浙江省海宁市2020届九年级学业水平考试适应性试卷(一)数学试题含答案
- 格式:doc
- 大小:396.93 KB
- 文档页数:10
L 九年级数学适应性试题 第1页 共4页2020年初中毕业生学业考试适应性试卷数 学(本试卷满分:150分 考试时间:120分钟)一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.21-的相反数是( ▲ ) A .2B.-2C .21D .±21 2.计算2)3(a 的结果是( ▲ )A .6aB .3a 2C .6a 2D .9a 23.如图,由5个相同的正方体组合而成的几何体,它的主视图是( ▲ )A. B. C. D.4.若正多边形的一个外角为36°,则这个正多边形是( ▲ )A .正八边形B .正九边形C .正十边形D .正十一边形 5.在战“疫”诗歌创作大赛中,有7名同学进入了决赛,他们的最终成绩均不同.小弘同学想知道自己能否进入前3名,除要了解自己的成绩外,还要了解这7名同学成绩的( ▲ ) A .中位数B .平均数C .众数D .方差6.某公司拟购进A ,B 两种型号机器人.已知用240万元购买A 型机器人和用360万元购买B 型机器人的台数相同,且B 型机器人的单价比A 型机器人多10万元.设A 型机器人每台x 万元,则所列方程正确的是( ▲ )A .10360240+=x xB .x x 36010-240=C .10360240=+x xD .10024-036=x x7.如图,BC 是⊙O 的一条弦,经过点B 的切线与CO 的延长线交于点A ,若∠C=23°,则∠A 的度数为( ▲ )A .38°B .40°C .42°D .44°8.如图,在矩形ABCD 中,将△ABE 沿着BE 翻折,使点A 落在BC 边上的点F 处,再将△DEG 沿着EG 翻折,使 点D 落在EF 边上的点H 处. 若点A ,H ,C 在同一直线上, AB =1,则AD 的长为( ▲ ) A .23 B .215+ C .2 D .1-5(第7题)(第8题)(第3题)L 九年级数学适应性试题 第2页 共4页(第9题)(第15题) (第14题)(第10题)9.甲、乙两个草莓采摘园为吸引顾客,在草莓销售价格相同的基础上分别推出优惠方案,甲园:顾客进园需购买门票,采摘的草莓按六折优惠.乙园:顾客进园免门票,采摘草莓超过一定数量后,超过的部分打折销售.活动期间,某顾客的草莓采摘量为x kg ,若在甲园采摘需总费用y 1元,若在乙园采摘需总费 用y 2元. y 1,y 2与x 之间的函数图象如图所示,则 下列说法中错误..的是( ▲ ) A .甲园的门票费用是60元B .草莓优惠前的销售价格是40元/kgC .乙园超过5 kg 后,超过的部分价格优惠是打五折D .若顾客采摘12 kg 草莓,那么到甲园或乙园的总费用相同10.如图,Rt △ABC 中,∠C =90°,BC =6,DE 是△ABC 的中位线,点D 在AB 上,把点B绕点D 按顺时针方向旋转α(0°<α<180°)角得到点F ,连接AF ,BF . 下列结论:①△ABF 是直角三角形;②若△ABF 和△ABC 全等,则α=2∠BAC 或2∠ABC ; ③若α=90°,连接EF ,则S △DEF =4.5;其中正确的结论是( ▲ ) A .① ② B .① ③ C .① ② ③ D .② ③二、填空题(本题有6小题,每小题5分,共30分) 11.二次根式2+a 中,a 的取值范围是▲ . 12.已知点A (2,-3)和B (-1,m )均在双曲线xky =(k 为常数,且k ≠0)上,则m = ▲ . 13.在一个不透明的袋子中有三张完全相同的卡片,分别编号为1,2,3.若从中随机取出两张卡片,则卡片上编号之和为偶数的概率是 ▲ .14.如图,已知△ABC 中,AB =AC ,∠A =36°,分别以点A ,C 为圆心,大于21AC 的长度为半径画弧,两弧相交于点P ,Q ,直线PQ 与AB 交于点M ,若BC =a ,MB =b ,则AC = ▲ .15.定义:有一组邻边相等的凸四边形叫做等邻边四边形.如图,在Rt △ABC 中,∠ABC =90°,AB =2,BC =1,将△ABC 沿∠ABC 的平分线'BB 的方向平移,得到△'''C B A ,连接'AC ,'CC ,若四边形'ABCC 是等邻边四边形,则平移距离'BB 的长度是 ▲ .16.如图,在正方形ABCD 中,AB =6,点E 在AB 边上,CE 与对角线BD 交于点F ,连接AF ,若AE =2,则sin ∠AFE 的值是 ▲ .(第16题)L 九年级数学适应性试题 第3页 共4页人数类别5人5人30人A B CD 30201510525DC B10%A(第21题)三、解答题(本题共8小题,其中第17-20题每题8分,第21题10分,第22-23题每题12分,第24题14分,共80分) 17.计算:3-112)3-π(0++. 18.解方程组19.等腰三角形的屋顶,是建筑中经常采用的结构形式.在如图所示的等腰三角形屋顶ABC 中,AB =AC ,测得BC =20米,∠C =41°, 求顶点A 到BC 边的距离是多少米?(结果 精确到0.1米.参考数据:sin41°≈0.656, cos41°≈0.755,tan41°≈0.869.)20.如图,“漏壶”是一种古代计时器.在它内部盛一定量的水,水从壶下的小孔漏出.壶 内壁有刻度,人们根据壶中水面的位置计算时间.用x (小时)表示漏水时间,y (厘 米)表示壶底到水面的高度,某次计时过程中,记录到部分数据如下表:(1)问y 与x 的函数关系属于一次函数、二次函数和反比例函数中的哪一种?求出该函数解析式及自变量x 的取值范围;(2)求刚开始计时时壶底到水面的高度.21.为了解阳光社区年龄20~60岁居民对垃圾分类的认识,学校课外实践小组随机抽取了该社区、该年龄段的部分居民进行了问卷调查,并将调查数据整理后绘成如下两幅不完整的统计图.图中A 表示“全部能分类”,B 表示“基本能分类”,C 表示“略知一二”,D 表示“完全不会”.请根据图中信息解答下列问题:(1)补全条形统计图并填空:被调查的总人数是 ▲ 人,扇形图中D 部分所对应的圆心角的度数为 ▲ ;(2)若该社区中年龄20~60岁的居民约3000人,请根据上述调查结果,估计该社区中C 类有多少人?(3)根据统计数据,结合生活实际,请你对社区垃圾分类工作提一条合理的建议.漏水时间x (小时)… 3 4 5 6 … 壶底到水面高度y(厘米) … 9 753….52,95=-=+y x y x (第19题)(第20题)L 九年级数学适应性试题 第4页 共4页22.已知AB 是⊙O 的直径,C 是⊙O 上的一点(不与点A ,B 重合),过点C 作AB 的垂线交⊙O 于点D ,垂足为E 点.(1)如图1,当AE =4,BE =2时,求CD 的长度;(2)如图2,连接AC ,BD ,点M 为BD 的中点.求证:ME ⊥AC .23.已知y 关于x 的二次函数y =x ²-bx +41b²+b -5的图象与x 轴有两个公共点. (1)求b 的取值范围;(2)若b 取满足条件的最大整数值,当m ≤x ≤23时,函数y 的取值范围是n ≤y ≤6-2m , 求m ,n 的值;(3)若在自变量x 的值满足b ≤x ≤b +3的情况下,对应函数y 的最小值为41,求此 时二次函数的解析式.24.已知菱形ABCD 中,∠ABC =60°,AB =4,点M 在BC 边上,过点M 作PM ∥AB 交对角线BD 于点P ,连接PC .(1)如图1,当BM =1时,求PC 的长;(2)如图2,设AM 与BD 交于点E ,当∠PCM =45°时,求证:DE BE=332 ; (3)如图3,取PC 的中点Q ,连接MQ ,AQ .①请探究AQ 和MQ 之间的数量关系,并写出探究过程;②△AMQ 的面积有最小值吗?如果有,请直接写出....这个最小值;如果没有,请说明理由.(第24题)图3图2 图1 (第22题)图1图2L 九年级数学适应性试题 第5页 共4页2020年初中毕业生学业考试适应性试卷数学参考答案及评分意见一、选择题(本题有10小题,每小题4分,共40分) 题号1234567 8 9 10 答案C D B C A A DBDC11. a ≥-2 12. 6 13. 31 14. a +b15. 1或225 (只答对一个得3分) 16.135 三、解答题(本题共8小题,其中第17-20题每题8分,第21题10分,第22-23题每题12分,第24题14分,共80分)17.解:原式 =1-3321++ …………………………………………6分=33 …………………………………………2分18. 解: …………① …………②①+②得: 7x =14, x =2, …………………………………………4分 把x =2代入①得:10+y =9, y = -1, …………………………………………3分∴原方程组的解为:…………………………………………1分 19. 解:作AD 丄BC ,垂足为D 点 …………1分∵AB =AC ,BC =20, ∴BD =CD =21BC =10. …………2分 在Rt △ACD 中,∠C=41°, ∴tan C=tan41°=CDAD, ∴AD =°•41tan CD ≈10×0.869 ≈8.7. …………4分 答:顶点A 到BC 边的距离是8.7米. …………1分20. 解:(1)y 是x 的一次函数; ………………………………2分 设y =k x +b ,把(3,9)与(4,7)代入得: 解得: ………………………………2分 .52,95=-=+y x y x -1.2,==y x .7,9=+=+b k b k .51,2-==L 九年级数学适应性试题 第6页 共4页∴y =-2x +15 (0≤x ≤7.5) ; ………………………………2分(2)把x =0代入y =-2x +15,得y=15,∴刚开始计时时壶底到水面的高度为15厘米. ………………………………2分21. 解:(1)图略(B 类的人数为10),50,36°; ………………………………6分(2)001850300030=×(人) 答:根据样本估计总体,该社区中C 类约有1800人; ………………2分(3)通过数据分析可知,该社区多数居民对垃圾分类知识了解不够,社区工作人员可以通过宣传橱窗加强垃圾分类知识的普及.(符合数据分析结果的建议均 可) ………………2分22.解:(1)如图1,连接OC . …………1分 ∵ AE =4,BE =2, ∴AB =6,∴CO =AO =3, …………1分 ∴OE =AE -AO =1, ∵CD 丄AB ,∴ 由勾股定理可得:CE =22132222=-=-OE OC , (2)分由垂径定理可得CE =DE .∴ CD =2CE =24. (2)分(2)证明:如图2,延长ME 与AC 交于点N . …………1分∵CD 丄AB ,∴∠BED =90°.∵ M 为BD 中点, ∴EM =21BD =DM , …………1分 ∴ ∠DEM =∠D ,∴∠CEN =∠DEM =∠D . ………………2分 ∵ ∠B =∠C ,图1图2L 九年级数学适应性试题 第7页 共4页∴∠CNE =∠BED =90°,即ME 丄AB . ………………2分23. 解:(1)由题意知,∆>0, 即0)5-41(14--22>+××b b b )( , ∴ -4b +20>0 …………2分 解得:b < 5 ; …………1分(2)由题意,b =4,代入得:34-2+=x x y ,∴对称轴为直线22-==abx . …………2分 又∵a =1>0,函数图象开口向上,∴当m ≤x ≤23时,y 随x 的增大而减小, ∴当x =23时,y =n =43-3234-232=+×)(; …………1分 当x =m 时,y =34-2-62+=m m m ,03-2-2=m m , 解得:m 1= -1,m 2=3(不合题意,舍去); ∴ m = -1,n =43-. …………1分 (3) 5-)2-(2b b x y +=,函数大致图象如图所示.①当b ≤0.5b ≤b +3,即-6≤b ≤0时, 函数y 在顶点处取得最小值,有b -5=41, ∴b =412(不合题意,舍去). …………1分 ②当b+3<0.5b ,即b <-6时,取值范围在对称轴左侧,y 随x 的增大而减小, ∴当x =b+3时,y 最小值=41,代入得:415-)2-3(2=++b b b ,051162=++b b , 解得:b 1=-15,b 2=-1(不合题意,舍去), ∴此时二次函数的解析式为:20-)215(2+=x y .…………2分 ③当0.5b <b ,即b>0时,取值范围在对称轴右侧,y 随x 的增大而增大, ∴当x =b 时,y 最小值=41,代入得:415-)2-(2=+b b b ,021-42=+b b , 解得:b 1=-7(不合题意,舍去),b 2=3, ∴此时二次函数的解析式为:2-)23-(2x y =.L 九年级数学适应性试题 第8页 共4页综上所述,符合题意的二次函数的解析式为:20-)215(2+=x y 或 2-)23-(2x y =. ………2分24.解:(1)如图1,作PF ⊥BC 于点F .∵四边形ABCD 是菱形,∠ABC =60°, ∴∠ABD =∠CBD =30°,AB =BC =CD =AD =4.∵PM ∥AB ,∴∠ABD =∠BPM =∠CBD =30°,∠PMF =∠ABC =60°, ∴PM =BM =1,∴MF =21PM =21,PF =23 , ………………2分FC =BC -BM -MF =4-1-21=25,∴PC =22FC PF =7. ………………………………2分(2)证明:如图2,作PG ⊥BC 于点G .∵∠PCM =45°, ∴∠CPG =∠PCM =45°,∴PG =GC . ………………1分 设MG =x ,由(1)可知: BM =PM =2x ,GC =PG=3x ,由BM +MG +GC =BC 得:2x +x +3x =4, ∴x =334+,∴BM =338+. …………………………………………2分∵四边形ABCD 是菱形,∴BM ∥AD , ∴△BEM ∽△DEA ,图1图2L 九年级数学适应性试题 第9页 共4页∴=+==4338DA BM DE BE 332+. …………………………………………2分 (3)①如图3,延长MQ 与CD 交于点H ,连接AH ,AC .∵PM ∥AB ∥CD ,∴∠PMQ =∠CHQ ,∠MPQ =∠HCQ . ∵Q 是PC 的中点, ∴PQ =CQ ,∴△PMQ ≌△CHQ ,∴PM =CH =BM ,MQ =HQ . ………………1分由四边形ABCD 是菱形,∠ABC =60°,易得△ABC 为等边三角形, ∴AB =AC ,∠ABM =∠ACH =60°, ∴△ABM ≌△ACH ,∴AM =AH ,∠BAM =∠CAH , ∴∠MAH =∠BAC =60°,∴△AMH 为等边三角形, ………………1分 ∴AQ ⊥MH ,∠MAQ =21∠MAH =30°, ∴AQ =3MQ . ………………1分 ②△AMQ 的面积有最小值,最小值为323. ………………………………2分图3。
