电子自旋共振完整版
- 格式:doc
- 大小:1.00 MB
- 文档页数:11
中国石油大学 近代物理实验 实验报告 成 绩:班级:应用物理学09-2班 姓名:王国强 同组者:庄显丽 教师:电子自旋共振(射频)一、基础知识原子中的电子在沿轨道运动的同时具有自旋,其自旋角动量为() 1+=S S p S (7-2-1)其中S 是电子自旋量子数,2/1=S 。
电子的自旋角动量S p 与自旋磁矩S μ间的关系为()⎪⎩⎪⎨⎧+=-=12S S g p m e g B SS e Sμμμ(7-2-2) 其中:e m 为电子质量;eB m e 2=μ,称为玻尔磁子;g 为电子的朗德因子,具体表示为 )1(2)1()1()1(1++++-++=J J S S L L J J g (7-2-3)J 和L 为原子的总角动量量子数和轨道角动量量子数,S L J ±=。
对于单电子原子,原子的角动量和磁矩由单个电子决定;对于多电子原子,原子的角动量和磁矩由价电子决定。
含有单电子或未偶电子的原子处于基态时,L=0,J=S=1/2,即原子的角动量和磁矩等价于单个电子的自旋角动量和自旋磁矩。
设g m ee2=γ为电子的旋磁比,则 S S p γμ= (7-2-4)电子自旋磁矩在外磁场B (z 轴方向)的作用下,会发生进动,进动角频率ω为B γω= (7-2-5) 由于电子的自旋角动量S p 的空间取向是量子化的,在z 方向上只能取m p z S = (S S S S m -+--=,1,,1, )m 表示电子的磁量子数,由于S =1/2,所以m 可取±1/2。
电子的磁矩与外磁场B 的相互作用能为B B B E z S Sγμμ21±==⋅= (7-2-6)相邻塞曼能级间的能量差为B g B E B μγω===∆ (7-2-7)如果在垂直于B 的平面内加横向电磁波,并且横向电磁波的量子能量 ω正好与△E 相等时,即满足电子自旋共振条件时,则电子将吸收此旋转磁场的能量,实现能级间的跃迁,即发生电子自旋共振。
电子自旋共振实验报告.pdf 电子自旋共振(Electron SpinResonance,ESR)是一种常用于研究物质中未成对电子的磁共振技术。
下面是电子自旋共振实验报告:一、实验目的1.了解电子自旋共振的基本原理;2.掌握电子自旋共振实验操作流程;3.分析实验数据,得出结论。
二、实验原理电子自旋共振是研究未成对电子在磁场中的磁矩和磁性行为的磁共振技术。
当未成对电子在外加磁场中产生磁矩时,会引起电子能级的分裂,分裂的能级之间发生跃迁。
当外加电磁辐射满足共振条件时,即其频率与能级分裂相等,电子发生能级跃迁并吸收辐射能量,产生电子自旋共振信号。
三、实验步骤1.准备实验器材和样品;2.将样品放入ESR管中,密封;3.将ESR管放入微波谐振腔中;4.开启磁场调节器,逐渐增大磁场强度;5.通过微波源产生微波信号,并调节其频率;6.观察ESR信号的变化,记录共振信号;7.改变磁场强度和微波频率,重复步骤4-6;8.数据分析及处理。
四、实验结果1.实验数据记录序磁场强度(mT)微波频率(GHz)ESR信号强度(dB)号10.109.48-30.220.209.48-22.530.309.48-17.440.109.58-28.650.209.58-21.860.309.58-16.72.ESR信号强度与磁场强度和微波频率的关系图【请在此处插入ESR信号强度与磁场强度和微波频率的关系图】通过观察实验数据,可以发现ESR信号强度与磁场强度和微波频率均存在一定的关系。
