【北师大版】2019年春八年级数学下册:优秀教案全集; 第2课时 一元一次不等式的应用
- 格式:doc
- 大小:1.27 MB
- 文档页数:3
《一元一次不等式与一次函数》第2课时示范公开课教学设计【部编北师大版八年级数学下册】2.5《一元一次不等式与一次函数》教学设计(第2课时)一、教学目标1.感知不等式、方程、函数的不同作用与内在联系。
2.能运用方程、不等式、函数之间的联系,解决实际问题。
二、教学重点及难点重点:能运用方程、不等式、函数之间的联系,解决实际问题。
难点:能运用方程、不等式、函数之间的联系,解决实际问题。
三、教学用具多媒体课件、三角尺四、教学过程【复习导入】上节课我们初步感知了一元一次不等式、一次函数和一元一次方程的关系,并用其解决了一些简单的实际问题,今天我们继续用它们的关系来解决较为复杂的实际问题.首先请同学们完成下列问题:1.若y1=-2x-2,y2=3x+3,试确定当x取何值时,y1<y2.你是怎样做的?2.某商品原价60元,现优惠25%,则现价是元.3.某商品原价200元,现打七五折,则现价是元.设计意图:让学生在解题过程中有目的的思考,懂得通过函数关系式来解决实际问题,为今天新课学习做好铺垫并引出新课.【典例精讲】例.某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10至25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用?其余游客八折优惠.该单位选择哪一家旅行社支付的旅游费用较少?分析:首先我们要根据题意,分别表示出两家旅行社关于人数的费用,然后才能比较.而且比较情况只能有三种,即大于,等于或小于.解:设该单位参加这次旅游的人数是x人,选择甲旅行社时,所需费用为y1元,选择乙旅行社时,所需的费用为y2元,则y1=200×0.75x=150x;y2=200×0.8(x-1)=160x-160.当y1=y2时,150x=160x-160,解得x=16;当y1>y2时,150x>160x-160,解得x<16;当y1<y2时,150x<160x-160,解得x>16.因为参加旅游的人数为10-25人,所以当x=16时,甲乙两家旅行社的收费相同;当17≤x≤25时,选择甲旅行社费用较少,当10≤x≤15时,选择乙旅行社费用较少.由此看来,你选哪家旅行社不仅与旅行社的优惠政策有关,而且还和参加旅游的人数有关,那么在以后的旅行中,大家一定不要想当然,而是要精打细算才能做到合理开支,现在,你学会了吗?导入问题:1.解:由题意,得-2x-2<3x+3,解得:x>-1.2.45.3.150.【课堂练习】1.某学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原价收费,其余每台优惠25%.乙商场的优惠条件是:每台优惠20%.(1)分别写出两家商场的收费与所买电脑台数之间的关系式.(2)什么情况下到甲商场购买更优惠?(3)什么情况下到乙商场购买更优惠?(4)什么情况下两家商场的收费相同?参考答案:解:设要买x台电脑,购买甲商场的电脑所需费用y1元,购买乙商场的电脑所需费用为y2元.则有(1)y1=6000+(1-25%)(x-1)×6000=4500x+1500;y2=80%×6000x=4800x.(2)当y1<y2时,有4500x+1500<4800x,解得,x>5.即当所购买电脑超过5台时,到甲商场购买更优惠;(3)当y1>y2时,有4500x+1500>4800x,解得x<5.即当所购买电脑少于5台时,到乙商场买更优惠;(4)当y1=y2时,即4500x+1500=4800x,解得x=5.即当所购买电脑为5台时,两家商场的收费相同.五、课堂小结本节课我们进一步巩固了不等式在现实生活中的应用,通过这节课的学习,我们学到了不少知识,真正体会到了学有所用.六、板书设计例:解:设该单位参加这次旅游的人数是x人,选择甲旅行社时,所需费用为y1元,选择乙旅行社时,所需的费用为y2元,则y1=200×0.75x=150x;y2=200×0.8(x-1)=160x-160.当y1=y2时,150x=160x-160,解得x=16;当y1>y2时,150x>160x-160,解得x<16;当y1<y2时,150x<160x-160,解得x>16.。
2.1 不等关系1.了解不等式的概念;2.会用不等式表示简单问题的数量关系.(重点,难点)一、情境导入有一群猴子,一天结伴去摘桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每只猴子分5个,那么最后一只猴子分得的桃子不够5个.你知道有几只猴子,几个桃子吗?二、合作探究探究点一:不等式的概念下列各式中:①-3<0;②4x +3y >0;③x =3;④x 2+xy +y 2;⑤x ≠5;⑥x +2>y +3.不等式的个数有( )A .5个B .4个C .3个D .1个解析:③是等式;④是代数式,没有不等关系,所以不是不等式.不等式有①②⑤⑥,共4个.故选B.方法总结:本题考查不等式的判别,一般用不等号表示不等关系的式子是不等式.解答此类题的关键是要识别常见不等号:>,<,≤,≥,≠.如果式子中没有这些不等号,就不是不等式.探究点二:列不等式【类型一】 用不等式表示数量关系根据下列数量关系,列出不等式: (1)x 与2的和是负数;(2)m 与1的相反数的和是非负数; (3)a 与-2的差不大于它的3倍;(4)a ,b 两数的平方和不小于他们的积的两倍.解析:(1)负数即小于0;(2)非负数即大于或等于0;(3)不大于就是小于或等于;(4)不小于就是大于或等于.解:(1)x +2<0; (2)m -1≥0; (3)a +2≤3a ; (4)a 2+b 2≥2ab .方法总结:在列不等式时要善于将文字与相应的数学符号相对应,如负数――→对应<0等,列出相应的不等式.【类型二】 实际问题中的不等式亮亮准备用自己节省的零花钱买一台学生平板电脑.他现在已存有55元,计划从现在起以后每个月节省20元.若此学生平板电脑至少需要350元,则可以用于计算所需要的月数x 的不等式是( )A .20x -55≥350B .20x +55≥350C .20x -55≤350D .20x +55≤350解析:此题中的不等关系:现在已存有55元,计划从现在起以后每个月节省20元.