2020年初中毕业生学业水平考试适应性试卷(一)语文试题卷(2020.05)三年初中生活马上要结束了,请你参加下面四个语文学习活动,希望你有精彩的表现。
【活动一:开展“致敬英雄”主题班会,分享学习经验】(18分)任务1:溯源英雄1.下面图片显示了“英”“雄”两字字源的演变过程,但“雄”字的战国文字、篆文、隶书字形不慎被弄污了,请你排列下列字形将其重新恢复,正确的顺序是▲(填序号)。
(1分)①②③任务2:释义英雄2.根据表中解释补全(1)(2)处的内容。
(2分)3.“英雄不问出处”,英雄又何尝不该“当思原由”,请完成思维导图。
(3分)任务4:诗意英雄4.在下面语段空缺处按序号补全古诗文名句。
(8分) , ▲ ”(曹操《观沧海》), ▲ ”(陈子昂《登幽州台歌》), ▲ ”(范仲淹《岳阳楼记》)般淡然平静、豁达无争的英雄之度;“谁说女子不如男”,巾帼英雄又岂容小觑,秋瑾生性豪侠,“身, ▲ ”。
任务5:礼赞英雄5.阅读下面“礼赞英雄”的语段,完成(1)—(4)的任务。
(4分)英雄先烈是我们民族的们不断开拓前进的勇气和力量。
崇尚英雄才会产生英雄,争做英雄才能英雄备出。
伟大出自平凡,【自然界事物放任侵扰或残害】期间,有人逆行而上,有人与疫魔殊死搏斗,有人义无反顾奋战在防控处.(A .ch ǔ B .ch ù )置疫情的第一线,在平凡岗位上用执着坚守诠释着最美“逆行”,谱写着生命赞歌……(1)根据拼音写出相应汉字。
(2)为加点的字选择正确的读音。
(3)语段中不慎出现了一个错别字请你改正。
(4)根据【】中的解释写出该词语。
【活动二:欣赏名著《艾青诗选》,开启诗意人生】(8分)雪落在中国的土地上(节选)——啊,你 蓬发垢面的少妇, 是不是 你的家 ——那幸福与温暖的巢穴—— 已被暴戾的敌人 烧毁了么? 是不是 也像这样的夜间, 失去了男人的保护,6.“土地”是艾青诗歌的重要意象,请你分析上文“土地”这一意象的表达作用。
2020年初中毕业班学业水平适应性测试评分标准数 学一、选择题:(本大题考查基本知识和基本运算.共10小题,每小题3分,共30分)题号1 2 3 4 5 6 7 8 9 10 答案C A B C C B B C A B二、填空题:(本大题查基本知识和基本运算,体现选择性.共6小题,每小题3分,共18分) 11.︒128 12.()223y x − 13. 12≠−≥x x 且 14.665 15.5 16.①③④ 三、解答题:(本大题共9小题,满分102分.解答须写出文字说明、证明过程和演算步骤.)17.(本题满分9分)解不等式组:⎩⎨⎧+≤<+5641x x x解:①得: 3<x ……………………………………………………………3分解②得:15556−≥≤−≤−x x x x ……………………………………………………………6分不等式①,不等式②的解集在数轴上表示,如图………………………………………………………………8分∴原不等式组的解集为31<≤−x ………………………………………9分18.(本题满分9分)① ②证明:∵C 是AB 中点∴CB AC =………………………………………………………2分.又∵CD ∥BE∴ CBE ∠=∠ACD ………………………………………………4分在△ACD 和△CBE 中…⎪⎩⎪⎨⎧=∠=∠=BE CD BE ,ACD C CB AC∴ )(S S BE C △ ≌D C A △A ……………7分∴CE AD =…………………………………9分19.(本题满分10分)解(1)()()b a b a b a a b T −−−=()b a ab a b a ab b −−−=22)(………………………………………………2分()()()b a ab a b a b −−+=………………………………………………4分 ()()()b a ab b a a b −−+−= ab b a +−=………………………………………………………………………6分 (2)∵03=+−b ab a∴ab b a 3=+………………………………7分3=+ab b a …………………………………9分∴3−=+−=abb a T ………………………………………10分20.(本题满分10分)解:设原计划每天加工这种零件x 个,则根据题意可得:………………………1分 ()5%5012400024000++=x x ……………………………………………………………………5分解得:1600=x …………………………………………………………………7分经检验1600=x 是原方程的解且符合题意…………………………………………………………………9分 答:该工厂原计划每天加工这种零件1600个.…………………………………………………………………10分21.(本题满分12分)解:(1)共抽取学生 __40__ 人, 扇形图中C 等级所占扇形圆心角为__36_度;……………………2分(2)如图所示, ……………………4分(3)画树状图如下:开始男生1 男生2 男生3 女生男生2 男生3 女生 男生1男生3 女生 男生1男生2 女生 男生1男生2男生3…………………………………………9分由树状图可知,所有等可能的结果为12种(此处省略,需列明),其中两人恰好都为男生的有6种,分别为男生1男生2、男生1男生3、男生2男生1、男生2男生3、男生3男生1、男生3男生2、…………………………………………………………………………………………10分概率为:21126==p …………………………………………12分22.(本题满分12分)解:(1)作图所示,……………………………………………3分(2)∵点C 为弧AB 点∴弧AC 等于弧BC∴BC AC = …………………………………………5分又∵AB 为直径∴︒=∠90ACB …………………………………………6分延长BE 、AC 交于点F由(1)作图知:CAE BAE ∠=∠,︒=∠90AEB∴AE 垂直平分BF ………………………8分∴ 42==BE BF …………………………………………9分又∵BC AC BCF ACD FBC DAC ==∠=∠=∠︒,90,∴ ACD BCF SAS ∆∆≌()…………………………………………11分 ∴4==BF AD …………………………………………12分23. (本题满分12分) 解:(1)把点()2,1A 代入x k y 22= 得:122k =,∴22=k ,x y 22=…………………………………………1分把()1,m B 代入x y 22=得: 12=m ,∴2=m …………………………………………2分把点()2,1A ,()1,2B 代入b x k y +=11得:∴⎩⎨⎧=+=+12211b k b k …………………………………………3分解得:⎩⎨⎧=−=311b k …………………………………………4分∴直线AB 的解析式为31+−=x y ……………………………………5分(2)当0<x 或21<<x 时, x k b x k 21>+,……………………………………7分(3)如图,由(1)知31+−=x y ,知311==OE OD∴︒=∠4511E OD将直线AB 向下平移n 个单位长度,n OE ODE −==∠︒3,45 ∴)3(2n DE −= ………………………………9分过点P 作DE PM ⊥于点M ,过点D 作11E D DN ⊥于点N∵11E D ∥DE ∴n DN PM 22==………………………………10分 ∴()122322121=•−⨯=••=∆n n PM DE S DEF即0232=+−n n ,解得:1,221==n n∵30<<n∴ 21=n 或12=n ………………………………12分24.(本题满分14分)解: ∵二次函数的最高点坐标为(1,2)−∴顶点坐标为(1,2)−,对称轴为1x =−,设二次函数解析式为2(1)2y a x =++(0)a <又∵OB =1 ∴B (1,0)将B (1,0)代入2(1)2y a x =++,得:420a +=,解得12a =− ∴22113(1)2222y x x x =−++=−−+………………………………………2分 ∵对称轴为1x =−,B (1,0)∴)0,3(−A ∴4=AB又∵5ABD S ∆= ∴1252D D AB y y ⨯⨯==,得52D y =− 代入抛物线解析式得:215(1)222x −++=−,解得12x =,24x =−, ∴54,2D ⎛⎫−− ⎪⎝⎭…………………………………………………………………………3分 将5(1,0),(4,)2B D −−代入y kx b =+得: ∴5420k b k b ⎧−+=−⎪⎨⎪+=⎩,解得:1212k b ⎧=⎪⎪⎨⎪=−⎪⎩, ∴直线AD 的解析式为1122y x =−.……………………4分 (2)如图,过点E 作BD EN ⊥于N ,y EM ⊥轴交BD 于M∵∠EMN =∠OCB ∴25sin sin 5EMN OCB ∠=∠= ∴25sin 5EN EM EMN EM =∠=…………………5分设213,22E a a a ⎛⎫−−+ ⎪⎝⎭,则11,22M a a ⎛⎫− ⎪⎝⎭, ∴22131113()2222222EM a a a a a =−−+−−=−−+21325228a ⎛⎫=−++ ⎪⎝⎭ 2255355()5524EN EM a ==−++…………………………………………………………7分 当32a =−时,21315(1)2228y =−−++= ∴当32a =−时,EN 有最大值,最大值是554,此时E 点坐标为315,28⎛⎫− ⎪⎝⎭.……………9分(3)作E 关于x 轴的对称点F ,连接EF 交x 轴于点G ,过点F 作FH BE ⊥于点H ,交x 轴于点P ,此时点P 即为最小值的位置……………10分 ∵315,28E ⎛⎫− ⎪⎝⎭,1OB =, ∴35122BG =+=,158EG =,∴5421538BG EG ==, ∵90BGE BHP ∠=∠=o , ∴3sin 5PH EG EBG BP BE ∠===,∴35PH BP =, ∵E 、F 关于x 轴对称,∴PE PF =, ∴FH HP PE BP PE BP PE 5)(5)53(535=+=+=+…………………12分 ∵1515284EF =⨯=,BEG HEF ∠=∠, ∴4sin sin 5BG FH BEG HEF BE EF ∠=∠===,4152==EG EF ∴415354FH =⨯=. ∴PB PE 35+的最小值是15.…………………………………………14分25.(本题满分14分)(1)∵COP CDP ∠∠与是CP 所对的圆周角∴=COP CDP ∠∠又∵四边形OABC 是矩形,(8,6)B∴90OCB ∠=︒,8BC =,6OC = ∴4tan 3BC COB CO ∠== ∴tan CDP ∠4tan 3COB =∠=………………………………………3分 (2)如图2,连接AP ,∵四边形OABC 是矩形∴OB 与AC 互相平分;又∵点P 是OB 的中点时∴A C P 、、三点共线又∵四边形CODP 是圆内接四边形∴ 180=∠+∠COD CPD∴ 90=∠=∠COD CPD∴PD 垂直平分AC∴CD AD =,CDP ADP ∠=∠∴PED ∆沿PD 翻折后,点F 落在线段AD 上设OD x =,则8=AD CD x =−,在Rt COD ∆中,222CD CO OD =+得到222(8)6x x −=+,解得74x = 又∵OD BC ∥ ∴DOE CBE ∆∆∽ ∴7D 74=CE BC 832E OD == ∴739DE CD =,22227256()44CD CO OD =+=+= ∴7725725112(1)439443939OF OD DF OD DE =+=+=+⨯=⨯+= ∴112(,0)39F ………………………………………………………………8分(3)过点D 作DM OB ⊥于M设OD t =,63sin sin 105AB MOD BOA OB ∠=∠===, 84cos cos 105OA MOD BOA OB ∠=∠=== 在Rt OMD ∆中,3sin 5MD OD BOA t =∠=…………………………………………9分知识像烛光,能照亮一个人,也能照亮无数的人。