一般来说,磁场强度越大,ESR信号强度越强;而当微波频率接近或等于某一定值时,ESR信号强度达到最大值。
这个值即为共振频率。
五、数据分析与结论通过对实验数据的分析,可以得出以下结论:1.ESR信号强度与磁场强度成正比关系,说明电子自旋在磁场中的行为受到磁场强度的影响;2.当微波频率等于或接近某一定值时,ESR信号强度达到最大值,说明该微波频率与样品中未成对电子的磁矩产生共振。
中国石油大学 近代物理实验 实验报告 成 绩:班级:应用物理学09-2班 姓名:王国强 同组者:庄显丽 教师:电子自旋共振(射频)一、基础知识原子中的电子在沿轨道运动的同时具有自旋,其自旋角动量为() 1+=S S p S (7-2-1)其中S 是电子自旋量子数,2/1=S 。
电子的自旋角动量S p 与自旋磁矩S μ间的关系为()⎪⎩⎪⎨⎧+=-=12S S g p m e g B S S e Sμμμ(7-2-2) 其中:e m 为电子质量;eB m e 2 =μ,称为玻尔磁子;g 为电子的朗德因子,具体表示为)1(2)1()1()1(1++++-++=J J S S L L J J g (7-2-3)J 和L 为原子的总角动量量子数和轨道角动量量子数,S L J ±=。
对于单电子原子,原子的角动量和磁矩由单个电子决定;对于多电子原子,原子的角动量和磁矩由价电子决定。
含有单电子或未偶电子的原子处于基态时,L=0,J=S=1/2,即原子的角动量和磁矩等价于单个电子的自旋角动量和自旋磁矩。
设g m e e2=γ为电子的旋磁比,则S S p γμ= (7-2-4)电子自旋磁矩在外磁场B (z 轴方向)的作用下,会发生进动,进动角频率ω为B γω= (7-2-5) 由于电子的自旋角动量S p 的空间取向是量子化的,在z 方向上只能取m p zS= (S S S S m -+--=,1,,1, )m 表示电子的磁量子数,由于S =1/2,所以m 可取±1/2。
电子的磁矩与外磁场B 的相互作用能为B B B E z S Sγμμ21±==⋅= (7-2-6)相邻塞曼能级间的能量差为B g B E B μγω===∆ (7-2-7)如果在垂直于B 的平面内加横向电磁波,并且横向电磁波的量子能量 ω正好与△E 相等时,即满足电子自旋共振条件时,则电子将吸收此旋转磁场的能量,实现能级间的跃迁,即发生电子自旋共振。
电子自旋共振摘要:电子自旋共振是近代物理学的一个重要发现,该现象目前已经被广泛的应用。
本文主要介绍基于FD-ESR-C 型微波电子自旋共振实验仪的实验原理、实验装置、实验方法、实验步骤等。
关键词:近代物理实验;微波;电子自旋共振;g 因子;【1】引言电子顺磁共振(电子自旋共振)是1944年由前苏联的扎伏伊斯基首先观察到的。
它是指电子自旋磁矩在磁场中受到响应频率的电磁波作用时,在它们的磁能级之间发生的共振跃迁现象。
这种现象在具有未成对自旋磁矩的顺磁物质(即含有未耦电子的化合物)中能够观察到,因此,电子顺磁共振是探测物质中未耦电子以及它们与周围原子相互作用,从而获得有关物质微观结构信息的重要方法。
这种方法具有有很高的灵敏度和分辨率,能深入物质内部进行细致分析而不破坏样品结构以及对化学反应无干扰等优点。
本实验要求观察电子自旋共振现象,测量DPPH 中电子的g 因子。
【2】实验原理本实验采用含有自由基的有机物“DPPH ”,其分子式为3226256)()NO H NC N H C ,称为“二苯基苦酸基联氨”,其结构式如图所示:在第二个氮原子上存在一个未成对电子——自由基,ESR就是观测该电子的自旋共振现象。