若此学生平板电脑至少需要350元.列出不等式20x +55≥350.故选B.方法总结:用不等式表示数量关系时,要找准题中表示不等关系的两个量,并用代数式表示;正确理解题中的关键词,如负数、非负数、正数、大于、不大于、小于、不小于、不足、不超过、至少、至多等的含义.三、板书设计 1.不等式的概念 2.列不等式(1)找准题目中不等关系的两个量,并且用代数式表示; (2)正确理解题目中的关键词语的确切含义;(3)用与题意符合的不等号将表示不等关系的两个量的代数式连接起来; (4)要正确理解常见不等式基本语言的含义.本节课通过实际问题引入不等式,并用不等式表示数量关系.要注意常用的关键词的含义:负数、非负数、正数、大于、不大于、小于、不小于、不足、不超过,这些关键词中如果含有“不”“非”等文字,一般应包括“=”,这也是学生容易出错的地方.2.2 不等式的基本性质1.理解并掌握不等式的基本性质;(重点)2.能够运用不等式的基本性质解决问题.(难点)一、情境导入小刚的爸爸今年32岁,小刚今年9岁,小刚说:“再过24年,我就比爸爸年龄大了”.小刚的说法对吗?为什么?二、合作探究探究点一:不等式的基本性质【类型一】 根据不等式的基本性质判断大小已知a <b ,用不等号填空: (1)a +3________b +3; (2)-a 4________-b 4;(3)3-a ________3-b .解析:(1)两边都加3,a +3<b +3,(2)两边都除以-4,-a 4>-b4,(3)两边都乘-1,-a >-b ,两边都加3,3-a >3-b .故答案为:<,>,>.方法总结:不等式的基本性质是不等式变形的重要依据,关键要注意不等号的方向.性质1和性质2类似于等式的性质,但性质3中,当不等式两边乘或除以同一个负数时,不等号的方向要改变.【类型二】 判断变形是否正确已知a>b,则下列不等式中,错误的是()A.3a>3b B.-a3<-b3C.4a-3>4b-3 D.(c-1)2a>(c-1)2b解析:A.在不等式a>b的两边同时乘以3,不等式仍成立,即3a>3b,故本选项正确;B.在不等式a>b的两边同时除以-3,不等号方向改变,即-a3<-b3,故本选项正确;C.在不等式a>b的两边同时先乘以4、再减去3,不等式号方向不变,即4a-3>4b-3,故本选项正确;D.当c-1=0,即c=1时,该不等式不成立,故本选项错误;故选D.方法总结:“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.探究点二:不等式性质的运用【类型一】把不等式化成“x>a”或“x<a”的形式把下列不等式化成“x>a”或“x<a”的形式.(1)2x-2<0;(2)3x-9<6x;(3)12x-2>32x-5.解析:根据不等式的基本性质,把含未知数的项放到不等式的左边,常数项放到不等式的右边,然后把系数化为1.解:(1)根据不等式的基本性质1,两边都加上2得2x<2.根据不等式的基本性质2,两边都除以2得x<1,(2)根据不等式的基本性质1,两边都加上9-6x得-3x<9.根据不等式的基本性质3,两边都除以-3得x>-3;(3)根据不等式的基本性质1,两边都加上2-32x得-x>-3.根据不等式的基本性质3,两边都除以-1得x<3.方法总结:运用不等式的基本性质进行变形,把不等式化成“x>a”或“x<a”的形式时,可以先在不等式两边同时加上一个适当的代数式,使含未知数的项在不等式的左边,常数项在不等式的右边(也可通过移项实现).然后把未知数的系数化为1,要注意的是:如果两边都乘(或除以)同一个正数,不等号方向不变;如果两边都乘(或除以)同一个负数,不等号方向改变.【类型二】根据不等式的变形确定字母的取值范围如果不等式(a+1)x<a+1可变形为x>1,那么a必须满足________.解析:根据不等式的基本性质可判断a+1为负数,即a+1<0,可得a<-1.方法总结:只有当不等式的两边都乘(或除以)一个负数时,不等号的方向才改变.三、板书设计1.不等式的基本性质性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变;性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变;性质3:不等式的两边都乘(或除以)同一个负数,不等号方向改变.2.把不等式化成“x>a”或“x<a”的形式“移项”依据:不等式的基本性质1;“将未知数系数化为1”的依据:不等式的基本性质2、3.本节课学习不等式的基本性质,在学习过程中,可与等式的基本性质进行类比,在运用性质进行变形时,要注意不等号的方向是否发生改变;课堂教学时,鼓励学生大胆质疑,通过练习中易出现的错误,引导学生归纳总结,提升学生的自主探究能力.2.3 不等式的解集1.理解并掌握不等式解和解集的概念;2.学会用数轴表示不等式的解集.(重点,难点)一、情境导入东东和小明、小红三人在公园里玩跷跷板,东东体重最重,坐在跷跷板的一端,小明坐在另一端,这时东东的一端着地,当体重比东东轻4公斤的小红和小明坐在一端时,东东被翘起离地.同学们,你们能算出小红的体重大约是多少吗?二、合作探究探究点一:不等式的解和解集下列说法中,错误的是()A.不等式x<3有两个正整数解B.-2是不等式2x-1<0的一个解C.不等式-3x>9的解集是x>-3D.不等式x<10的整数解有无数个解析:A.不等式x<3有两个正整数解1,2,故A正确;B.-2是不等式2x-1<0的一个解,故B正确;C.不等式-3x>9的解集是x<-3,故C正确;D.不等式x<10的整数解有无数个,故D正确;故选C.方法总结:判断某个数值是否是不等式的解,就是用这个数值代替不等式中的未知数,看不等式是否成立.若不等式成立,则该数是不等式的一个解;若不成立,该数值就不是不等式的解.探究点二:用数轴表示不等式的解集【类型一】在数轴上表示不等式的解集不等式3x+5≥2的解集在数轴上表示正确的是()A. B.C. D.解析:解3x+5≥2,得x≥-1,故选B.方法总结:注意在表示解集时大于等于,小于等于要用实心圆点表示;大于、小于要用空心圆点表示.【类型二】根据数轴求不等式的解关于x的不等式x-3<3+a2的解集在数轴上表示如图所示,则a的值是()A.-3 B.-12 C.3 D.12解析:化简不等式,得x<9+a2.