C [放射性元素的半衰期与其是单质还是化合物无关,与所处的物理、化学状态无关,只取决于原子核的内部因素,故A 、B 错;半衰期是一个统计规律,对于少量的原子核不适用,故C 对,D 错.] 课堂探究练1.C [β衰变的实质是核内的中子转化为一个质子和一个电子,其转化方程是10n →11H+ 0-1e ,转化出的电子射到核外,就是β粒子,所以答案为C .]2.A [原子核238 92U 依次经①、②、③放射性衰变的衰变方程为238 92U ―→234 90Th +42He ① 234 90Th ―→234 91Pa + 0-1e ② 234 91Pa ―→234 92U + 0-1e ③所以A 选项正确.]3.B [半衰期是放射性元素的原子核有半数发生衰变所需的时间,是表明放射性元素原子核衰变快慢的物理量,与元素的质量无关,故B 项正确.]4.C [设开始时元素A 、B 的质量都为m ,经过20天,对元素A 来说有5个半衰期,A 剩下的质量为m A =⎝⎛⎭⎫125m ,对元素B 来说有4个半衰期,B 剩下的质量为m B=⎝⎛⎭⎫124m ,所以剩下的质量之比为1∶2.所以正确选项是C .]5.D [根据衰变方程左右两边的质量数和电荷数守恒可列方程⎩⎪⎨⎪⎧232=220+4x90=86+2x -y ,解得x =3,y =2.故答案为D .]方法总结 为了确定衰变次数,一般是由质量数的改变先确定α衰变的次数,这是因为β衰变次数的多少对质量数没有影响,然后再根据衰变规律确定β衰变的次数.6.AB [由于β衰变不会引起质量数的减少,故可先根据质量数的减少确定α衰变的次数为:x =232-2084=6,再结合核电荷数的变化情况和衰变规律来判定β衰变的次数应满足:2x -y =90-82=8,故y =2x -8=4.钍232核中的中子数为232-90=142,铅208核中的中子数为208-82=126,所以钍核比铅核多16个中子,铅核比钍核少8个质子.由于物质的衰变与元素的化学状态无关,所以β衰变所放出的电子来自原子核内10n →11H +0-1e .所以选项A 、B 正确.]方法总结 对于α、β衰变要会写出相应核反应方程式的通式,并要知道α、β衰变的本质.核反应方程式应遵循质量数守恒和电荷数守恒,并非质量守恒和质子数或核电荷数守恒.7.11 460解析 由题意知,所求时间为14 6C 的两个半衰期. 即t =2×5 730=11 460(年) 课后巩固练1.C [一次衰变不可能同时产生α射线和β射线,只可能同时产生α射线和γ射线或β射线和γ射线;原子核发生衰变后,新核的核电荷数发生了变化,故新核(新的物质)的化学性质应发生改变;发生正电子衰变,新核质量数不变,核电荷数减少1.]2.B [半衰期是大量放射性原子核衰变的统计规律,对某个原子核或少数原子核不成立,其半衰期与其存在形式、环境、温度无关.]3.B [每发生一次α衰变则原子核少2个中子2个质子,每发生一次β衰变,原子核少1个中子多1个质子,因此C 比A 的中子数少3,质子数少1,故A 错,B 对.C 比B 质子数多1,中子数少1,故C 、D 错.]4.B [放射性元素的半衰期与其化学、物理状态无关,仅由原子核的内部结构决定,故A 错,B 正确.半衰期遵循统计规律,对大量的原子核才适用,故D 错.半衰期是指大量原子核有半数发生衰变所需的时间,故C 错.]5.B [发生一次α衰变质量数减4,质子数减2,发生一次β衰变质量数不变,质子数加1,由于衰变后质量数不变,质子数加4,故发生了4次β衰变,答案选B .]6.B [由衰变方程→342He +2 +知,原子核中含有226-88=138(个)中子,B 项正确.] 7.A [经β衰变而成时质量数不变,核电荷数增加,则n =94-92=2,故选A 项.] 8.B [由半衰期公式得m 余=m 原7.63.812骣琪琪桫=14m 原,所以衰变掉的氡的质量为34m 原=0.75 g ,衰变方程为:222 86Rn →218 84Po +42X ,所以衰变出的粒子是α粒子.]9.B10.BD [核衰变放出的带电粒子和反冲核速度方向相反,根据左手定则,若是正粒子,受洛伦兹力方向相反.在磁场中做匀速圆周运动,两圆轨道外切,因图中两圆内切,粒子应带负电,即该核发生的是β衰变.匀强磁场的方向可能向里也可能向外.]11.(1)0-1e β衰变 (2)42He α衰变12.(1)→+42He (2)156E 1 5756E 1解析 (1)→+42He .(2)由动量守恒定律得m 1v 1-m 2v 2=0,式中m 1、m 2,v 1、v 2分别为α粒子及新核的质量和速度,则反冲核的动能为:E 2=12m 2v 22=12m 2(m 1v 1m 2)2=E 1·m 1m 2=156E 1,则衰变时放出的总能量为E =E 1+E 2=5756E 1.。