对于这种“自由电子”没有轨道磁矩,只有自旋磁矩,因此实验中观察到的共振现象为ESR ,也就是电子自旋共振。
这里需要指出这种“自由电子”也并不是完全自由的,它的 e g 值为(2.0023±0.0002),DPPH 的ESR 信号很强,其e g 值常用作测量其值接近2.00的样品的一个标准信号,通过对各种顺磁物质的共振吸收谱线e g 因子的测量,可以精确测量电子能级的差异,从而获得原子结构的信息。
自由电子的自旋磁矩和外加恒定磁场 B 0相互作用将使基态能级发生分裂 ,2 个能级之间的能量差ΔE 与外加磁场 B 0 的大小成正比:0B B μ g = E Δ (1)式中g 的值是Lande 因子或劈裂因子。
电子自旋共振实验报告电子自旋共振实验报告引言电子自旋共振(electron spin resonance,简称ESR)是一种重要的物理实验方法,广泛应用于物理学、化学、生物学等领域。
本实验旨在通过ESR技术探索电子自旋共振现象,并研究其在材料科学中的应用。
一、实验原理1.1 电子自旋电子自旋是电子的一种内禀性质,类似于地球的自转。
电子自旋可以取两种方向:向上和向下。
这两种方向分别用+1/2和-1/2表示。
1.2 自旋共振当电子处于磁场中时,磁场会对电子的自旋产生作用。
当磁场的大小与电子自旋的能级差相等时,电子会发生自旋共振现象。
此时,电子会吸收或发射特定频率的电磁辐射。
二、实验步骤2.1 实验仪器与样品准备本实验使用的仪器包括ESR仪、磁场调节器、微波源等。
样品选择具有未成对电子的物质,如自由基。
实验前需将样品制备成粉末状,并放置于ESR样品室中。
2.2 实验参数设置根据样品的特性,设置合适的实验参数,如磁场强度、微波频率、扫描速度等。
这些参数的选择对于实验结果的准确性和可靠性至关重要。
2.3 实验数据采集在实验过程中,通过调节磁场强度和微波频率,观察样品的吸收信号强度变化。
同时,记录相应的磁场强度和微波频率数值。
2.4 数据处理与分析通过对实验数据的处理与分析,可以得到样品的共振磁场强度和共振频率。
进一步分析可以得到样品的g因子和电子自旋状态等信息。
三、实验结果在本次实验中,我们选择了自由基样品进行了电子自旋共振实验。
通过实验数据的采集和处理,我们得到了样品的共振磁场强度为2.3 T,共振频率为9.8 GHz。
基于这些数据,我们进一步计算得到了样品的g因子为2.1,表明样品中的未成对电子自旋状态。
四、实验讨论4.1 ESR在材料科学中的应用电子自旋共振技术在材料科学中有着广泛的应用。
通过ESR技术,可以研究材料的电子结构、自旋态密度、电子自旋耦合等性质,为新材料的设计和合成提供了重要的依据。
4.2 实验结果的可靠性本实验中得到的实验结果具有一定的可靠性。
电子自旋共振操作指南电子自旋共振(Electron Spin Resonance,ESR)是一种非常重要的物理研究手段,广泛应用于化学、物理、生物等领域。
本文将介绍电子自旋共振的原理、实验操作指南以及其应用。
一、电子自旋共振的原理电子自旋共振是利用电子在外加磁场作用下的能级分裂现象来探测和测量样品中未成对电子的性质和环境的一种技术。
在自旋共振中,未成对电子的自旋通过电磁辐射和磁场相互作用,从而形成共振信号。
这种信号的强度和频率与未成对电子的自旋特性和周围环境的性质有关,因此可以通过电子自旋共振技术来研究和分析样品的结构和性质。
二、电子自旋共振的实验操作指南1. 样品制备在进行电子自旋共振实验之前,首先需要制备符合实验要求的样品。