浙江省2020届1月初中毕业升学考试适应性测试数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018七上·无锡期中) -6的相反数是()A . 6B . -6C .D .2. (2分) (2021八上·内江期末) 初二(1)班有48位学生,春游前,班长把全班学生对春游地点的意向绘制成了扇形统计图,其中“想去苏州乐园的学生数”的扇形圆心角60°,则下列说法正确的是()A . 想去苏州乐园的学生占全班学生的60%B . 想去苏州乐园的学生有12人C . 想去苏州乐园的学生肯定最多D . 想去苏州乐园的学生占全班学生的1/63. (2分) (2015九上·南山期末) 如图的几何体是由五个同样大小的正方体搭成的,其主视图是()A .B .C .D .4. (2分)(2018·广州模拟) 下列运算正确的是()A .B .C .D .5. (2分)(2013·南宁) 甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号跑道的概率是()A . 1B .C .D .6. (2分)样本数据5,7,7,x的中位数与平均数相同,则x的值是()A . 9B . 5或9C . 7或9D . 57. (2分)不论m取何值,抛物线y=2(x+m)2-m的顶点一定在下列哪个函数图像上()A . y=2x2B . y=-xC . y=-2xD . y=x8. (2分) (2019八上·长兴期中) 如图,在Rt△ABC中,∠ACB=90°,分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于D、E两点,作直线DE交AB于点F,交BC于点G,连结CF.若AC =3,CG=2,则CF的长为()A . 2.5B . 3C . 2D . 3.59. (2分)如图,△ABC为等边三角形,点D,E分别在AC,BC上,且AD=CE,AE与BD相交于点P,BF⊥AE 于点F.若PF=3,则BP=()A . 6B . 5C . 4D . 310. (2分) (2021九下·海淀月考) 《九章算术》是我国古代数学成就的杰出代表,其中《方田》章给出计算弧田面积所用公式为:弧田面积=(弦×矢+矢2),弧田(如图)是由圆弧和其所对的弦所围成,公式中“弦”指圆弧所对弦长AB,“矢”等于半径长与圆心O到弦的距离之差.在如图所示的弧田中,“弦”为8,“矢”为3,则cos∠OAB=()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)因式分解:a2﹣a=________12. (1分)(2019·秀洲模拟) 已知弦长为,半径为1,则该弦所对弧长是________13. (1分)(2017·铁西模拟) 当x=________时,分式的值为0.14. (1分) (2018七下·瑞安期末) 在建设“美丽瑞安,打造品质之城”中,对某一条3千米道路进行改造,由于天气多变,实际施工时每天比原计划少改造0.1千米,结果延期5天才完成,设原计划每天改造千米,则可列出方程为:________.15. (1分) (2020八下·泰兴期中) 在矩形ABCD中,AB=6,AD=4,点E是DC的中点,点F在AD上,连接BF,EF,若FE恰好平分∠BFD,则FD=________.16. (1分) (2017八上·宁化期中) 如图,已知点A(1,1)、B(3,2),且P为x轴上一动点,则△ABP的周长的最小值为________.三、解答题 (共8题;共86分)17. (10分) (2020七下·朝阳期末) 计算:﹣ + ( +1).18. (10分) (2019八上·江海期末) 如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C 作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.19. (10分)(2018·白银) “足球运球”是中考体育必考项目之一兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B, C,D四个等级进行统计,制成了如下不完整的统计图.根据所给信息,解答以下问题(1)在扇形统计图中,C对应的扇形的圆心角是________度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位教会落在________等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?20. (10分)(2019·南平模拟) 已知:∠MAN和线段a .求作:菱形ABCD ,使顶点B , D分别在射线AM , AN上,且对角线AC=a .21. (10分)如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC 于点F.求证:(1) AE=AF;(2) BE= (AB+AC).22. (15分) (2020七上·新郑期末) 目前节能灯在城市已基本普及,为满足消费者需求,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、标价如下表:进价(元/只)标价(元/只)甲型2540乙型4560(1)如何进货才能保证进货款恰好为46000元?(2)由于恰逢五一,商场决定搞促销活动,乙型节能灯打八五折,请你运用所学的知识预算一下甲型节能灯要打几折才能使这批灯售完后获得9200元的利润(不考虑其它因素)?23. (10分) (2016九上·恩施月考) 如图,已知已知抛物线与x轴交于点和点,与y轴交于点C,且 .(1)求此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.(4)连AC,H是抛物线上一动点,过点H作AC的平行线交x轴于点F,是否这样的点F,使得以A,C,H,F为顶点的四边形是平行四边形?若存在,直接写出满足条件的点F的坐标;若不存在,请说明理由.24. (11分)(2017·淄川模拟) 在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O 作OB⊥OA,交抛物线于点B,以OA,OB为边构造矩形AOBC.(1)如图1,当点A的横坐标为________时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为时,①求点B的坐标;②将抛物线y=x2作关于x轴的轴对称变换得到抛物线y=﹣x2 ,试判断抛物线y=﹣x2经过平移交换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共8题;共86分)答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、答案:19-3、答案:19-4、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、答案:23-4、考点:解析:答案:24-1、答案:24-2、考点:解析:。
2020届**市初三中考一诊联考试卷数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B 铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.对于实数a ,b 下列判断正确的是( )A .若a b =,则 a b =B .若22a b >,则 a b >C b =,则a b =D =a b =2.某市从不同学校随机抽取100名初中生对“使用数学教辅用书的册数”进行调查,统计结果如下:关于这组数据,下列说法正确的是( )A .众数是2册B .中位数是2册C .平均数是3册D .方差是1.53.如图1,在矩形ABCD 中,动点M 从点A 出发,沿A →B →C 方向运动,当点M 到达点C 时停止运动,过点M 作MN ⊥AM 交CD 于点N ,设点M 的运动路程为x ,CN =y ,图2表示的是y 与x 的函数关系的大致图象,则矩形ABCD 的面积是( )A .20B .18C .10D .94.下列命题是假命题的是( )A .到线段两端点距离相等的点在线段的垂直平分线上B .等边三角形既是轴对称图形,又是中心对称图形C .n 边形(3)n ≥的内角和是180360n ︒︒-D .旋转不改变图形的形状和大小5.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( )A .众数是5B .中位数是5C .平均数是6D .方差是3.66.小明做“用频率估计概率”的试验时,根据统计结果,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是( )A.任意买一张电影票,座位号是2的倍数的概率B.一副去掉大小王的扑克牌,洗匀后,从中任抽一张牌的花色是红桃C.抛一个质地均匀的正方体骰子,落下后朝上的面点数是3D.一个不透明的袋子中有4个白球、1个黑球,它们除了颜色外都相同,从中抽到黑球7.对于函数y=-2(x-3)2,下列说法不正确的是()A.开口向下B.对称轴是3x=C.最大值为0D.与y轴不相交8.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分图形的面积为()A.4πB.2πC.πD.2 3π9.设A,B,C表示三种不同的物体,现用天平称了两次,情况如上图所示,那么A,B,C这三种物体按质量从大到小的顺序排应为( )A.A,B,C B.C,B,A C.B,A,C D.B,C,A10.已知四边形ABCD 的对角线AC 、BD 相交于点O ,下列条件中,不能判定四边形ABCD 是平行四边形的是( )A .ADB CBD ∠=∠,//AB CDB .ADB CBD ∠=∠,DAB BCD ∠=∠C .DAB BCD ∠=∠,AB CD =D .ABD CDB ∠=∠,OA OC =二、填空题(共4题,每题4分,共16分)11.如图,矩形ABCD 中,AB =4,BC =3,F 是AB 中点,以点A 为圆心,AD 为半径作弧交AB 于点E ,以点B 为圆心,BF 为半径作弧交BC 于点G ,则图中阴影部分面积的差S 1﹣S 2为_____.12.矩形ABCD 中,AB=8,AD=6,E 为BC 边上一点,将△ABE 沿着AE 翻折,点B 落在点F 处,当△EFC 为直角三角形时BE=_____.13.在五边形ABCDE 中,若440A B C D ∠+∠+∠+∠=︒,则E ∠=______︒.14.直线y =2x +1经过点(0,a ),则a =________.三、解答题(共6题,总分54分)15.“五一”小长假期间,小李一家想到以下四个5A 级风景区旅游:A .石林风景区;B .香格里拉普达措国家公园;C .腾冲火山地质公园;D .玉龙雪山景区.但因为时间短,小李一家只能选择其中两个景区游玩(1)若小李从四个景区中随机抽出两个景区,请用树状图或列表法求出所有可能的结果;(2)在随机抽出的两个景区中,求抽到玉龙雪山风景区的概率.16.如图,在平面直角坐标系中,△ABC 的一边AB 在x 轴上,∠ABC=90°,点C(4,8)在第一象限内,AC 与y 轴交于点E,抛物线y=234x +bx+c 经过A .B 两点,与y 轴交于点D(0,−6).(1)请直接写出抛物线的表达式;(2)求ED 的长;(3)点P 是x 轴下方抛物线上一动点,设点P 的横坐标为m ,△PAC 的面积为S ,试求出S 与m 的函数关系式;(4)若点M 是x 轴上一点(不与点A 重合),抛物线上是否存在点N ,使∠CAN=∠MAN.若存在,请直接写出点N 的坐标;若不存在,请说明理由。
2020浙江省初中数学毕业学业水平适应性测试题亲爱的考生:欢迎参加考试!请你认真审题,仔细答题,发挥最佳水平。
答题时,请注意以下几点:1.全卷共6页,满分150分,考试时间120分钟。
2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上无效。
3.答题前,请认真阅读答题纸上的“注意事项”,按规定答题。