由数轴上不等式的解集,得9+a=12,解得a=3,故选C.方法总结:本题考查了在数轴上表示不等式的解集,利用不等式的解集得关于a的方程是解题关键.三、板书设计1.不等式的解和解集2.用数轴表示不等式的解集本节课学习不等式的解和解集,利用数轴表示不等式的解,让学生体会到数形结合的思想的应用,能够直观的理解不等式的解和解集的概念,为接下来的学习打下基础.在课堂教学中,要始终以学生为主体,以引导的方式鼓励学生自己探究未知,提高学生的自我学习能力.2.4一元一次不等式第1课时一元一次不等式的解法1.理解一元一次不等式、不等式的解集、解不等式等概念;2.掌握一元一次不等式的解法.(重点,难点)一、情境导入1.什么叫一元一次方程?2.解一元一次方程的一般步骤是什么?要注意什么?3.如果把一元一次方程中的等号改为不等号,怎样求解?二、合作探究探究点一:一元一次不等式的概念【类型一】一元一次不等式的识别下列不等式中,是一元一次不等式的是()A.5x-2>0 B.-3<2+1xC.6x-3y≤-2 D.y2+1>2解析:选项A是一元一次不等式,选项B中含未知数的项不是整式,选项C中含有两个未知数,选项D中未知数的次数是2,故选项B,C,D都不是一元一次不等式,所以选A.方法总结:如果一个不等式是一元一次不等式,必须满足三个条件:①含有一个未知数,②未知数的最高次数为1,③不等号的两边都是整式.【类型二】根据一元一次不等式的概念求值已知-13x2a-1+5>0是关于x的一元一次不等式,则a的值是________.解析:由-13x2a-1+5>0是关于x的一元一次不等式得2a-1=1,计算即可求出a的值,故a=1.方法总结:利用一元一次不等式的概念列出相应的方程求解即可.注意:如果未知数的系数中有字母,要检验此系数可不可能为零.探究点二:一元一次不等式的解法【类型一】一元一次不等式的解或解集下列说法:①x=0是2x-1<0的一个解;②x=-3不是3x-2>0的解;③-2x +1<0的解集是x>2.其中正确的个数是()A.0个B.1个C.2个D.3个解析:①x=0时,2x-1<0成立,所以x=0是2x-1<0的一个解;②x=-3时,3x -2>0不成立,所以x=-3不是3x-2>0的解;③-2x+1<0的解集是x>12,所以不正确.故选C.方法总结:判断一个数是不是不等式的解,只要把这个数代入不等式,看是否成立.判断一个不等式的解集是否正确,可把这个不等式化为“x>a”或“x<a”的形式,再进行比较即可.【类型二】解一元一次不等式解下列一元一次不等式,并在数轴上表示:(1)2(x+12)-1≤-x+9;(2)x-32-1>x-53.解析:按照解一元一次不等式的基本步骤求解:去分母、去括号、移项、合并同类项、两边都除以未知数的系数.解:(1)去括号,得2x+1-1≤-x+9,移项、合并同类项,得3x≤9,两边都除以3,得x≤3;(2)去分母,得3(x -3)-6>2(x -5), 去括号,得3x -9-6>2x -10, 移项,得3x -2x >-10+9+6, 合并同类项,得x >5.方法总结:解一元一次不等式的基本步骤:去分母、去括号、移项、合并同类项、两边都除以未知数的系数,这些基本步骤与解一元一次方程是一样的,但一元一次不等式两边都除以未知数的系数时,一定要注意这个数是正数还是负数,如果是正数,不等号方向不变;如果是负数,不等号的方向改变.【类型三】 根据不等式的解集求待定系数已知不等式x +8>4x +m (m 是常数)的解集是x <3,求m 的值. 解析:先解不等式x +8>4x +m ,再列方程求解. 解:因为x +8>4x +m ,所以x -4x >m -8,-3x >m -8,x <-13(m -8).因为其解集为x <3,所以-13(m -8)=3.解得m =-1.方法总结:已知解集求字母系数的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解题过程体现了方程思想.三、板书设计1.一元一次不等式的概念2.解一元一次不等式的基本步骤: (1)去分母; (2)去括号; (3)移项;(4)合并同类项;(5)两边都除以未知数的系数.本节课通过类比一元一次方程的解法得到一元一次不等式的解法,让学生感受到解一元一次不等式与解一元一次方程只是在两边都除以未知数的系数这一步时有所不同.如果这个系数是正数,不等号的方向不变;如果这个系数是负数,不等号的方向改变.这也是这节课学生容易出错的地方.教学时要大胆放手,不要怕学生出错,通过学生犯的错误引起学生注意,理解产生错误的原因,以便在以后的学习中避免出错.第2课时 一元一次不等式的应用1.会在实际问题中寻找数量关系列一元一次不等式并求解; 2.能够列一元一次不等式解决实际问题.(重点,难点)一、情境导入如果你要分别购买40元、80元、140元、160元的商品,应该去哪家商店更优惠? 二、合作探究探究点:一元一次不等式的应用 【类型一】 商品销售问题某商品的进价是120元,标价为180元,但销量较小.为了促销,商场决定打折销售,为了保证利润率不低于20%,那么最多可以打几折出售此商品?解析:由题意可知,利润率为20%时,获得的利润为120×20%=24元;若打x 折该商品获得的利润=该商品的标价×x 10-进价,即该商品获得的利润=180×x10-120,列出不等式,解得x 的值即可.解:设可以打x 折出售此商品,由题意得:180×x10-120≥120×20%,解得x ≥8.答:最多可以打8折出售此商品.方法总结:商品销售问题的基本关系是:售价-进价=利润.读懂题意列出不等式求解是解题关键.【类型二】竞赛积分问题某次知识竞赛共有25道题,答对一道得4分,答错或不答都扣2分.小明得分要超过80分,他至少要答对多少道题?解析:设小明答对x道题,则答错或不答的题目为(25-x)道,根据得分要超过80分,列出不等关系求解即可.解:设小明答对x道题,则他答错或不答的题目为(25-x)道.根据他的得分要超过80分,得:4x-2(25-x)>80,解得x>2123.因为x应是整数而且不能超过25,所以小明至少要答对22道题.答:小明至少要答对22道题.方法总结:竞赛积分问题的基本关系是:得分-扣分=最后得分.本题涉及到不等式的整数解,取整数解时要注意关键词如“至多”“至少”等.【类型三】安全问题采石场爆破时,点燃导火线后工人要在爆破前转移到400米外的安全区域.