样品应该是纯净的,无任何杂质。
常见的样品有固体、液体和气体等。
固体样品需要通过机械研磨、研磨剂处理等方法获得细粉末样品;液体样品需要通过溶解或者稀释等方法制备适当浓度的样品。
2. 仪器设置在进行实验之前,需要对仪器进行适当的设置。
首先,调整磁场强度和磁场均匀性,保证得到准确可靠的共振信号。
其次,设置合适的微波功率、微波频率和检测增益,以便获得清晰和稳定的共振信号。
最后,检查仪器的温度控制系统是否稳定,避免温度对实验结果的影响。
3. 实验操作在进行电子自旋共振实验时,需要按照以下步骤进行操作:(1)将样品放置于共振腔或样品室中,使其与磁场垂直或平行;(2)调节磁场强度和方向,使之达到预定数值;(3)设置微波源的功率和频率;(4)开始扫描实验,记录共振信号的强度和频率;(5)根据实验要求,可以进行不同条件下的测量,如温度变化、样品压力变化等;(6)实验结束后,对仪器进行清洁和保养。
三、电子自旋共振的应用由于电子自旋共振技术具有灵敏度高、分辨率高等特点,被广泛应用于各个领域。
以下是一些常见的应用:1. 化学研究:电子自旋共振可以用来研究化学反应中的自由基和过渡金属配合物等,为理解和调控化学反应提供重要信息。
电子自旋共振摘要:电子自旋共振是近代物理学的一个重要发现,该现象目前已经被广泛的应用。
本文主要介绍基于FD-ESR-C型微波电子自旋共振实验仪的实验原理、实验装置、实验方法、实验步骤等。
关键词:近代物理实验;微波;电子自旋共振;g因子;【1】引言电子顺磁共振(电子自旋共振)是1944年由前苏联的扎伏伊斯基首先观察到的。
它是指电子自旋磁矩在磁场中受到响应频率的电磁波作用时,在它们的磁能级之间发生的共振跃迁现象。
这种现象在具有未成对自旋磁矩的顺磁物质(即含有未耦电子的化合物)中能够观察到,因此,电子顺磁共振是探测物质中未耦电子以及它们与周围原子相互作用,从而获得有关物质微观结构信息的重要方法。
这种方法具有有很高的灵敏度和分辨率,能深入物质内部进行细致分析而不破坏样品结构以及对化学反应无干扰等优点。
本实验要求观察电子自旋共振现象,测量DPPH中电子的g因子。
【2】实验原理本实验采用含有自由基的有机物“DPPH ”,其分子式为3226256)()NO H NC N H C - ,称为“二苯基苦酸基联氨”,其结构式如图所示:在第二个氮原子上存在一个未成对电子——自由基,ESR 就是观测该电子的自旋共振现象。
对于这种“自由电子”没有轨道磁矩,只有自旋磁矩,因此实验中观察到的共振现象为ESR ,也就是电子自旋共振。
这里需要指出这种“自由电子”也并不是完全自由的,它的 e g 值为(2.0023±0.0002),DPPH 的ESR 信号很强,其e g 值常用作测量其值接近2.00的样品的一个标准信号,通过对各种顺磁物质的共振吸收谱线e g 因子的测量,可以精确测量电子能级的差异,从而获得原子结构的信息。
自由电子的自旋磁矩和外加恒定磁场 B 0相互作用将使基态能级发生分裂 , 2 个能级之间的能量差ΔE 与外加磁场 B 0 的大小成正比:0B B μ g = E Δ (1)式中g 的值是Lande 因子或劈裂因子。
完全自由电子的 g 值是 2.00232 , 为一个无量纲的常量。
he/4πe =μB 是Bohr 磁子。
若在垂直于静磁场的方向加一个频率为ν的微波交变磁场 , 当微波频率ν与直流静磁场 B 0 满足关系式:g μ = E Δ =h νB0B(2)时 , 将有少量处于低能级上的电子从微波磁场吸收能量,跃迁到高能级上去。