4.本次考试不得使用计算器。
一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.-2的倒数是( ▲ ).A.2 B.-12C.12D.-22. 如图的几何体是由四个大小相同的小正方体拼成,则这个几何体的左视图是( ▲ ).从正面看 A. B. C. D.3.台州是“山海水城”, 2017年春节“黄金周”旅游总收入3784000000元,用科学记数法表示为( ▲ ).A.3.784×109B.3.784×1010 C.3784×106D.0.3784×10104.两名同学都进行了5次立定跳远测试.经计算,他们的平均成绩相同,若要比较这两名同学的成绩谁更稳定,通常还需要比较他们成绩的( ▲ ).A.众数B.中位数 C.方差D.以上都不对5.如图,OA是⊙O的半径,弦BC⊥OA,D是⊙O上一点,∠ADC=26º,那么∠AOB的度数为( ▲ ).A.64ºB.26º C.52º D.38º6. 下列计算正确的是( ▲ ).A.2ab ab ab⋅=B.()3322a a=C.()330a a a-=≥D.()0,0a b ab a b⋅=≥≥B CDO(第5题图)7.如图,点E ,F 是□ABCD 对角线上两点,在条件①DE=BF ; ②∠ADE=∠CBF ;③AF =CE ; ④∠AEB=∠CFD 中,添加一个 条件,使四边形DEBF 是平行四边形,可添加的条件是( ▲ ).A .①②③B .①②④C .①③④D .②③④8. 王老师坚持绿色出行,每天先步行到离家500米的公共自行车点取车,然后骑车 4.5千米到校.某天王老师从手机获知,骑车平均每小时比步行多10千米,共用时24分钟.设步行的平均速度为每小时x 千米,则可列方程 ( ▲ ).A .24105.4500=++x x B .6024105.45.0=++x x C .24450010500=+-x x D .60245.4105.0=+-x x 9. 如图,直线l :x y 21=,点A 1(0,1),过点A 1作y 轴的垂线交直线l 于点B 1,以原点O 为圆心,OB 1长为半径画弧交y 轴于点A 2;再过点A 2作y 轴的垂线交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画弧交y 轴于点A 3,…,按此做法进行下去,OA 2017的长为( ▲ ). A .2016)5( B .2017)5( C .20162 D .20172 10.小东同学对图形世界充满兴趣,他先把一个面积为34272cm 的正三角形绕着它的中心旋转60°,旋转前后的两个正三角形构成如图(1)的一个六角星;然后将该六角星按图(2)分割后拼成矩形ABCD . 请你思考小东的问 题:若将该矩形围成圆柱,则圆柱的高为( ▲ ). A .32cm B .33cm C .32cm 或6 cm D .3cm 或33cm 二、填空题(本题有6小题,每小题5分,共30分) 11.因式分解:299x -= ▲ . 12.若⎩⎨⎧=+=+,623,432b a b a 则b a += ▲ . 13.现有一个圆心角为90 º,半径为12 cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),该圆锥底面圆的半径为 ▲ cm .14.一个三位数,若百位、十位、个位上的数字依次增大,就称为“阶梯数”.如123就是(第9题图)yxOB 3B 2B 1A 4A 3A 2 A 1 x y l 21:=(1)(2)B(第10题图)CAEF (第7题图)一个阶梯数.若十位上的数字为5,则从1,6,8中任选两数,与5组成“阶梯数”的概率是 ▲ .15.如图,连接正五边形ABCDE 的各条对角线围成一个新的五边形MNPQR .图中有很多顶角为36 º的等腰三角形,我们把这种三角形称为“黄金三角形”,黄金三角形的底与腰之比为215-.若 AB =215-,则MN = ▲ . 16.如图,Rt △ABC 中,∠ACB =90º,∠CAB =30º, BC =1,将△ABC绕点B 顺时针转动, 并把各边缩小为原来的21,得到△DBE ,点A ,B ,E 在一直线上.P 为边DB 上的动点,则AP +CP 的最小值为 ▲ .三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.计算:()020171(3)2sin 60---+-⋅︒.18.解不等式组:231,20,x x +>⎧⎨-≥⎩并把解集在数轴上表示出来.19.已知y 是x 的函数,表格中给出了几组x 与y 的对应值. (1)以表中各对对应值为坐标,在给定的直角坐标系中描出各点,用光滑曲线顺次 连接.由图象知,它是我们已经学过的 哪类函数?求出函数解析式,并直接写 出a 的值;(2)如果一次函数图象与(1)中图象交于(1,3)和(3,1)两点,在第一象限内,当x 在什么范 围时,一次函数的值小于(1)中函数的值?D(第16题图)(第19题图)20.台州湾循环经济产业集聚区正在投资建设无人机小镇,无人机已运用于很多行业.一测绘无人机从A 处测得某建筑物顶部B 的仰角为37°,底部C 的俯角为60°,此时无人机与建筑物水平距离为30米,建筑物的高度BC 约为多少米?(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.7,3 1.7 )21.为了解某市的空气质量情况,校环保兴趣小组从环境监测网随机抽取了若干天的空气、量情况作为样本进行统计,绘制了如图所示的不完整条形统计图和扇形统计图.请你根据图中提供的信息,解答下列问题: (1)计算被抽取的天数.(2)请补全条形统计图,并求扇形统计图中表示天气“优”的扇形的圆心角度数. (3)请估计该市这一年(365天)达到优和良的总天数.本市若干天天气情况条形统计图2040101051015202530354045优良好轻微污染轻度污染重度污染本市若干天天气情况扇形统计图优轻微污染轻度污染重度污染良好40%(第21题图)(第20题图)CBA22.如图,点P 在菱形ABCD 的对角线AC 上,PA =PD ,⊙O 为△(1)求证:△APD ∽△ADC .(2)若AD =6,AC =8,求⊙O 的半径.23.抛物线214y x bx c =++经过点(1,0)-和(3,0). (1)求该抛物线的解析式及顶点A 的坐标.(2)当33x -<<时,使y m =成立的x 的值恰好只有一个,求m 的值或取值范围.OPDC图1yx3-1OAByx 3-1OACD24.同一平面内的点P 和图形G ,给出如下定义:在图形G 上若存在两点M ,N ,使△PMN 为等边三角形,则称点P 为图形G 的特征点,图形G 为点P 的特征线,△PMN 为图形G 关于点P 的特征三角形.(1)如图1,⊙O 的半径为1, 3OA =,3OB =.在A ,B 两点中,⊙O 的特征点是 .若点C 是⊙O 的特征点,求OC 长度的取值范围.(2)如图2,在Rt △ABC 中,90o C ∠=,AC =1,BC m =.线段AB 是点C 的特征线,线段AB 关于点C 的特征三角形的面积为39,求m 的值. (3)如图3,直角坐标系中的点A (-2,0),B (0,23),点C ,D 分别是射线AB 和x轴上的动点,以CD 为边作正方形角形.当正方形CDEF 的一个顶点落在y 轴上时,求此时正方形的边长.图3xyCOAD FE B图1A OB图2Bxy OAB备用图(第24题图)初中毕业升学适应性测试数学参考答案和评分细则一、选择题(本题有10小题,每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10 答案BBACCDDBAD二、填空题(本题有6小题,每小题5分,共30分) 11.9(1)(1)x x +- 12. 2 13. 3 14.1315. 52- 16. 3 三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.(8分)解:原式3112=-++……………………………………………6分 32=……………………………………………2分 18.(8分)解: 解①得:1x >-, ………………………………………2分 解②得:2x ≤ . ………………………………………2分不等式组的解集:12x -<≤ . .............................................2分 在数轴上表示略. (2)分19.(8分)(1)画图略. ………………………………2分是反比例函数. (1)分3y x=(若没有过程直接写出也给分) ………………………………2分65a =. …………………………………1分(2)01x << 或 3x >. …………………………………2分20.(8分)解:过A 作AD ⊥CB ,垂足为点D . …………1分在Rt △ADC 中, AD =30,∠CAD =60°,∴CD =tan 6030351AD ⨯=⨯≈o . …………3分 在Rt △ADB 中,∠BAD =37°,∴BD =ο37tan ⨯AD ≈30×0.7=21. ……………3分 ∴512172BC =+=.答:建筑物的高度BC 约为72米. ……………1分21.(10分)解:(1) 4040÷%=100抽取了100天. ……………………3分 (2)图略. ……………………2分 20÷100×360º=72°表示天气“优”的扇形的圆心角度数圆心角72°. (2)分(3) (20+40)÷100=60%,36560⨯%=219.这一年(365天)达到优和良的总天数为219天.…………………3分22.(12分)(1) 证明:∵PA =PD , ∴∠PDA = ∠PAD . ………………1分∵四边形ABCD 是菱形,∴DA=DC . ………………1分 ∴∠DAC = ∠DCA .∴∠PDA = ∠DCA . ………………1分 ∵∠PAD = ∠DAC ,∴△APD ∽△ADC. ………………2分(2) ∵△APD ∽△ADC , ∴ACAD AD PA =. 可得AP 92=. ………………2分连接PO 并延长交AD 于点Q , ∵ PA =PD ,根据圆的轴对称性, ∴PQ 垂直平分AD .D B AC(第20题图)Q(第22题图)∴PQ 52322=-=AQ AP . ………………2分 连接AO ,设半径为r , 解得52027=r . ………………3分 23. (12分)解:(1)由题意)3)(1(41-+=x x y ,∴2113424y x x =--. …………………………2分顶点A (1,-1) (2)分(2)当3x =-时,3y =;当3x =时,0y =. …………………………2分 由图象得,直线y m =与抛物线恰只有一个交点时,1m =- 或03m ≤<. …2分(3)设抛物线向右平移a 个单位,向上平移b 个单位,平移后的抛物线解析式: 21(1)14y x a b =---+ ∵抛物线过点A (1,-1),把A (1,-1)代入21(1)14y x a b =---+,得214b a =-. ∴21(1,1)4B a a +--,21(1,1)4D a a +-,(12,1)C a +- ∴212BD a =,2AC a =. ∵四边形ABCD 的面积为4,∴211124222AC BD a a ⋅=⨯⨯=,解得2a =. ∴(3,2)B -. (4)分24.(14分) 解:(1) A ; ………………………1分02OC ≤≤. ……………………3分(2)作CD ⊥AB 于点D .∵ 线段AB 是点C 的特征线,∴ CD 为线段AB 关于点C 的特征三角形的高. ∵线段AB 关于点C,∴CD = …… 1分 ∵ 1AC =,∴AD =. .……… 1分 ∴cos AD A AC ==.∵∠ACB =∠CDA =90°,∴∠A =∠B CD ,∴cos CD BC BCD ===∠.∴m =. ……………2分 (3) ①点E 落在y 轴上时,CD8=- ; ……… 2分 ②点F 落在y 轴上时, CD2=- ; ……… 2分(不化简也给分) ③点D 落在y 轴上时,此时点D 与点O 重合,CD =2; ………1分。
初中数学初三模拟2020年浙江省初中毕业生学业水平考试试题及答案[doc]初中数学数学试卷考生须知:1.全卷共三大题,24小题,总分值为150分。
考试时刻为100分钟。
本次考试采纳开卷形式。
2.全卷分试卷Ⅰ〔选择题〕和试卷Ⅱ〔非选择题〕两部分。
试卷Ⅰ的答案必须填涂在〝答题卡〞上;试卷Ⅱ的答案必须做在〝试卷Ⅱ答题卷〞的相应位置上。
3.请用钢笔或圆珠笔在〝答题卡〞上先填写姓名和准考证号,再用2B铅笔将准考证号和考试科目对应的方框涂黑、涂满。
4.用钢笔或圆珠笔在〝试卷Ⅱ答题卷〞密封区内填写县〔市、区〕、学校、姓名和准考证号。
试卷Ⅰ讲明:本卷共有一大题,10小题,共40分。
请用2B铅笔在〝答题卡〞上将所选项对应字母的方框涂黑、涂满。