高三物理课时作业(35)
(磁场对运动电荷的作用力)
班级 姓名
1.质谱仪的两大重要组成部分是加速电场和偏转磁场,如图为质谱仪的原理图。
设想有一个静止的质量为m 、 带电量为q 的带电粒子(不计重力) ,经电压为U 的加速电场加速后垂直进入磁感应强度为B 的偏转磁场中,带电粒子打到底片上的P 点,设OP =x ,则在图中能正确反映x 与U 之间的函数关系的是( )
2.如图所示,摆球带负电荷的单摆,在一匀强磁场中摆动,匀强磁场的方向垂直纸面向里,摆球在AB 间摆动过程中,由A 摆到最低点C 时,摆线拉力的大小为F 1,摆球加速度大小为a 1;由B 摆到最低点C 时,摆线拉力的大小为F
2,摆球加速度大小为a 2,则
( )
A .F 1>F 2,a 1=a 2
B .F 1<F 2,a 1=a 2
C .F 1>F 2,a 1>a 2
D .F 1<F 2,a 1<a 2
3.半径为r 的圆形空间内,存在着垂直于纸面向里的匀强磁场,一
个带电粒子(不计重力)从A 点以速度v 0垂直于磁场方向射入磁场中,并
从B 点射出。
∠AOB =120°,如图所示,则该带电粒子在磁场中运动的
时间为( )
A.2πr 3v 0
B.23πr 3v 0
C.πr 3v 0
D.3πr 3v 0
4.如图所示,在x >0、y >0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于Oxy 平面向里,大小为B 。
现有一质量为m 、电荷量为q 的带电粒子,在x 轴上到原点的距离为x 0的P 点,以平行于y 轴的初速度射入此磁场,在磁场力作用下沿垂直于y 轴的方向射出此磁场,不计重力的影响。
由这些条件可知下列判断错误的是( )
A .能确定粒子通过y 轴时的位置
B .能确定粒子速度的大小
C .能确定粒子在磁场中运动所经历的时间
D .以上三个判断都不对
5.如图所示,长为L 、间距为d 的平行金属板间,有垂直于纸面向里的匀强磁场,磁感应强度为B ,两板不带电,现有质量为m 、电荷量为q 的带正电粒子(重力不计),从左侧两极板的中
心处以不同速率v 水平射入,欲使粒子不打在板上,求粒子速率v
应满
足什么条件? 高三物理课时作业(35)答案
1、解析:带电粒子先经加速电场加速,故qU =12m v 2,进入磁场后偏转,OP =x =2r =2m v qB
,两式联立得OP =x =
8mU B 2q ∝U ,所以B 正确。
答案:B
2、解析:绳的拉力、洛伦兹力始终与单摆的运动方向垂直,不做功。
只有重力做功,所以a 1=a 2,当单摆由A 摆到最低点C 时,绳的拉力和洛伦兹力方向相同,由B 摆到最低点C 时,绳的拉力与洛伦兹力方向相反,故F 1<F 2。
答案:B
=1
6T =3、解析:由∠AOB =120°可知,弧AB 所对圆心角θ=60°,故t
πm 3qB
,但题中已知条件不够,没有此项选择,另想办法找规律表示t 。
由匀速33πr , 圆周运动t = AB /v 0,从图中分析有R =3r ,则 AB =R ·θ=3r ×π3
=则t = AB /v 0=
3πr 3v 0。
D 项正确。
答案:D
4、解析:因粒子垂直于x 轴射入磁场,又垂直于y 轴射出磁场,可确定坐标原点O 为圆心,
半径R =x 0。
由x 0=m v 0Bq 可知,可求出v 0=Bqx 0m ,由t =T 4,T =2πm Bq ,可求出t =πm 2Bq
,也能求出粒子射出磁场的位置,y =x 0。
答案:D
5、解析:设粒子刚好打在上极板左边缘时(如图所示).