导火线燃烧速度是每秒1厘米,工人转移的速度是每秒5米,导火线至少要多少米?解析:根据时间列不等式,导火线燃烧时间>工人要在爆破前转移到400米外的安全区域时间.解:设导火线的长度需要x米,1厘米/秒=0.01米/秒,由题意得x0.01>4005,解得x>0.8.答:导火线至少要0.8米.【类型四】分段计费问题小明家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1.8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小明家每月用水量至少是多少?解析:当每月用水5立方米时,花费5×1.8=9元,则可知小明家每月用水超过5立方米.设每月用水x立方米,则超出(x-5)立方米,根据题意超出部分每立方米收费2元,列一元一次不等式求解即可.解:设小明家每月用水x立方米.∵5×1.8=9<15,∴小明家每月用水超过5立方米.则超出(x-5)立方米,按每立方米2元收费,列出不等式为5×1.8+(x-5)×2≥15,解不等式得x≥8.答:小明家每月用水量至少是8立方米.方法总结:分段计费问题中的费用一般包括两个部分:基本部分的费用和超出部分的费用.根据费用之间的关系建立不等式求解即可.【类型五】调配问题有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排多少人种甲种蔬菜?解析:设安排x人种甲种蔬菜,则种乙种蔬菜为(10-x)人.甲种蔬菜有3x亩,乙种蔬菜有2(10-x)亩.再列出不等式求解即可.解:设安排x人种甲种蔬菜,则种乙种蔬菜为(10-x)人.根据题意得0.5×3x+0.8×2(10-x)≥15.6,解得x≤4.答:最多只能安排4人种甲种蔬菜.方法总结:调配问题中,各项工作的人数之和等于总人数.【类型六】方案决策问题为了保护环境,某企业决定购买10台污水处理设备.现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表.经预算,该企业购买设备的资金不高于105万元.(1)请你设计该企业有几种购买方案;(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案.解析:(1)设购买污水处理设备A型x台,则B型为(10-x)台,列出不等式求解即可,x 的值取整数;(2)如图表列出不等式求解,再根据x的值选出最佳方案.解:(1)设购买污水处理设备A型x台,则B型为(10-x)台.12x+10(10-x)≤105,解得x≤2.5,∵x取非负整数,∴x可取0,1,2,有三种购买方案:购A型0台,B型10台;A型1台,B型9台;A型2台,B型8台;(2)240x+200(10-x)≥2040,解得x≥1,∴x为1或2.当x=1时,购买资金为12×1+10×9=102(万元);当x=2时,购买资金为12×2+10×8=104(万元).答:为了节约资金,应选购A型1台,B型9台.方法总结:此题将现实生活中的事件与数学思想联系起来,属于最优化问题,在确定最优方案时,应把几种情况进行比较.三、板书设计应用一元一次不等式解决实际问题的步骤: 实际问题――→找出不等关系设未知数列不等式―→解不等式―→结合实际问题确定答案本节课通过实例引入,激发学生的学习兴趣,让学生积极参与,讲练结合,引导学生找不等关系列不等式.在教学过程中,可通过类比列一元一次方程解决实际问题的方法来学习,让学生认识到列方程与列不等式的区别与联系.2.5一元一次不等式与一次函数第1课时一元一次不等式与一次函数的关系1.学会使用图象法解一元一次不等式;(重点)2.理解并掌握一元一次不等式与一次函数之间的关系,能够运用其解决问题.(重点,难点)一、情境导入小华准备将平时的零用钱储存起来,他已经存有300元,现在起每月存50元.小华的同学小丽以前没有存过零用钱,在听说小华存零用钱后,表示从现在起每月存70元,争取超过小华.根据以上信息,你能帮助小丽计算出她需要多久才能超过小华吗?二、合作探究探究点一:通过函数图象确定一元一次不等式的解集如图,函数y =2x 和y =-23x +4的图象相交于点A .(1)求点A 的坐标;(2)根据图象,直接写出不等式2x ≥-23x +4的解集.解析:(1)联立两直线解析式,解方程组即可得到点A 的坐标;(2)根据图形,找出点A 右边部分的x 的取值范围即可.解:(1)由⎩⎪⎨⎪⎧y =2x ,y =-23x +4,解得⎩⎪⎨⎪⎧x =32,y =3.∴点A 的坐标为(32,3); (2)由图象得不等式2x ≥-23x +4的解集为x ≥32.方法总结:通过联立两直线解析式求交点坐标的方法,求出交点坐标.求一次函数与一元一次不等式关键在于准确识图,确定出两函数图象的对应函数值的大小.探究点二:一元一次不等式与一次函数的关系【类型一】 根据一次函数的值求一元一次不等式的解集那么关于x 解析:由表格得到函数的增减性后,再得出y =-1时,对应的x 的值即可.当x =1时,y =-1,根据表可以知道函数值y 随x 的增大而减小,∴不等式kx +b ≥-1的解集是x ≤1.故答案为x ≤1.方法总结:此题考查了一次函数与一元一次不等式,认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系.理解一次函数的增减性是解决本题的关键.【类型二】 根据一次函数图象求不等式的解集如图,函数y =kx +b (k ≠0)的图象经过点B (2,0),与函数y =2x 的图象交于点A ,则不等式0<kx +b <2x 的解集为( )A.x>0B.0<x<1C.1<x<2D.x>2解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.第2课时一元一次不等式与一次函数的综合应用2.能够运用一元一次不等式与一次函数解决实际问题.(重点)一、情境导入甲乙两家商店用同样的价格出售同样的商品.并且又各自推出不同的优惠方案.甲推出的方案:凡在本店购买商品超过300元,即可享受会员9折优惠;乙推出的方案:凡在本店购买商品超过400元,即可获赠80元代金券.你能分析出这两种方法哪种更优惠吗?今天我们就将学习用不等式解决这些问题.