一、选择题〔此题共10小题,每题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多项选择、错选均不给分〕1. 当x=1时,代数式2x+5的值为( ▲ )A.3 B. 5 C. 7 D. -22.直角坐标系中,点P(1,4)在( ▲ )A. 第一象限B.第二象限C.第三象限D.第四象限3.我省各级人民政府专门关注〝三农咨询题〞.截止到2005年底,我省农村居民人均纯收入已连续二十一年位居全国各省区首位,据省统计局公布的数据,2005年底我省农村居民人均收入约6600元,用科学记数法表示应记为( ▲ )A.0.66×104 B. 6.6×103 C.66×102 D .6.6×1044.以下图所示的几何体的主视图是( ▲ )A. B. C. D.5.以下四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是( ▲ )A. B. C. D.6.假如两圆半径分不为3和4,圆心距为7,那么两圆位置关系是( ▲ ) A. 相离 B. 外切 C. 内切 D.相交7.不等式组⎩⎨⎧≤≥+4235x x 的解是( ▲ )A. -2 ≤x ≤2B. x ≤2C. x ≥-2D. x <28.将叶片图案旋转180°后,得到的图形是( ▲ )叶片图案 A B C D 9.以下图能讲明∠1>∠2的是( ▲ )A B C D10.二次函数c bx ax y ++=2〔0≠a 〕的图象如下图,那么以下结论:①a >0; ②c >0; ③b 2-4a c >0, 其中正确的个数是( ▲ )A. 0个B. 1个C. 2个D. 3个试 卷 Ⅱ讲明:本卷共有两大题,14小题,共110分。
2020届初三年级中考适应性调研测试数学试卷注意事项考生在答题前请认真阅读本注意事项:1.本试卷共6页,满分为150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡上指定的位置.3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效.有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.-2的绝对值是A.12-B.12C.-2 D.22.一条关于数学学习方法的微博被转发了212000次,将212000用科学记数法表示为A.212×104 B.21.2×105 C.2.12×105 D.2.12×106 3.下列计算,正确的是A.a4-a3=a B.a6÷a3=a2C.a·a3=a3 D.(a2)2=a44.如图是一个正方体被截去一角后得到的几何体,它的俯视图是5.如图,AB∥CD,AG平分∠BAE,∠EFC=50°,则∠F AG的度数是A.125°B.115°C.110°D.130°6.已知21xy=⎧⎨=⎩是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则3m-n的值是A.-7 B.3 C.9 D.7 7.如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是A.32B.23C213D313(第4题)A B DCEGBC DFA(第5题)数学试卷第1 页(共6 页)数学试卷 第 2 页(共 6 页)8.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,则可列方程为 A . 600x =45050x + B .60050x +=450xC .600x =45050x - D .60050x -=450x9.已知直线y =-x +1与x 轴、y 轴分别交于点C 、B ,与双曲线ky x =交于点A 、D ,若AB +CD =BC ,则k 的值为A .14-B .3- C .-1 D .10.如图,△ABC 内接于⊙O ,点D 在AC 边上,AD =2CD ,在BC 上取一点E ,使得∠CDE =∠ABC ,连接AE .则AE DE等于A B .32C D .2二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.数据:1,3,2,1,4的众数是 . 12.不等式组12x x -<⎧⎨-⎩≤0的解集是 .13.母线长为3,底面圆的直径为2的圆锥的侧面积为 .14.已知关于x 的方程2x k --=0有两个相等的实数根,则k 的值为 . 15.已知点(3,5)在直线y =mx +n (m ,n 为常数,且m ≠0)上,则5mn -的值为 . 16.如图,将一个边长为4,8的矩形纸片ABCD 折叠,使点C 与点A重合,则折痕EF 的长度为 .17.在△ABC 中, AB =3,AC =4. 当∠C 最大时,BC 的长是 . 18.已知x =a 和x =a +b (b >0)时,代数式x 2-2x -3的值相等,则当x =6a +3b -2时,代数式x 2-2x -3的值等于 .x(第7题)AOB(第10题)EFDCB A(第16题)数学试卷 第 3 页(共 6 页)三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分)(1(π-3)0+|-5|;(2)先化简,再求代数式的值:212(1)211a a a a ÷++-+-,其中a1.20.(本小题满分10分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt △ABC 的顶点均在格点上,建立平面直角坐标系后,点A 的坐标为(-4,1),点B 的坐标为(-1,1),点C 的坐标为(-1,3).(1)先将Rt △ABC 向右平移5个单位,再向下平移1个单位后得到Rt △A 1B 1C 1.试在图中画出图形Rt △A 1B 1C 1,并写出A 1的坐标;(2)将Rt △A 1B 1C 1,绕点A 1顺时针旋转90°后得到Rt △A 2B 2C 2,试在图中画出图形Rt △A 2B 2C 2,并计算Rt △A 1B 1C 1在上述旋转过程中点C 1所经过的路径长.数学试卷 第 4 页(共 6 页)21.(本小题满分8分)某校七年级(1)班体育委员统计了全班同学60秒跳绳的次数,并将结果绘制成如下图表:请根据图表中提供的信息,解答下面的问题: (1)在统计表中,a 的值为 ,b 的值为 ; (2)请把频数分布直方图补充完整;(3)如果该校七年级共有学生1000人,那么估计60秒跳绳的次数为100次以上(含100次)的人数是多少?22.(本小题满分8分)在一个口袋中有4个完全相同的小球,把它们分别标上数字-1,0,1,2. (1)从中随机摸出一个小球,求这个小球上的数字是正数的概率;(2)从中随机摸出一个小球记录数字后放回,再随机摸出一个小球记录数字.求两次记录的数字都是正数的概率.23.(本小题满分8分)某区为了改善市交通状况,计划修建一座新大桥.如图,新大桥的两端位于A 、B 两点,小张为了测量A 、B 之间的河宽,在垂直于新大桥AB 的直线型道路l 上测得如下数据:∠BDA =76.1°,∠BCA =68.2°,CD =82米.求AB 的长(精确到0.1米). 参考数据:sin76.1°≈0.97, cos76.1°≈0.24, tan76.1°≈4.0, sin68.2°≈0.93, cos68.2°≈0.37, tan68.2°≈2.5. 24.(本小题满分8分)lC D A1频数数学试卷 第 5 页(共 6 页)如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF . (1)求证:AF =DC ;(2)若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论.25.(本小题满分8分)如图,AB 为⊙O 的直径,AC 为⊙O 的弦,AD 平分∠BAC ,交⊙O 于点D ,DE ⊥AC ,交AC 的延长线于点E . (1)求证:DE 与⊙O 相切;(2)若AE =8,⊙O 的半径为5,求DE 的长. 26.(本小题满分10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x h ,两车之间的距离为y km ,图中的折线表示y 与x 之间的函数关系.根据图象解决以下问题:(1)慢车的速度为 km/h ,快车的速度为 km/h ; (2)求线段CD 的函数解析式,并写出自变量x 的取值范围;(3)求当x 为多少时,两车之间的距离为300km . 27.(本小题满分13分)FEDCBAy (第26题)DEC BAO·数学试卷 第 6 页(共 6 页)如图,已知∠POQ =60°,点A 、B 分别在射线OQ 、OP 上,且OA =2,OB =4,∠POQ 的平分线交AB 于C ,一动点N 从O 点出发,以每秒1个单位长度的速度沿射线OP 向点B 作匀速运动,MN ⊥OB 交射线OQ 于点M .设点N 运动的时间为t (0<t <2)秒.(1)求证:△ONM ∽△OAB ; (2)当MN =CM 时,求t 的值;(3)设△MNC 与△OAB 重叠部分的面积为S .请求出S 关于t 的函数表达式,并画出该函数的大致图象.28.(本小题满分13分)如图,抛物线y =ax 2+bx +c 经过点A (1,1),B (-1,0),C (2,0)三点,点D 在x 轴上,连接AD ,以AD 为一边作正方形ADEF (A ,D ,E ,F 按顺时针方向排列). (1)求抛物线的解析式; (2)求证:OD 2+OF 2=2AD 2;(3)当点E 在抛物线上时,求线段OD 的长.2015数学试题参考答案与评分标准O数学试卷 第 7 页(共 6 页)说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.11.1 12.12x -<≤ 13.3π14.-3 15.13- 16. 1718.5三、解答题(本大题共10小题,共96分) 19.(本小题满分10分)(1)解:原式=1+5 ------------------------------------ 3分=6-1+5=10 ---------------------------------------- 5分(2)解:原式=()21111a aa a ÷++-- --------------------------------------- 8分 ()2111111a a a a a +-==+-- ------------------------------------ 9分 当a 1 ------------------------------- 10分 20.(本小题满分10分)解:(1)画出Rt △A 1B 1C 1.的图形; ------------------------------------- 2分A 1的坐标为(1,0) ----------------------------------------- 3分(2)画出Rt △A 2B 2C 2.的图形; ---------------------------------------- 6分A 1C 1 点C 1所经过的路径长为:. --------------------10分21.(本小题满分8分)(1)a =20,b =0.26 -(2)画图正确 ------------------------------------------------------ 6分 (3)900 ----------------------------------------------------------- 8分 22.(本小题满分8分)解:(1)摸出的小球上的数字共有4种情况,每种结果出现的可能性都相同,其中是正数的有2种,所以摸出一个小球,这个小球上的数字是正数的概率是2142=----------------------------------------------------------- 3分 (2)画树状图,--------------------- 5分所有可能出现的结果共有16种,每种结果出现的可能性都相同,两个数字都是正数的结果有4种,所以两次记录的数字都是正数的概率是41164;------------ 8分23.(本小题满分8分)解:设AD=x米,则AC=(x+82)米.在Rt△ABC中,tan∠BCA=AB AC,∴AB=AC·tan∠BCA=2.5(x+82). -------------------------------- 2分在Rt△ABD中,tan∠BDA=AB AD,∴AB=AD·tan∠BDA=4x. -------------------------------------- 3分∴2.5(x+82)=4x,∴x=4103.------------------------------------- 6分∴AB=4x=4103×4≈546.7.--------------------------------------- 7分答:AB的长约为546.7米. --------------------------------------- 8分24.(本小题满分8分)证明:(1)∵E是AD的中点,∴AE=ED.∵AF∥BC,∴∠AFE=∠DBE,∠F AE=∠BDE,∴△AFE≌△DBE,∴AF=DB. -------------------------------------------------- 3分∵AD是BC边上的中线,∴DB=DC,∴AF=DC.