R 1=d 4
, 又R 1=m v 1qB ,解得v 1=Bqd 4m
. 设粒子刚好打在上极板右边缘时,
由图知:R 22=L 2+(R 2-d 2)2,所以R 2=4L 2+d 24d , 又R 2=m v 2qB ,解得v 2=Bq (4L 2+d 2)4md . 综上分析,要使粒子不打在极板上,其入射速率应满足以下条件:v <Bqd 4m
或 v >Bq (4L 2+d 2)4md . 答案:v <Bqd 4m 或v >Bq (4L 2+d 2)4md
高三物理课时作业(36)
(磁场对运动电荷的作用力)
班级 姓名
1.如图所示,在一矩形区域内,不加磁场时,不计重力的带电粒子以某初速度垂直左边界
射入,穿过此区域的时间为t .若加上磁感应强度为B 、垂直纸面向外的匀强磁场,带电粒子仍以原来的初速度入射,粒子飞出磁场时偏离原方向60°,利用以上数据可求出下列物理量中的( )
A .带电粒子的比荷
B .带电粒子在磁场中运动的周期
C .带电粒子的初速度
D .带电粒子在磁场中运动的半径
2.两个带电粒子以同一速度、同一位置进入匀强磁场,在磁场中它们的运动轨迹如图所示。
粒子a 的运动轨迹半径为r 1,粒子b 的运动轨迹半径为r 2,且
r 2=
2r 1,q 1、q 2分别是粒子a 、b 所带的电荷量,则( )
A .a 带负电、b 带正电、q 1m 1∶q 2m 2=2∶1
B .a 带负电、b 带正电、q 1m 1∶q 2m 2
=1∶2 C .a 带正电、b 带负电、q 1m 1∶q 2m 2=2∶1 D .a 带正电、b 带负电、q 1m 1∶q 2m 2
=1∶1 3.如图所示,一带负电的质点在固定的正点电荷作用下绕该正电荷做匀速圆周运动,周期为T 0,轨道平面位于纸面内,质点的速度方向如图中箭头所示.现加一垂直于轨道平面的匀强磁
场,已知轨道半径并不因此而改变,则 ( )
A .若磁场方向指向纸里,质点运动的周期将大于T 0
B .若磁场方向指向纸里,质点运动的周期将小于T 0
C .若磁场方向指向纸外,质点运动的周期将大于T 0
D .若磁场方向指向纸外,质点运动的周期将小于T
4.如图所示,表面粗糙的斜面固定于地面上,并处于方向垂直
纸面向外、磁感应强度为B 的匀强磁场中.质量为m 、带电荷量为+Q
的小滑块从斜面顶端由静止下滑.在滑块下滑的过程中,下列判断正确的是( )
A .滑块受到的摩擦力不变
B .滑块到达地面时的动能与B 的大小无关
C .滑块受到的洛伦兹力方向垂直斜面向下
D .B 很大时,滑块可能静止于斜面上
5.如图所示,在磁感应强度为B 的水平匀强磁场中,有一足够长的绝缘细棒OO ′在竖直面内垂直于磁场方向放置,细棒与水平面夹角为α。
一质量为m 、带电荷量为+q 的圆环A 套在OO ′
棒上,圆环与棒间的动摩擦因数为μ,且μ<tan α,现让圆环A 由静止开始
下滑,试问圆环在下滑过程中:
(1)圆环A 的最大加速度为多大?获得最大加速度时的速度为多大?
(2)圆环A 能够达到的最大速度为多大? 高三物理课时作业(36)答案
1.解析:由带电粒子在磁场中运动的偏转角,可知带电粒子运动轨迹所对的圆心角为60°,
因此由几何关系得磁场宽度l =r sin60°=m v 0qB sin60°,又未加磁场时有l =v 0t ,所以可求得比荷q m
=sin60°Bt ,A 项对;周期T =2πm qB
可求出,B 项对;因初速度未知,所以C 、D 项错. 答案:AB
2、解析:根据磁场方向及两粒子在磁场中的偏转方向可判断出a 、b 分别带正、负电,根据半径之比可计算出比荷之比为2∶1。
答案:C
3.解析:当磁场方向指向纸里时,由左手定则可知电子受到背离圆心向外的洛伦兹力,向
心力变小,由F =mr 4π2
T 2可知周期变大,A 对,B 错.同理可知,当磁场方向指向纸外时电子受到指向圆心的洛伦兹力,向心力变大,周期变小,C 错,D 对.
答案:AD
4.解析:由左手定则知C 正确.而F f =μF N =μ(mg cos θ+BQ v )要随速度增加而变大,A 错误.若
滑块滑到斜面底端已达到匀速运动状态,应有F f =mg sin θ,可得v =mg BQ (sin θμ
-cos θ),可看到v 随B 的增大而减小.若滑块滑到斜面底端时还处于加速运动状态,则在B 越强时,F f 越大,滑块克服阻力做功越多,到达斜面底端的速度越小,B 错误.当滑块能静止于斜面上时应有mg sin θ=μmg cos θ,即μ=tan θ,与B 的大小无关,D 错误.
答案:C
5、解析:(1)由于μ<tan α,所以环将由静止开始沿棒下滑。
环A 沿棒运动的速度为v 1时,受到重力mg 、洛伦兹力q v 1B 、杆的弹力F N1和摩擦力F f 1=μF N1。
根据牛顿第二定律,对圆环A 受力分析有
沿棒的方向:mg sin α-F f 1=ma
垂直棒的方向:F N1+q v 1B =mg cos α
所以当Ff 1=0(即F N1=0)时,a 有最大值a m ,且a m =g sin α
此时q v 1B =mg cos α 解得:v 1=mg cos αqB。
(2)设当环A 的速度达到最大值v m 时,环受杆的弹力为F N2,摩擦力为F f 2=μF N2。
此时应有a =0,即mg sin α=F f 2
在垂直杆方向上 F N2+mg cos α=q v m B 解得:v m =
mg (sin α+μcos α)μqB 。
答案:(1)g sin α
mg cos αqB (2)mg (sin α+μcos α)μqB。