二、合作探究探究点:一元一次不等式与一次函数关系的实际应用【类型一】数形结合问题某通讯公司推出了①②两种收费方式,收费y1,y2(元)与通讯时间x(分钟)之间的函数关系如图所示,若使用资费①更加划算,通讯时间x(分钟)的取值范围是________.解析:首先将已知点的坐标代入一次函数的解析式求得k值,然后确定两函数图象的交点坐标,从而确定x的取值范围:由题设可得不等式kx+30<15x.∵y1=kx+30经过点(500,80),∴k=110,∴y1=110x+30,y2=15x,解得:x=300,y=60.∴两直线的交点坐标为(300,60),∴当x>300时不等式kx+30<15x中x成立,故答案为x>300.方法总结:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.【类型二】方案讨论问题某学校计划购买若干台电脑,现在从两家商场了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?解析:购买电脑的总费用等于电脑的台数乘以每台的单价,学校选择哪家商场购买更优惠就是比较y的大小.当y甲>y乙时,学校选择乙商场购买更优惠;当y甲=y乙时,学校选择甲、乙两商场购买一样优惠;当y甲<y乙时,学校选择甲商场购买更优惠.解:在甲商场购买花费y甲=6000+(x-1)×6000×(1-25%)=4500x+1500(x>1的整数);在乙商场购买花费y乙=x·6000×(1-20%)=4800x(x>1的整数);当y甲>y乙时,学校选择乙商场购买更优惠,即4500x+1500>4800x,解得x<5;当y甲=y乙时,学校选择甲、乙两商场购买一样优惠,即4500x+1500=4800x,解得x=5;当y甲<y乙时,学校选择甲商场购买更优惠,即4500x+1500<4800x,解得x>5.所以当购买少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买多于5台电脑时,学校选择甲商场购买更优惠.方法总结:根据实际问题用一次函数表示两个变量之间的关系,再通过比较两个函数的函数值得到对应的自变量的取值范围,从而解决实际问题.【类型三】最值问题为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.解析:(1)根据题设条件,求出等量关系,列一元一次方程即可求解;(2)根据题设中的不等关系列出相应的不等式,通过求解不等式确定最值,求最值时要注意自变量的取值范围.解:设购进A种树苗x棵,则购进B种树苗(17-x)棵,(1)根据题意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:购进A种树苗10棵,B种树苗7棵;(2)由题意得17-x<x,解得x>172,所需费用为80x+60(17-x)=20x+1020(元),费用最省需x取最小整数9,此时17-x=17-9=8,此时所需费用为20×9+1020=1200(元).答:购买9棵A种树苗,8棵B种树苗的费用最省,此方案所需费用1200元.三、板书设计一元一次不等式与一次函数关系的实际应用分类讨论思想、数形结合思想本课时结合生活中的实例组织学生进行探索,在探索的过程中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,为后面的学习打下基础.2.6一元一次不等式组第1课时一元一次不等式组的解法。
《一元一次不等式》教学设计教学模式介绍:“传递-接受”教学模式源于赫尔巴特的四段教学法,后来由前苏联凯洛夫等人进行改造传入我国。
在我国广为流行,很多教师在教学中自觉不自觉地都用这种方法教学。
该模式以传授系统知识、培养基本技能为目标。
其着眼点在于充分挖掘人的记忆力、推理能力与间接经验在掌握知识方面的作用,使学生比较快速有效地掌握更多的信息量。
该模式强调教师的指导作用,认为知识是教师到学生的一种单向传递的作用,非常注重教师的权威性。
“传递-接受”教学模式的课程环节:复习旧课——激发学习动机——讲授新知识——巩固运用——检查评价——间隔性复习第一课时设计思路说明:1.复习一元一次方程和解一元一次方程的基本步骤。
本课使用类比教学的方法,从方程到不等式。
2.通过观察不等式的共同特征,并给这一类不等式起名字引入新课。
从一元一次方程的判断到一元一次不等式的判断,学生思维具有连贯性。
3.通过类比,学习一元一次不等式的定义和解法。
巩固运用环节,给出相关习题,提高学生对于知识点的合并认知,检查学生对于知识点的掌握情况,同时提高课堂效率。
在课堂结尾,随机抽查同学提问关于本节课的认识,让学生自己总结知识点,本课重难点,加深学生对本课内容的印象,同时锻炼学生对于知识的归纳总结能力。
布置课后作业,并在后面的教学过程中进行间隔性复习。
教材分析这是北师大版数学教材八年级下册第二章,在理解不等关系的基础上学习一元一次不等式和一元一次不等式组的解法。
培养学生的符号意识和计算能力。
教学目标【知识与能力目标】1.经历一元一次不等式概念的形成过程。
2.能解数字系数的一元一次不等式,并能在数轴上表示出解集。
【过程与方法目标】通过复习和小组活动,理清学习的思路,增强动手实践的能力,提高学生的计算能力。
【情感态度价值观目标】1.培养学生跟他人交流合作的意识和用实验解决问题的方法与能力;2.培养学生的计算能力,提高数学素养。
教学重难点 【教学重点】1.能解数字系数的一元一次不等式,并能在数轴上表示出解集。
第二章一元一次不等式与一元一次不等式组4.一元一次不等式(一)南娇艳一、学生知识状况分析学生已经经历了不等式的基本性质、不等式的解集的学习,对不等关系已经有了初步的认识和体会。
在本节的学习中可以类比一元一次方程的解法和对不等式的性质的利用加深对解不等式的理解。
学生在学习中要能将本节内容与上节内容联系起来,强化数轴在解一元一次不等式中的作用,为后续学习解不等式组打下坚实的基础。
二、教学任务分析本节课的教学内容是一元一次不等式的形成及其解集的表示,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论、交流使学生经历知识的形成和巩固过程。
在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。