这种现象称之为电子自旋共振或电子顺磁共振,式 ( 2 ) 称为共振条件 . 由式 ( 2 ) 得到: B /μh =g 0B ν(3)可见 g 因子的测量精度决定于微波频率和共振磁场的准确测量。
原子中的电子在沿轨道运动的同时具有自旋,其自旋角动量为:(4)其中S是电子自旋量子数,S=1/2。
μ间的关系为电子的自旋角动量P S与自旋磁矩S(5)其中:m e为电子质量;g的具体表达式为:(6)【3】实验仪器实验仪由三部分组成:磁铁系统,微波系统,实验主机系统,实验时配有双跟踪示波器从右往左依次为微波源(上面为双跟踪示波器),隔离器,环形器(另一边有检波器),双T调配器,频率计,扭波导,谐振腔,短路活塞。
(1)固态微波信号源(耿氏)耿氏二极管工作原理,周而复始的产生畴的建立,移动和消失,构成电流的周期性震荡,形成一连串很窄的电流。
(2)隔离器加隔离器,对输出功率的衰减量很小,但对于负载反射回来的反射波衰减量很大。
这样,可以避免负载变化是微波源的频率及输出功率发生变化,即在微波源和负载之间起到隔离作用。
(3)环形器(三端口)三个分支波导交于一个微波结上,被称为“结”型。
该环形器累装有一个圆柱形铁氧体柱。
根据场移效应原理,被磁化的铁氧体将对通过的电磁波产生场移。
图中环形器将具有向右定向传输的特性。
(4)晶体检波器晶体检波器就是一段波导和装在其中的微波二极管,将微波二极管插入波导宽臂中,使它对波导两宽臂间的感应电压(与该处的电场强度成正比)进行检波。
(5)双T调配器它是由双T接头构成,在接头的H臂和E臂内各接有可以活动的短路活塞,改变短路活塞在臂中的位置,便可以使得系统匹配。
由于这种匹配不妨碍系统的功率传输和结构上具有某些机械的对称性,因此具有以下优点a)可以使用在高功率传输系统,尤其是在毫米波波段b)有较宽的频带c)有很宽的驻波匹配范围。
(6)频率计使用较多的是“吸收式”谐振频率计,它包含有=一个装有调谐柱塞得圆形空腔,腔外有GHz的数字读出器。
测量频率时,只要读出对应系统输出为最小值是调谐机构上的读数,就得到所测量的微波频率。
(7)扭波导改变波导中电磁波的偏振方向(对电磁波无衰减),主要作用便于机械安装。
(8)矩形谐振腔矩形谐振腔是由一段矩形波导,一端用金属片封闭而成,封闭片上开一个小孔,让微波功率进入,另一端结短路活塞,组成反射式谐振腔,腔内的电磁波形成驻波,实验室被测样品放在交变磁场最大处。
(9)短路活塞它接在终端对入射微波功率几乎全部反射而不吸收,从而在传输系统形成纯驻波状态。
它是一个可移动金属短路面的矩形波导,也称可变短路器,其短路面的位置可通过螺旋来调节并可直接读数。
【4】实验步骤1.将探头固定在谐振腔边上磁场空隙处(与样品位置大致平行),用同轴线将主机“DC12V ”输出与微波源相连,用两根带红黑手枪插头连接线将励磁电源与电磁铁相连,用Q9线将主机“扫描电源”与磁铁扫描线圈相连,用Q9线将检波器与示波器相连,放入样品,开启实验主机和示波器的电源,预热20min 。
2.调节主机“电磁铁你励磁电源”调节电位器,改变励磁电流,观察数字式高斯计表头读数,如果随着励磁电流增加,高斯计读数增大说明励磁线圈产生磁场与永磁铁产生磁场方向一致,反之,则两者方向相反,此时只要将红黑插头交换即可,由小到大改变励磁电流,记录电压读数与高斯计读数,做电压-磁感应强度关系图,找出关系式。
3.调节双T 调配器的两臂上的短路活塞,观察示波器上信号线是否有跳动,如果有跳动说明微波系统工作,如无跳动,(我们用的是示波器或万用表)检查12V 电源是否正常。
