小学奥数竞赛模拟试卷22
- 格式:doc
- 大小:44.50 KB
- 文档页数:1
小学三年级奥数竞赛100道测试题及答案解析奥数学习有利于训练孩子的思维能力,让孩子在解题的过程中能够从不同的角度进行思考1、2008年2月1日是星期五,那么,2012年的3月1日是星期几?2、下面的两个算式都是错误的,各移动2根火柴,使它们都变成正确的算式:3、请你移动其中的一根火柴棒,使等号两边相等。
4、下面是两个具有一定的规律的数列,请你按规律补填出空缺的项:(1)1,5,11,19,29,________,55;(2)1,2,6,16,44,________,328。
5、按规律填()中的数:1,2,3,5,8,( ),( ),346、列式计算.(1)比245多120的数是多少?(2)42的8倍是多少?(3)55除以6,商是几?余数是几?考点:整数的加法和减法;整数的乘法及应用;有余数的除法.7、观察三角形先观察,再填数。
8、甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。
问:这批零件有多少个?9、A、B、C、D四人在一场比赛中得了前4名。
已知D的名次不是最高,但它比B、C都高,而C的名次也不比B高。
问:他们各是第几名?10、树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树上;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各落多少只鸟?11、小云比小雨少20本书,后来小云丢了5本书,小雨新买了11本书,这时小雨的书比小云的书多2倍。
问:原来两人各有多少本书?12、找出下列各数列的规律,并按其规律在( )内填上合适的数:(1)625,125,25,( ),( );(2)1,4,9,16,( ),…(3)2,6,12,20,( ),( ),…13、一次数学考试后,李军问于昆数学考试得多少分.于昆说:''用我得的分数减去8加上10,再除以7,最后乘以4,得56.''小朋友,你知道于昆得多少分吗?14、3名工人5小时加工零件90个,要在10小时完成540个零件的加工,需要工人多少名?15、有20人修筑一条公路,计划15天完成。
模拟试卷22答案与解析1. 0.01 原式=690.360.350.0154230.7⨯⨯=⨯⨯ 2. 28根据算式可知:□=(509×18-1070)÷289=283. 7因为要求“至少”,应使三科优秀的人数最少重合,所以25-(30-22)-(30-20)=7(人)4. 6和7从表格中可以看出星期三缺少个位数字B ,星期四缺少十位数字A ,于是可以将星期三和星期四的阅读页数重新组合成两个两位数:69和AB 。
根据表格中的其它条件可求出: 785(89756981)76AB =⨯-+++=所以A=7, B=6。
5. 1012 设被乘数和乘数分别为ab xy 和,观察整个竖式可知,ab 与y 的乘积的个位是2,ab 与x 乘积的十位是9,因为22ab y ⨯=,所以只有22×1=22,11×2=22两种情况,当ab =22时,ab ×x =9□无解,因此ab =11,y=2,此时x=9,乘积为:11×92=1012。
6. 13因为三位数是5的倍数,所以它的个位数必须是0或5,要使各个数位上数字之和为9,分两种情况:(1)个位是0,则十位和百位数字之和是9,有(1,8),(2,7),(3,6),(4,5),(9,0)共9个。
(2)个位是5,则十位和百位数字之和是4,有(1,3),(3,1),(2,2),(4,0)共4个。
两种情况的和为:9+4=13个。
7. 13若天平一端放砝码,可称出1克,3克,9克,1+3=4(克),1+9=10(克),3+9=12(克),1+3+9=13(克),共7种重量;若天平两端放砝码,可称出3-1=2(克),9-1=8(克),9-3=6(克),9-(3+1)=5(克),9+1-3=7(克),9+3-1=11(克),共6种重量。
所以可称出7+6=13(种)不同的重量。