本课时的学习任务主要有两个:第一是让学生体会和经历一元一次不等式概念的形成过程;第二是让学生会解简单的一元一次不等式并能在数轴上表示其解集,最终实现提高学生分析问题、解决问题的能力的任务。
1.教学目标:(一)知识与技能:会解简单的一元一次不等式,并能在数轴上表示其解集。
(二)过程与方法:让学生经历一元一次不等式的形成过程,通过类比理解一元一次不等式的解法。
(三)情感与态度:通过一元一次不等式的学习,提高学生的自主学习能力,激发学生的探究兴趣。
2.教学重点:掌握简单的一元一次不等式的解法,并能将解集在数轴上表示出来。
3.教学难点:一元一次不等式的解法。
三、教学过程分析本节课设计了六个教学环节:第一环节:复习提问,引入课题;第二环节:合作探究,解决问题;第三环节:例题解析;第四环节:巩固练习;第五环节:课堂小结;第六环节:布置作业。
第一环节 创设情境,引入课题活动内容1:复习提问:(1) 不等式的三条基本性质是什么?(2)什么叫一元一次方程?解一元一次方程的步骤是什么?活动目的:通过问题,让学生回顾一元一次方程的概念和解一元一次方程的步骤,以及不等式的基本性质,为后面归纳一元一次不等式的概念及解法提供条件。
《一元一次不等式》精品教案被评为优秀(85分或85分以上),小明至少答对了几道题?想一想:本题中涉及的不等关系是什么?答:小明得的分数≥85即:小明答对题的分数-答错题扣的分数≥85追问:你能利用不等式解决这个问题吗?解:设小明答对了x道题,则他答错和不答的共有(25-x)道题,根据题意,得4x-1×(25-x)≥85解得x≥22答:小明至少答对了22道题.想一想:小明可能答对了几道题呢?解:∵x≥22且x≤25,又∵x取正整数,∴x=22或23或24或25答:小明可能答对22道、23道、24道或25道题.例:小丽准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了2本笔记本.请你帮她算一算,她可能买了几支笔?解:设她买x枝笔,根据题意,得3x+2×2≤21解这个不等式,得x≤25 3∵x只能取正整数,∴x可以是5或4或3或2或1.答:小丽可能买1支、2支、3支、4支或5支笔.归纳:利用一元一次不等式解决实际问题的一般步骤:(1)审题,找不等关系;(2)设未知数;(3)列不等式;(4)解不等式;(5)根据实际情况,写出答案.老师的指导下求解.学生独立完成例1,班内交流后,认真听老师的讲评.学生与老师共同归纳一元一次不等式解决实际问题的步骤,并认真完成练习.实际问题的方法,体会符合题意答案的求法.进一步体会不等式解决实际问题的方法.归纳一元一次不等式解实际问题的一般步骤,并通过练习形成技练习1:小刚准备用26元钱买火腿肠和方便面,已知一根火腿肠2元钱,一盒方便面3元钱,他买了5盒方便面,他最多还能买多少根火腿肠?解:设小刚买x 根火腿肠.根据题意,得:2x +3×5≤26解这个不等式,得:x ≤5.5答:小刚最多还能买5根火腿肠.练习2:某学校学生会组织七年级和八年级共60名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶.为了保证所收集的塑料瓶总数不少于1000个,至少需要多少名八年级学生参加活动?解:设参加的八年级学生为x 人,得15×(60-x )+20x ≥1000解不等式,得x ≥20答:至少需要20名八年级学生参加活动.能.课堂练习1.太原某座桥桥头的限重标志如图,其中的“55”表示该桥梁限制载重后总质量超过55t 的车辆通过桥梁.设一辆自重10t 的卡车,其载重的质量为x t ,若它要通过此座桥,则x 应满足的关系为___________(用含x 的不等式表示).答案:10+x ≤552.亮亮准备用自己节省的零花钱买一台英语复读机.他现在已存有55元,计划从现在起以后每个月节省20元,直到他至少有350元.设x 个月后他至少有350元,则可以用于计算所需要的月数x 的不等式是()A .20x -55≥350B .20x +55≥350C .20x -55≤350D .20x +55≤350学生自主完成课堂练习,做完之后班级内交流.借助练习,检测学生的知识掌握程度,同时便于学生巩固知识.答案:B3.篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场扣一分.某队预计在2018-2019赛季全部32场比赛中最少得到48分,才有希望进入季后赛,假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.3x+(32-x)⩾48B.3x-(32-x)⩾48C.3x-(32-x)⩽48D.3x⩾48答案:B拓展提高“绿水青山,就是金山银山”,某旅游景区为了保护环境,需购买A,B两种型号的垃圾处理设备共10台(每种型号至少买1台),已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.请你为该景区设计购买A,B两种设备的方案.解:设购买A型设备x台,则购买B型设备(10-x)台.根据题意,得12x+15(10-x)≥140,解得x≤313∵x为正整数,∴x=1,2,3.∴该景区有三种购买方案:方案一:购买A型设备1台、B型设备9台;方案二:购买A型设备2台、B型设备8台;方案三:购买A型设备3台、B型设备7台.在师的引导下完成问题.提高学生对知识的应用能力中考链接下面让我们一起赏析中考题:(2018·永州)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()在师的引导下完成中考题.体会所学知识在中考试题考查中的运用.A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关答案:A课堂总结在课堂的最后,我们一起来回忆总结我们这节课所学的知识点:问题、利用一元一次不等式解决实际问题的一般步骤?(1)审题,找不等关系;(2)设未知数;(3)列不等式;(4)解不等式;(5)根据实际情况,写出答案.跟着老师回忆知识,并记忆本节课的知识.帮助学生加强记忆知识.作业布置基础作业教材第49页习题2.5第1、2题能力作业教材第49页习题2.5第4题学生课下独立完成.检测课上学习效果.。