---------------- 4分(2)四边形ADCF是菱形.----------------------------------------- 5分理由:由(1)知,AF=DC,∵AF∥CD,∴四边形ADCF是平行四边形.----------------------- 6分又∵AB⊥AC,∴△ABC是直角三角形.∵AD是BC边上的中线,∴AD=12BC=DC.---------------------- 7分∴平行四边形ADCF是菱形. ---------------------------------------- 8分25.(本小题满分8分)(1)证明:连接OD.∵AD平分∠BAC,∴∠EAD=∠OAD.∵OA=OD,∴∠ODA=∠OAD.∴∠ODA=EAD.----------------------------------- 2分∴EA∥OD.∵DE⊥EA,∴DE⊥OD.又∵点D在⊙O上,∴直线DE与⊙O相切. -------- 4分(2)解:如图,作DF⊥AB,垂足为F.∴∠DF A=∠DEA=90°.∵∠EAD=∠F AD,AD=AD,∴△EAD≌△F AD. ------------------------ 5分∴AF=AE=8,DF=DE.∵OA=OD=5,∴OF=3.在Rt△DOF中,DF=OD2-OF2=4.∴DE=DF=4.------------------------- 8分26.(本小题满分10分)解:(1)(480-440)÷0.5=80,--------------------------------------------------------------- 1DCOB EF数学试卷第8 页(共6 页)数学试卷 第 9 页(共 6 页)440÷2.2-80=120; ------------------------------------------------------------------ 2分 (2)因为快车走完全程所需时间为480÷120=4(h ),所以点D 的横坐标为4.5,纵坐标为200×1.8=360, 即点D (4.5,360); ---------------------------------------------------------------------- 4分设y =kx +b ,则 解得 ∴y =200x -540, -------------------------------------------------------------------------- 6分 自变量x 的取值范围是:2.7≤x ≤4.5 ------------------------------------------------- 7分 (3)由题意,可知两车行驶的过程中有2次两车之间的距离为300km .即(80+120)×(x -0.5)=440-300,解得x =1.2(h ); ------------------------- 8分 或(80+120) × (x -2.7)=300,解得x =4.2(h ). ------------------------------ 9分 故x =1.2 h 或4.2 h ,两车之间的距离为300km . ------------------------------ 10分27.(本小题满分13分)解:(1)∵∠POQ =60°,MN ⊥OB ,∴cos ∠MON =ON OM =12.∵OA =2,OB =4 ∴OA OB =12.∴OA OB =ONOM.∴△OMN ∽△OAB ----------------------------------------------- 3分 (2)∵△OMN ∽△OAB ∴∠OAB =∠ONM =90°∵ON =t ,∠POQ =60°,MN ⊥OB , ∴MO =2t ,AM =2-t ,∵OC 平分∠POQ , ∴∠COA =12∠AOB =30°∴CA =OA ·tan30°4分 ∵MN 2=2223OM ON t -=,CM 2=22(22)t -+且MN =CM∴22(22)t -+=23t ------------------------------------------ 5分解得t =4----------------------------------------------- 6分 ∵0<t <2 , ∴t =4∴当t 为4MN =CM . -------------- 7分(3)当0<t ≤1时,此时S =S △MNC ,如图1,过点C 作CH ⊥OB 于H .∵OC 平分∠AOB ∴CH =CA ∵S =S △AOB -S △MON -S △AMC -S △CBN=12×2×12t -12(2-2t )12(4-t )=2=21)t - --------------------------------- 9分 当1≤t <2时,MN 与AB 交于点G ,此时S =S △NCG ,如图2,过点C 作CH ⊥H QP N M CBA O (图1)QM A (图2)2.7k +b =0 4.5k +b =360k =200b =-540数学试卷 第 10 页(共 6 页)则NG =(4-t )·tan30°(4-t ) S =S △GNB -S △BNC(t -3)2--------------- 11分 S 关于t 的函数大致图象如图:13分 28.(本小题满分13分) 解:(1)设抛物线为y =a (x +1)(x -2),其图象经过点A (1,1) ∴a ∴y =12-(x +1)(x -2)即y =12-x 2+12x +1 (2)如图①,连接DF 、OF 、OA∵四边形ADEF 为正方形∴∠AFD =∠ADF =45°,∠F AD =90°,AD =AF ∵A (1,1),C (2,0) ∴∠OAC =90°,OA =AC∴∠DAC =∠OAF在△OAF 与△CAD 中∴△OAF ≌△CAD (SAS ) ∴∠AOF =∠ACD =45°∴∠COF =90º,即∠DOF =90° ---------------------------------- 5分 ∵D 为x 轴上任一点∴点D 在运动过程中,点F 始终在y 轴上 -------------------------- 6分 ∴OD 2+OF 2=DF 2 ∵DF 2=2AD 2∴OD 2+OF 2=2AD 2 --------------------------------------------- 7分 (3)如图②,当点E 在抛物线上时,作EH ⊥x 轴于点H ,AG ⊥x 轴于点G∵四边形ADEF 为正方形,则△EHD ≌△DGA ∴EH =DG ,HD =AG =1 设DG =m ,则HE =m ,OD =1-m 而OG =1,则HD =OG =1∴HO =DG =m∴点E 的坐标为(-m ,m )∵点E 在抛物线y =12-x 2+12x +1上AF =AD ∠DAC =∠OAF OA =AC 图① 图②数学试卷 第 11 页(共 6 页) ∴m =12-(-m )2-12m +1 解得m又m >0∴m------------------------------------------------ 9分 即DG∵OD =1-m∴OD =1---------------------------------- 10分 如图③,作EH ⊥x 轴于点H ,AG ⊥x∵四边形ADEF 为正方形,则△EHD ≌△∴EH =DG ,HD =AG =1设DG =n ,则HE =DG =n ,OD =n +1∴HO =DG =n ∴点E 的坐标为(n ,-n ) ∵点E 在抛物线y =12-x 2+12x +1上 ∴-n =12-n 2-12n +1 解得n 而n >0∴n ∴OD 1 ------------------------------------ 12分 综上可知,当点E 在抛物线上时,OD 13分 图③。
浙江省初中学业水平模拟数学试题一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.化简23)a(的结果为(▲)A.5a B.6a C.8a D.9a2. 今年五一假期,我市某风景区接待游客约为103000人,这一数据用科学记数法表示为(▲)A.10.3×104 B.1.03×104C.1.03×105 D.1.03×1063.下列水平放置的四个几何体中,主视图与其它三个不相同的是(▲)A.B.C.D.4. 我校10名学生今年二月份参加社会实践活动的时间分别为3,3,6,4,3,7,5,7,4,9(单位:小时),则这组数据的中位数为(▲)A.5 B.4.5 C.3 D.75. 若分式21xx-+无意义,则x的值为(▲)A.0 B.1 C.1-D.26. 如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=23°,则∠2的度数是(▲)A.23°B.27°C.30°D.37°7.若实数,,a b c在数轴上对应点的位置如图所示,则下列不等式不成立的是(▲)A.b a>C.+0a b<8. 用半径为5cm的扇形纸片卷成一个圆锥形的无底纸帽,纸帽的底面周长为4cmπ,则此圆锥纸帽的面积等于(▲)A.210cmπB.214cmπC.220cmπD.240cmπ9. 小颖画了一个函数1-=xay的图象如图,那么关于x的分式方程1ax=的解是(▲)A.x=1B.x=2 C.x=3 D.x=410. 如图,090ABC∠=,68AB BC==,,7AD CD==,若点P到AC的距离为5,则点P在四边形ABCD边上的个数为(▲)A.0 B二、填空题(本题有11. 点P(1,3)-位于第▲象限.第9题图xy12345–112345–1–2oDACB第6题图12. 正八边形的每个外角的度数为 ▲ .13.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是41,那么袋子中共有球 ▲ 个.14. 请写出一个当0x >时,y 随着x 的增大而增大的反比例函数的解析式 ▲ .15. 一个边长为8cm 的等边三角形ABC 与⊙O 等高,如图放置,⊙O 与BC 相切于点C ,⊙O 与AC 相交于点E ,则CE 的长为 ▲ cm . (2)x =于点B 1,B 2,B 3,…,P 1,P 2,P 3,…,P n ,n= ▲ (请用含23题12分,第243+27(2)-18.先化简,再求值:211(1+)x x x-÷其中12x =+.xyy=12xP 3P 2P 1B 4B 3B 2B 1A 2A 4A 1OA 3第15题图EOA BC19. 已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,E是CD中点,连结OE.过点C作CF∥BD交线段O E的延长线于点F,连结DF.(1)求证:△ODE≌△FCE;(2)试判断四边形ODFC是什么四边形,并说明理由.20. 为推进阳光体育活动的开展,某学校决定开设以下体育课外活动项目:A.排球;B.乒乓球;C.篮球;D.羽毛球.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有▲ 人;(2)请你将条形统计图补充完整;(3)求喜欢排球人数所占扇形圆心角的大小;(4)若甲、乙、丙、丁四位同学都喜欢乒乓球运动,现从这四名同学中任选两名进行对抗练习,求恰好选中乙、丙两位同学的概率(用树状图或列表法解答).21. 为迎接“六一”,某儿童玩具店计划购进一批甲、乙两种玩具,已知2件甲种玩具的进价与1件乙种玩具的进价的和为90元,3件甲种玩具的进价与2件乙种玩具的进价的和为160 元.(1)求甲乙两种玩具每件进价各多少元?(2)如果该玩具店准备购进甲乙两种玩具共20件,总进价不超过...700元,且不低于...600元,问有几种进货方案,哪种进货方案总进价最低?图1图2第20题图随机抽取的学生喜欢体育课外活动项目的人数扇形统计图随机抽取的学生喜欢体育课外活动项目的人数条形统计图第19题图22. 如图,一扇窗户垂直打开,即OM ⊥OP ,AC 是长度不变的滑动支架,其中一端固定在窗户的点A 处,另一端在OP 上滑动,将窗户OM 按图示方向向内旋转35°到达ON 位置,此时,点A 、C 的对应位置分别是点B 、D .测量出∠ODB 为25°,点D 到点O 的距离为30cm . (1)求B 点到OP 的距离; (2)求滑动支架的长.(结果精确到1cm .参考数据:sin 25°≈0.4,cos 25°≈0.9,tan 25°≈0.5,sin 55°≈0.8,cos 55°≈0.6,tan 55°≈1.4)23. 定义:如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.(1)请根据定义判断下列命题的真假(请在真命题后的括号内打“√”,假命题后的括号内打“╳”)①等腰直角三角形一定不存在匀称中线. ( ) ②如果直角三角形是匀称三角形,那么匀称中线一定是较长直角边上的中线.