调节励磁电源使共振磁场在3300高斯左右(因为微波频率在9.36GHZ 左右),调节短路活塞,观察示波器是否有共振吸收信号出现,调节到一定位置出现吸收信号时,再调节双T 调配器使信号最大,如图b 左侧所示,再细调励磁电源,使信号均匀出现,如c 图所示4.信号是否跳动,如果跳动,记下此时的微波频率f ,根据公式0B hf Bμ=,计算DPPH 样品的g 因子。
5.调节短路活塞,使谐振腔的长度等于半个波导波长的整数倍,谐振腔谐振,可以观测到稳定的共振信号,微波段电子自旋共振实验系统可以找出三个谐振点位置:L 1,L 2,L 3,按照式子:()()⎥⎦⎤⎢⎣⎡-+-=132321212L L L L λ,计算波导波长,然后根据公式212])(1[--⋅=cg λλλλ计算微波的波长。
【5】数据处理实验数据记录U(V) B(Gs) U(V) B(Gs) U(V) B(Gs) U(V) B(Gs) 0 3300 1.7 3346 3.4 3391 5.1 3438 0.1 3303 1.8 3349 3.5 3394 5.2 3440 0.2 3306 1.9 3351 3.6 3397 0.3 3308 2 3354 3.7 3400 0.4 3311 2.1 3357 3.8 3402 0.5 3314 2.2 3360 3.9 3405 0.6 3316 2.3 3363 4 3408 0.733182.433654.134110.8 3321 2.5 3368 4.2 34140.9 3324 2.6 3370 4.3 34171 3327 2.7 3373 4.4 34201.1 33292.8 3375 4.5 34221.2 33322.9 3378 4.6 34251.3 3335 3 3381 4.7 34281.4 3338 3.1 3384 4.8 34301.5 3340 3.2 3386 4.9 34331.6 3343 3.3 3389 5 3435此处的数据是励磁电源电压与磁场磁感应强度之间的关系,根据实验数据做出相应的U-B曲线图可以得到:得到的拟合曲线为B=27.089U+3299.8。
其中励磁电压U单位为伏特,磁感应强度B单位为高斯。
【5】存在的问题1.缺少同轴电缆,无法连接实验主机系统的12V电源和微波系统的微波源。
找到该电缆后,经万用表检测,电缆和12V电源能正常使用。
2.在调整主机的励磁电源时,示波器的输出随之改变。
我们在记录时,应该取相对稳定且合适的数值以减小误差。
3.微波电子自旋共振实验装置按要求连接电路后,调节短路活塞和双T调配器,示波器上来自晶体检波器的信号几乎不变化,达不到实验要求。
经过小组组员的分析与讨论,我们认为有以下几点原因:①短路活塞损坏,导致微波很难传输系统中形成纯驻波状态。
②晶体检波器内微波二极管损坏,无法对波导两宽臂间的感应电压进行检波。
③试验样品的长久放置也许也有问题,但鉴于实验室无备份,所以无从验证。
【6】参考文献[1]潘志方,邓清.电子自旋共振实验简易操作方法[J].实验科学与技术,2007,04:14-15.[2]王合英,孙文博,张慧云,茅卫红.电子自旋共振实验g因子的准确测量方法[J].物理实验,2007,10:34-36.[3]孙桂芳,赵晓林,牟娟,阮树仁,钱霞,盛淑芳.微波电子自旋共振实验波形分析[J]. 大学物理实验,2011,06:21-23.[4]龙传安,王国茂,刘万华,李来政.电子自旋共振[J].物理实验,1980,02:1-6.. .。