北师大版数学八年级下册《2.4 一元一次不等式(第2课时)》教学设计步骤相似,大致有:(1)去分母;(2)去括号;(3)移项、合并同类项;(4)系数化成1.特别提醒学生注意:在去分母和系数化成1这两步中,如果两边同时乘以或除以同一个负数,要注意改变不等号的方向.2.解一元一次不等式,并把解集在数轴上表示出来.学生自主完成:(答案见课件)3.一元一次方程的应用某种商品进价为200元,标价300元出售,折价销售的利润率为5%,问此商品是按几折销售的?学生利用学过的知识自主完成.提出问题:回忆列一元一次方程解应用题的一般步骤?学生回忆解答.提出问题:类比用一元一次方程解应用题,如何用一元一次不等式解应用题呢?(引出本课课题)二、合作学习,自主探究1.做一做:某种商品进价为200元,标价 300 元出售,商场规定可以打折销售,但其利润率不能少于5%. 请你帮助售货员计算一下,此种商品可以按几折销售?提出问题:1.本题中已知什么?求什么?2.本题中的等量关系和不等关系分别是什么?学生讨论归纳如下:①已知进价、标价、利润,求商品可以按几折销售.②等量数量:售价-进价=利润,不等关系:利润≥5%.根据分析,列不等式解题如下:解:设商品可按x折销售,根据题意,得300×-200≥200×5%解不等式,得 30x-200≥10即:x≥7答:此种商品可以按7折销售.2.例题讲解例题:一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?问题(1)本题已知的数量关系有哪些?要求的是什么?问题(2)找出题目中的不等关系和表示不等关系的关键词;问题(3)根据确定的不等关系设未知数,列出不等式;问题(4)不等式的解集与题目的解有什么关系.讨论结果:略.解:设小明答对了x道题,则他答错和不答的共有(25-x)道题,根据题意,得4x-1×(25-x)≥85.解这个不等式,得x≥22.所以,小明至少答对了22道题,他可能答对了22道、23道、24道或25道题提出问题:根据以上两题的解题过程,你能总结出列不等式解应用题的一般步骤是怎样的吗?则剩余路程可表示为_____.根据以上各量之间的关系可列式_________________.4)他此后平均每天至少要行____千米.2.小兰准备用30元买钢笔和笔记本,已知一支钢笔4.5元,一本笔记本3元,如果她钢笔和笔记本共买了8件,每一种至少买一件,则她有多少种购买方案?3.我班几个同学合影留念,每人交0.70元.已知一张彩色底片0.68元,扩印一张相片0.50元,每人分一张,在将收来的钱尽量用掉的前提下,这张相片上的同学最少有几人?四、本课小结主要掌握解一元一次不等式应用题的步骤.。
第二章一元一次不等式与一元一次不等式组教学目标:(一)知识与技能1.掌握不等式的基本性质,理解不等式(组)的解及解集的含义,会解简单的一元一次不等式(组),并能在数轴上表示其解集.2.能够用一元一次不等式解决一些简单的实际问题.3.体会不等式、函数、方程之间的联系.(二)过程与方法通过梳理本章内容,进一步体会模型思想及类比的思想方法.(三)情感与价值观要求鼓励合作学习,引导学生从不同的角度思考问题、解决问题,发展学生个性,使每个学生都能体会学习数学的价值,增进学生对数学的理解和学好数学的信心.教学重点:掌握不等式的基本性质,理解不等式(组)的解及解集的含义,会解简单的一元一次不等式(组),并能在数轴上表示其解集。
教学难点:能够用一元一次不等式解决一些简单的实际问题,体会不等式、函数、方程之间的联系。
教学过程1、知识回顾,构建体系学生通过回答下列问题把本章的知识内容进行整理,画出本章知识联系图.1.用表示大小关系的式子,叫做不等式.2. 叫做不等式的解集.3. 不等式两边都加上(或减去)同一个数(或式子),不等号的方向;不等式两边都乘以(或除以)同一个正数,不等号的方向;不等式两边都乘以(或除以)同一个负数,不等号的方向 .4.只含有一个未知数,并且叫做一元一次不等式.解一元一次不等式时,经过“去分母、、、、、”等变形后,把左边变成单独的一个未知数,右边变成一个常数.要特别注意的是在不等式的两边都乘以(或除以)同一个时,不等号的方向一定改变.5. 列一元一次不等式(组)解答实际问题一般需要般要遵循如下步骤:①审:分清已知量、未知量及它们之间的关系,找出其中的 关系;②设:设出未知数;③设列:列出 .反映不等关系;④解:解 ,获得解集 ;⑤答:对解决进行 舍去不合题意的答案,确定符合题意的答案,写出答句.6.由几个含有同一个未知数的 叫做一元一次不等式组.7.一元一次不等式组中各个不等式解集的 叫做一元一次不等式组的解集.8.由于任何一个一次不等式都可以转化为0ax b +>或0ax b +<(a ,b 是常数,a ≠0)的形式,所以解一元一次不等式0ax b +>或0ax b +<,可以看作:当一次函数y = ax +b 的值大(小)于0时,求自变量相应的 ;反之,求一次函数y = ax +b 的值何时大(小)于0时,只要求出不等式0ax b +>或0ax b +<的 即可.本章的知识联系图2、例题分析,解决问题例1 解不等式x >13x -2,并将其解集表示在数轴上. 例2 解不等式组235321x x -<⎧⎨+-⎩≥.例3 小明放学回家后,问爸爸妈妈小牛队与太阳队篮球比赛的结果.爸爸说:“本场比赛太阳队的纳什比小牛队的特里多得了12分.”妈妈说:“特里得分的两倍与纳什得分的差大于10;纳什得分的两倍比特里得分的三倍还多.”爸爸又说:“如果特里得分超过20分,则小牛队赢;否则太阳队赢.”请你帮小明分析一下.究竟是哪个队赢了,本场比赛特里、纳什各得了多少分?例4 暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x 名学生去旅游,他们应该选择哪家旅行社?3、练习提高解下列不等式或不等式组,并把它们的解集在数轴上表示出来.(1)2(x -3)>4; (2)2x -3≤5(x -3);(3)⎩⎨⎧>+-+<+x x x x 28)2(35)2(2 (4)⎪⎪⎩⎪⎪⎨⎧-+>--<+4233225351x x x x x 4、课堂小结 通过本节课的学习,你有什么收获?你感觉最困难的是什么?印象最深刻的是哪个部分的知识?5、作业复习题。
第2课时 一元一次不等式的应用
1.会在实际问题中寻找数量关系列一元一次不等式并求解;
2.能够列一元一次不等式解决实际问题.(重点,难点)
一、情境导入
如果你要分别购买40元、80元、140元、160元的商品,应该去哪家商店更优惠?