( )(2)已知:如图1,在Rt ABC ∆中,090C AC BC ∠=>,, 若ABC ∆是“匀称三角形”,求::BC AC AB的值; (3)拓展应用:如图2,ABC ∆是⊙O 的内接三角形,AB AC >,045BAC ∠=, 将ABC ∆ 绕点A 逆时针旋转045得ADE ∆,点B 的对应点为D ,连接CD 交⊙O 于M, 连接AM. ①请根据题意用实线在图2中补全图形; ②若ADC ∆是“匀称三角形”, 求tan AMC ∠的值.24. 如图,二次函数22y x x c =++的图象与x 轴交于点A 和点B (1,0),以AB 为边在x 轴上方作正方形ABCD ,动点P 从点A 出发,以每秒2个单位长度的速度沿x 轴的正方向匀速运动,同时动点Q 从点C 出发,以每秒1个单位长度的速度沿CB 匀速运动,当点Q 到达终点B 时,点P 停止运动,设CBA图1BCOA图2第23题图第22题图MM AAB OPP DCCE运动时间为秒.连接DP ,过点P 作DP 的垂线与y 轴交于点E . (1)求点A 的坐标;(2)当点P 在线段AO (点P 不与A 、O 重合)上运动至何处时,线段OE 的长有最大值,并求出这个(3)在P ,Q 运动过程中,求当DPE ∆与以D C Q 、、为顶点的三角形相似时t 的值;(4)是否存在t, 使DCQ ∆沿DQ 翻折得到DC Q '∆, 点C '恰好落在抛物线的对称轴上,若存在,请xyE C DABOP Q 图1xyECDABOP Q 图2 xyC DABOQ参考答案及评分标准题号 1 2 3 4 5 6 7 8 9 10 答案BCDBCDDACA二、填空题(本题有6小题,每小题5分,共30分) 11.二 12. 450 13. 12 14. 1y x =-等(答案不唯一,满足(0)ky k x=<均可) 15. 6 16. 284n n +三、解答题(本题有8小题,第17~19题每题8分,第20、21、22、每题10分,第23题12分,第24题14分,共80分)17.解:原式=6431++- …………………………………………………………………4分=12. ………………………………………………………………………8分 18.解:原式=1(1)(1)x xx x x +⋅-+ …………………………………………………………4分 =11x - . …………………………………………………………………6分 当12x =+时,原式=22. ……………………………………………………8分 19. 证明:(1)∵CF ∥BD ,∴∠DOE =∠CFE , ………………………………………………………………1分 ∵E 是CD 中点,∴CE =DE , …………………………………………………………………………2分 在△ODE 和△FCE 中,,∴△ODE ≌△FCE (ASA ); …………………………………………………………4分 (2)菱形. ……………………………………………………………………………5分 理由如下:∵△ODE ≌△FCE ,∴OD =FC , ……………………………………………………………………………6分 ∵CF ∥BD ,∴四边形ODFC 是平行四边形, ………………………………………………………7分 在矩形ABCD 中,OC =OD ,∴四边形ODFC 是菱形. ……………………………………………………………8分20. 解:(1)200 ………………………………………………………………………2分 (2)C 项目对应人数为60(图略) …………………………………………………4分(3)002036036200⨯= …………………………………………………………………6分 (4)画树状图如下:,或列表如下:………………………………………8分共有12种等可能的情况,恰好选中乙、丙两位同学的有2种,则P(选中乙、丙)=21126=. …………………………………………………………………………………10分 21. 解:(1)设甲、乙两种玩具每件进价分别为x 元、y 元,由题意,得32160290x y x y +=⎧⎨+=⎩, ………………………………………………………………………2分 解得:2050x y =⎧⎨=⎩. ………………………………………………………………………3分答:甲、乙两种玩具每件进价分别为20元、50元. ………………………………4分 (2)设总进价为W 元,购进甲玩具a 件,由题意得2050(20)100030W a a a =+-=-. …………………………………………………5分 由6002050(20)700a a ≤+-≤,解得40103a ≤≤. ………………………………7分∵ a 为整数,∴ 10,11,12,13a =. …………………………………………………………………8分 由一次函数100030W a =-可知,300k =-<,W 随a 增大而减小.∴当13a =时,W 取得最小值. ………………………………………………………9分 答:有4种进货方案,其中购进甲玩具13件,乙玩具7件的方案总进价最低. ……10分 22. 解:(1)在Rt △BOE 中,OE =0tan 55BE, ………………1分在Rt △BDE 中,DE =0tan 25BE,……………………………2分 则0tan 55BE +0tan 25BE=30, ……………………………… 4分 解得BE ≈11cm . ………………………………………5分故B 点到OP 的距离大约为11cm ;………………………………………………………6分(2)在Rt △BDE 中,BD =0sin 25BE≈28cm . …………………………………………………8分 AC=BD ≈28cm . …………………………………………………………………9分 故滑动支架的长28cm . …………………………………………………………………10分 23. 解:(1)①√;②√. ……………………………………………………………2分 (2)∵090C ∠=,AC BC >,由(1)可知ABC ∆的匀称中线是AC 边上的中线,设D 为AC 中点,则BD 为匀称中线.设2AC a =,则CD a =,2BD a =.甲 乙 丙丁甲 ﹨ (乙,甲) (丙,甲) (丁,甲)乙 (甲,乙)﹨(丙,乙) (丁,乙)丙 (甲,丙) (乙,丙)﹨(丁,丙)丁(甲,丁) (乙,丁) (丙,丁)﹨DC03a =, ……………………4分 ∴22(2)(3)7AB a a a =+=,……………………………5分 ∴327BC AC AB =::::. ………………………………6分 (3)①如图; ……………………………………………8分 ②∵ABC ∆绕点A 逆时针旋转450得ADE ∆, ∴045,DAE BAC AD AB ∠=∠==. ∴090,DAC AD AC ∠=>. ∵ADC ∆是匀称三角形,∴2:3AD AC =:,即2:3AB AC =:. ………………9分 过点C 作CH AB ⊥于H ,则090AHC BHC ∠=∠=.设3AC k =,则26322AH CH k k ==⋅=.∴646222BH k k k -=-=.∴562364626426tan +=-=-==∠k kBH CH B . (分母不化简不扣分) …11分 在⊙O 中,由AMC B ∠=∠623+=. 24. 解:(1)把B (1,0)代入 由2230x x +-=得1x =∴点A 的坐标为(-3,0). …………………………2分(2). 如图(2), 由正方形ABCD 由DP PE ⊥证得DAP ∆∽ ∴AD APOP OE =设OE y = ∴13(32)()24y t t t =-⋅=--∵=-10,a <∴当304t t ⎛=< ⎝属于即点P 位于AO 的中点时,线段OE 的长有最大值916(3)①如图①,当302t <<DP DC PE CQ∴=.又ADP ∆∽∴AD DC OP CQ=.即4432t t =-经检验:1t =②如图②,当2723≤<t MDE BCOAH MDE BC OA∴AD DCOP CQ=.即4423t t=-,解得3t=.经检验:3t=是原方程的解.③如图③,当742t<≤时,DPE∆∽QCD∆,DP QCPE CD∴=同理得DP ADPE OP=.∴AD QCOP CD=.即4234tt=-,解得1t=,2t=2t).综上所述,1t=或3…………………………(求出了一个的值给2分,两个的值给4分,三个的值给(4)存在t=………………………………………理由如下:如图由DCQ∆沿DQ翻折得'DC Q∆,则DCQ∆≌'DC Q∆∴'CDQ C DQ∠=∠,'4DC DC==.设抛物线的对称轴交DC于G,则DG=2.在'Rt DC G∆中,∵∴'060C DG∠=.∴00160302CDQ∠=⨯=.∴CQ=,即t=. ………………………………14分。
2020年初中毕业生学业水平考试适应性试卷(一)数学 试题卷 (2020.5)考生须知:1.全卷满分120分,考试时间120分钟.试题卷共6页,有三大题,共24小题. 2.本次考试为开卷考试,全卷答案必须做在答题卷上,做在试题卷上无效.一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.-2020的绝对值是( ▲ )(A )2020 (B )-2020 (C )12020 (D )12020- 2.计算3()a a -的结果是( ▲ )(A )a 2 (B )﹣a 2 (C )a 4 (D )﹣a 4 3.不等式2x +9≥3(2)x +的解集是( ▲ )(A )x ≥3 (B )x ≥7 (C )x ≤3 (D )x ≤7 4.下列等式从左边到右边的变形中,是因式分解的是( ▲ ) (A )2(3)3a a a a +=+ (B )245(4)5a a a a +-=+-(C )2(2)(2)4a a a +-=- (D )2269(3)a a a ++=+ 5.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成, 下列说法正确的是( ▲ )(A )主视图的面积为4 (B )左视图的面积为4 (C )俯视图的面积为3 (D )三种视图的面积都是3 6.如图是某校学生到校方式的扇形统计图.若该校骑自行车到校 的学生有200人,则步行到校的学生有( ▲ ) (A )120人(B )160人(C )125人(D )180人7.《九章算术》是中国古代第一部数学专著,书中有这样一题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价格是多少?设共有x 个人,该物品价格是y 元,则下列方程组正确的是( ▲ )(第6题)骑自行 车25% 其他 15% 步行 20%乘公共 汽车40%(A)8374x yx y+=⎧⎨-=⎩(B)8374y xy x+=⎧⎨-=⎩(C)8374x yx y-=⎧⎨+=⎩(D)8374y xy x-=⎧⎨+=⎩8.在△ABC中,若一个内角等于另外两个内角的差,则(▲)(A)必有一个内角等于30°(B)必有一个内角等于45°(C)必有一个内角等于60°(D)必有一个内角等于90°9.如图,⊙O经过菱形ABCD的顶点B,C,且与边AD相切于点E.若AE=1,ED=5,则⊙O的半径为(▲)(A)(B)(C(D10.对于函数2(21)31y ax a x a=-+-+(a是常数),有下列说法:①函数图象与坐标轴总有三个不同的交点;②当x<1时,不是y随x的增大而增大就是y随x的增大而减小;③若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数.其中错误..的说法是(▲)(A)①(B)①②(C)②③(D)①③二、填空题(本题有6小题,每题4分,共24分)11(1)π-=▲.12.若x=2y+3,则代数式3x﹣6y+1的值是▲.13.在网络课程学习中,小蕾和小丽分别在《好玩的数学》《美学欣赏》《人文中国》中随机选择一门,两人恰好选中同一门课程的概率为▲.14.如图,Rt△OAB中,∠OAB=90°,O是坐标原点,点A在x轴的正半轴上,点B在第一象限.已知OA=2,∠AOB=30°.将△OAB绕点O按逆时针方向旋转150°,得到△OA′B′,则点A的对应点A′的坐标是▲ .15.如图,已知□ABCD,以B为位似中心,作□ABCD的位似图形□EBFG,位似图形与原图形的位似比为23,连结AG,DG.若□ABCD的面积为24,则△ADG的面积为▲.16.如图,等边△ABC中,AB=2,点D是以A为圆心,半径(第9题)D(第16题)C (第15题)(第14题)为1的圆上一动点,连接CD ,取CD 的中点E ,连接BE , 则线段BE 的最大值与最小值之和为 ▲ .三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分) 17.在解答“化简:a ba b a b--+”时,明明的解答过程如下: 222222()()1()()()()()()a b a a b b a b a ab ab b a b a b a b a b a b a b a b a b a b a b +-+-----===-+-+-+-+-= 明明的解答从第几步开始出错的?请写出正确的解答过程.18.如图,在△ABC 中,已知AB =A C .(1)尺规作图:画△ABC 的外接圆⊙O(保留作图痕迹,不写画法). (2)连结OB ,OC ,若∠A =45°,BC =6,求扇形OBC 的弧长.19.如图,反比例函数ky x=(k ≠0)图象与一次函数b x y +-=图象相交于A (1,3),B (m ,1)两点.(1)求反比例函数和一次函数的表达式.(2)已知点P (a ,0)(a >0),过点P 作平行于y 轴的直线,在第一象限内与一次函数b x y +-=的图象相交于点M ,与反比例函数ky x =上的图象相交于点N .若PM >PN ,结合函数图象直接写出a 的取值范围.20.如图,△ABC 中,∠BAC =90°,∠B =36°,AD 是斜边BC 上的中线,将△ACD 沿AD 折叠,使点C 落在点F 处,线段DF 与AB 相交于点E .① ② ③ ④ (第18题)BACCBADF E(第20题)(1)求∠BDE 的度数. (2)求证:△DEB ∽△ADB . (3)若BC =4,求BE 的长.21.某校七年级甲班、乙班举行一分钟投篮比赛,每班派10名学生参赛,在规定时间内进球数不少于8个为优秀学生.比赛数据的统计图表如下(数据不完整): 根据以上信息,解答下列问题: (1)直接写出a ,b ,c 的值.(2)你认为哪个班的比赛成绩要好一些?请简要说明理由.22.如图1是某体育看台侧面的示意图,观众区AC 的坡度i =1:2,顶端C 离水平地面AB 的高度为15m ,顶棚外沿处的点E 恰好在点A 的正上方,从D 处看E 处的仰角α=30°,竖直的立杆上C ,D 两点间的距离为5m . (1)求观众区的水平宽度AB .(2)求图1中点E 离水平地面的高度EA .(3)因为遮阳需要,现将顶棚ED 绕D 点逆时针转动11°30′,若E 点在地面上的铅直投影是点F (图2),求AF .(sin 11°30′≈0.20,cos 11°30′≈0.98,t an11°30′≈0.20;sin 18°30′≈0.32,cos 18°30′≈0.95,tan18°30′≈0.33,结果精确到0.1m )23.定义:每个内角都相等的八边形叫做等角八边形.容易知道,等角八边形的内角都等于135°.下面,我们来研究它的一些性质与判定:甲班乙班每生进球个数统计图甲班乙班1分钟投篮测试成绩统计表(第22题) AB CD Eα图1ABCD αEF 图2(1)如图1,等角八边形ABCDEFGH 中,连结BF . ①请直接写出∠ABF +∠GFB 的度数.②求证:AB ∥EF .③我们把AB 与EF 称为八边形的一组正对边.由②同理可得:BC 与FG ,CD 与GH ,DE 与HA 这三组正对边也分别平行.请模仿平行四边形性质的学习经验,用一句话概括等角八边形的这一性质.(2)如图2,等角八边形ABCDEFGH 中,如果有AB =EF ,BC =FG ,则其余两组正对边CD与GH ,DE 与HA 分别相等吗?证明你的结论.(3)如图3,八边形ABCDEFGH 中,若四组正对边分别平行,则显然有∠A =∠E ,∠B =∠F ,∠C =∠G ,∠D =∠H .请探究:该八边形至少需要已知几个内角为135°,才能保证它一定是等角八边形?24.受新冠疫情影响,3月1日起,“君乐买菜”网络公司某种蔬菜的销售价格开始上涨.如图1,前四周该蔬菜每周的平均销售价格y (元/kg )与周次x (x 是正整数,1≤x <5) 的关系可近似用函数25y x a =+刻画;进入第5周后,由于外地蔬菜的上市,该蔬 菜每周的平均销售价格y (元/kg )从第5周的6元/kg 下降至第6周的5.6元/kg ,y 与周次x (5≤x ≤7)的关系可近似用函数21510y x bx =-++刻画. (1)求a ,b 的值.(2)若前五周该蔬菜的销售量m (kg )与每周的平均销售价格y (元/kg )之间的关系可近似地用如图2所示的函数图象刻画,第6周的销售量与第5周相同:①求m 与y 的函数表达式;②在前六周中,哪一周的销售额w (元)最大?最大销售额是多少?(3)若该蔬菜第7周的销售量是100kg ,由于受降雨的影响,此种蔬菜第8周的可销售量将比(第23题)ABCD EF G H图2ABC DEF G H图1ABCDEF G H图3第7周减少a%(a>0).为此,公司又紧急从外地调运了5吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜第8周的销售价格比第7周仅上涨0.8a%.若在这一举措下,此种蔬菜在第8周的总销售额与第7周刚好持平,请通过计算估算出a的整数值.2020年初中毕业生学业水平考试适应性试卷(一) 数学 参考答案 (2020.5)一、 选择题(本题有10小题,每题3分,共30分) ADCDA BCDCB二、填空题(本题有6小题,每题4分,共24分) 11.3;12.10;13.13;14.(1);15.4;16. 三、解答题(共66分) 17.(6分)明明的解答从第②步开始出错;-------------------------------------------------------------2分 222222()()()()()()()()a b a a b b a b a ab ab b a b a b a b a b a b a b a b a b a b a b +-+-++--==-+-+-+-+-=-------4分 18.(6分)(1)△ABC 的外接圆⊙O (尺规作图,保留作图痕迹,不写画法):略- -------3分 (2)连结OB ,OC ,∵∠A =45°,∴∠BOC =90°,---------------------------------1分 ∵BC =6,∴OB= ----------------------------------------------------------------------1分 ∴扇形OBC.--------------------------------------------------------------1分 19.(6分) (1)∵函数ky x=(k ≠0)图象经过A (1,3),B (m ,1)两点, ∴反比例函数的表达式是3y x=,----------------1分 ∴B (3,1),------------------------------------------1分 ∴一次函数的表达式是4y x =-+. ------------2分 (2)1<a <3.-----------------------------------------------2分 20.(8分)(1)∠BDE =36°.------------------------------------------2分 (2)∵∠BAC =90°,AD 是斜边BC 上的中线,∴AD =BD , ∵∠B =36°,∴∠BAD =36°,---------------------1分 ∵∠BDE =36°,CBADF E(第20题)∴∠B=∠B,∠BDE=∠BAD,------------------2分∴△DEB∽△ADB.----------------------------------1分(3)∵△DEB∽△ADB,∴BE BDBD AB=,设BE=x,--------1分∵BC=4,∴(2)4x x+=,∴BE=x1.--------1分21.(8分)(1)a=6.5,b=6.5,c=30%.-------------------------------------3分(2)甲班的比赛成绩要好一些.-------------------------------------3分理由:甲班的中位略高于乙班,方差小于乙班.----------2分评分标准:A类(5分):甲班,有比较性结论,有两个(或以上)数据支撑或类似说明;B类(4分):甲班,有比较性结论,有1个数据支撑或类似说明;C类(3分):甲班,只有比较性结论;或者乙班,但有一定道理.22.(10分)(1)∵AC的坡度i=1:2,BC=15 m,∴AB=30m.-------------------------------------------------------3分(2)按如图方式添辅助线,易得:DG=CH=AB=30m,GH=CD=5 m,而tan30EG DG=⨯︒=,AH=BC=15 m,-------4分∴EA=EG+GH+AH=20m.---------------------1分(3)由(1)知:DE=,-----------------------------------1分∵α=18°30′,∴DG=cos1830DE'⨯︒≈32.9 m.∴AF≈2.9m.-----------------------------------------------------1分23.(10分)(1)①∠ABF+∠GFB=135°.---------------------------------1分②∵∠1+∠4=135°,∠GFE=∠3+∠4=135°,∴∠1=∠3,---------------------------------------------------------1分A BCD Eα图1GHA BCDαEF图2G(第22题)A BCDEFGH图11234∴AB ∥EF .----------------------------------------------------------1分 ③等角八边形的每一组正对边平行.---------------------------1分 (2)如图2,连结AF ,BE ,AG ,CE ,由①得:AB ∥EF , ∵AB =DE ,∴四边形ABEF 是平行四边形,---------------1分 ∴AF =BE ,AF ∥BE ,又∵BC ∥FG ,∴∠AFG =∠EBC ,又∵BC =FG ,∴△AFG ≌△EBC ,----------------------------1分 ∴AG =EC ,∠AGF =∠ECB ,∵∠HGF =∠BCD =135°,∴∠AGH =∠ECD , 又∵∠H =∠D =135°,∴△AGH ≌△ECD ,∴CD =GH ,DE =HA .-------------------------------------------1分 (2)结论:至少需要已知5个内角为135°.----------------------1分 ①若4个内角等于135°,则每个内角不一定都为135°, 反例:(数,形都可以)------------------------------------------1分如图4,八边形ABCMNFPH 不是等角八边形(说明略); ②若5个内角等于135°:∵∠A =∠E ,∠B =∠F ,∠C =∠G ,∠D =∠H . ∴这八个角中,不论已知哪5个角是135°,都可以推导出其余的内角也是135°.---------------------------1分 24.(12分) (1)4;710.---------------------------------------------------------------------------------------2分 (2)①25250m y =-+;------------------------------------------------------------------------2分②当1≤x ≤4时,∵25250m y =-+,245y x =+,∴10150m x =-+, ∴2225(10150)4420600462552w x x x x x ⎛⎫⎛⎫=-++=-++=--+ ⎪ ⎪⎝⎭⎝⎭,---------------1分 ∵x 是正整数,∴当x =2或3时,w 有最大值624;----------------------------------1分 当x =5时,21751010y x x =-++=6,25250100m y =-+=, 当5≤x ≤6时,∵100m =,21751010y x x =-++, ABC D EF G H图2ABC DEF G H图3图4ABC D EF G HM N P∴2221771245 1005107050010101022w x x x x x⎛⎫⎛⎫=-++=-++=--+⎪ ⎪⎝⎭⎝⎭,------1分∵x是正整数,5≤x≤6,∴当x=5时,w有最大值600;-------------------------1分综上所得:第2周或第3周销售额最大,最大销售额是624元.-----------------1分(3)由题意得:[100(1%)5]5(10.8%)5100a a-+⨯+=⨯,-------------------------1分解得:10a=-+10a=--)--------------------------------------1分∵56,且29更靠近25,∴105515a≈-+⨯=.-----------------------------------------------------------------------1分注:以上各题,不同解法请酌情给分.。