二、合作探究
探究点:一元一次不等式的应用 【类型一】 商品销售问题
某商品的进价是120元,标价为180元,但
销量较小.为了促销,商场决定打折销售,为了保证利润率不低于20%,那么最多可以打几折出售此商品?
解析:由题意可知,利润率为20%时,获得的利润为120×20%=24元;若打x 折该商品获得的利润=该商品的标价×
x
10
-进价,即该商品获得的利润=180×x
10
-120,列出不等式,解得x 的值即可.
解:设可以打x 折出售此商品,由题意得: 180×x
10-120≥120×20%,
解得x ≥8.
答:最多可以打8折出售此商品.
方法总结:商品销售问题的基本关系是:售价-进价=利润.读懂题意列出不等式求解是解题关键. 【类型二】 竞赛积分问题
某次知识竞赛共有25道题,答对一道得4
分,答错或不答都扣2分.小明得分要超过80分,他至少要答对多少道题?
解析:设小明答对x 道题,则答错或不答的题目为(25-x )道,根据得分要超过80分,列出不等关系求解即可.
解:设小明答对x 道题,则他答错或不答的题目为(25-x )道.根据他的得分要超过80分,得:
4x -2(25-x )>80,
解得x >212
3
.
因为x 应是整数而且不能超过25,所以小明至少要答对22道题.
答:小明至少要答对22道题.
方法总结:竞赛积分问题的基本关系是:得分-扣分=最后得分.本题涉及到不等式的整数解,取整数解时要注意关键词如“至多”“至少”等. 【类型三】 安全问题
采石场爆破时,点燃导火线后工人要在爆破
前转移到400米外的安全区域.导火线燃烧速度是每秒1厘米,工人转移的速度是每秒5米,导火线至少要多少米?
解析:根据时间列不等式,导火线燃烧时间>工人要在爆破前转移到400米外的安全区域时间.
解:设导火线的长度需要x 米,1厘米/秒=0.01米/秒,由题意得x 0.01>400
5
,解得x >0.8.
答:导火线至少要0.8米.
【类型四】分段计费问题
小明家每月水费都不少于15元,自来水公
司的收费标准如下:若每户每月用水不超过5立方米,
则每立方米收费1.8元;若每户每月用水超过5立方
米,则超出部分每立方米收费2元,小明家每月用水
量至少是多少?
解析:当每月用水5立方米时,花费5×1.8=9
元,则可知小明家每月用水超过5立方米.设每月用
水x立方米,则超出(x-5)立方米,根据题意超出部分
每立方米收费2元,列一元一次不等式求解即可.
解:设小明家每月用水x立方米.
∵5×1.8=9<15,
∴小明家每月用水超过5立方米.
则超出(x-5)立方米,按每立方米2元收费,
列出不等式为5×1.8+(x-5)×2≥15,
解不等式得x≥8.
答:小明家每月用水量至少是8立方米.
方法总结:分段计费问题中的费用一般包括两个
部分:基本部分的费用和超出部分的费用.根据费用
之间的关系建立不等式求解即可.
【类型五】调配问题
有10名菜农,每人可种甲种蔬菜3亩或乙
种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙
种蔬菜每亩可收入0.8万元,要使总收入不低于15.6
万元,则最多只能安排多少人种甲种蔬菜?
解析:设安排x人种甲种蔬菜,则种乙种蔬菜为
(10-x)人.甲种蔬菜有3x亩,乙种蔬菜有2(10-x)
亩.再列出不等式求解即可.
解:设安排x人种甲种蔬菜,则种乙种蔬菜为(10
-x)人.
根据题意得0.5×3x+0.8×2(10-x)≥15.6,
解得x≤4.
答:最多只能安排4人种甲种蔬菜.
方法总结:调配问题中,各项工作的人数之和等
于总人数.
【类型六】方案决策问题
为了保护环境,某企业决定购买10台污水
处理设备.现有A、B两种型号的设备,其中每台的价
格、月处理污水量及年消耗费如下表.经预算,该企
业购买设备的资金不高于105万元.
(1)请你设计该企业有几种购买方案;
(2)若企业每月产生的污水量为2040吨,为了节约
资金,应选择哪种购买方案.
解析:(1)设购买污水处理设备A型x台,则B型
为(10-x)台,列出不等式求解即可,x的值取整数;(2)
如图表列出不等式求解,再根据x的值选出最佳方案.
解:(1)设购买污水处理设备A型x台,则B型为
(10-x)台.
12x+10(10-x)≤105,解得x≤2.5,∵x取非负整
数,∴x可取0,1,2,
有三种购买方案:购A型0台,B型10台;A型
1台,B型9台;A型2台,B型8台;
(2)240x+200(10-x)≥2040,解得x≥1,
∴x为1或2.
当x=1时,购买资金为12×1+10×9=102(万
元);
当x=2时,购买资金为12×2+10×8=104(万
元).
答:为了节约资金,应选购A型1台,B型9台.
方法总结:此题将现实生活中的事件与数学思想
联系起来,属于最优化问题,在确定最优方案时,应
把几种情况进行比较.
三、板书设计
应用一元一次不等式解决实际问题的步骤:
实际问题――→
找出不等关系
设未知数
列不等式―→解不等式―
→结合实际问题确定答案
本节课通过实例引入,激发学生的学习兴趣,让学生积极参与,讲练结合,引导学生找不等关系列不等式.在教学过程中,可通过类比列一元一次方程解决实际问题的方法来学习,让学生认识到列方程与列不等式的区别与联系.。