8. 6947根据第一次和第三次的回答,可知千位数字是6; 根据第二次和第三次的回答,可知个位数字是7; 由此可继续推出百位数字是9,十位数字是4。
年级三年级学科奥数版本通用版课程标题奇妙的一笔画(二)现在我们了解了什么是一笔画和一笔画图形的一些特点,接下来我们深入学习利用一笔画知识解决实际问题的方法,并且扩展出多笔画问题。
希望同学们能够对这类有趣的问题产生兴趣。
一、多笔画问题:我们把不能一笔画成的图,归纳为多笔画。
多笔画图形的笔画数恰等于奇点个数的一半。
事实上,对于任意的连通图来说,如果有2n个奇点(n为自然数),那么这个图一定可以用n笔画成。
奇点数÷2=笔画数,即2n÷2=n。
二、对于一笔画问题的应用,我们首先要理解题意,然后常需要改画图形,把代表实际的图形简化成能明确看出奇偶点的图形。
例1 观察下面的图形,看各至少用几笔画成?分析与解:图(1)有8个奇点,所以要4笔画出,图(2)有12个奇点,所以要6笔画出,图(3)能一笔画出。
例2 18世纪的哥尼斯堡是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A和一座半岛D,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来。
如果游人要一次走过这七座桥,而且每座桥只许走一次,问如何走才能成功?分析与解:图a中,用A,D表示两个小岛,点B,C表示河的左右两岸,若再用连结两点的线表示桥,从而得到一个由四个点和七条线组成的图形,点A、B、C、D四个点均为奇点,显然不能一笔画出这个图形。
考虑如果再架一座桥,游人能否走遍所有这八座桥:若将其中的两个奇点改成偶点,即在某两个奇点之间连一条线,这样奇点个数由四个变为两个,此时图形可以一笔画出,如我们可以选择奇点B、D之间连一条线,如图b。
考虑架设几座桥可以使游人走遍所有的桥回到出发地:再在另外两个奇点A、C之间连一条线,使这两个奇点也变成偶点,如图c,可以以任意点为起点,最后仍回到这个点。
例3 有一个邮局,负责21个村庄的信件投递工作,图中的点表示村庄,线段表示道路。
邮递员从邮局出发,怎样才能不重复地经过每一个村庄,最后回到邮局?分析与解:图中有两个奇点,所以该图可以一笔画出,但因为邮局所在点为奇点,所以要一笔画出就不可能回到邮局。
1. 熟悉鸡兔同笼的“砍足法”和“假设法”.2. 利用鸡兔同笼的方法解决一些实际问题,需要把多个对象进行恰当组合以转化成两个对象.一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)知识精讲教学目标6-1-9.鸡兔同笼问题(二)鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法两个量的“鸡兔同笼”问题——变例【例 1】 某次数学竞赛,共有20道题,每道题做对得5分,没做或做错都要扣2分,小聪得了79分,他做对了多少道题?【考点】鸡兔同笼问题 【难度】3星 【题型】解答【关键词】假设思想方法【解析】 做错(52079 ) (52)3⨯-÷+= (道),因此,做对的20317-= (道).【答案】17道【巩固】 数学竞赛共有20道题,规定做对一道得5分,做错或不做倒扣3分,赵天在这次数学竞赛中得了60分,他做对了几道题?【考点】鸡兔同笼问题 【难度】3星 【题型】解答【关键词】假设思想方法【解析】 假设他将所有题全部做对了,则可得100分,实际上只得了60分,比假设少了40分,做错一题要少得8分,少得的40分中,有多少个8分,就是他做错的题的数量,则知他做对了15道.【答案】15道【巩固】 东湖路小学三年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题都要倒扣2分.刘钢得了86分,问他做对了几道题?【考点】鸡兔同笼问题 【难度】3星 【题型】解答【关键词】假设思想方法【解析】 这道题也类似于“鸡兔同笼”问题.假设刘钢20道题全对,可得分520100⨯=(分),但他实际上只得86分,少了1008614-=(分),因此他没做或做错了一些题.由于做对一道题得5分,没做或做错一道题倒扣2分,所以没做或做错一道题比做对一道题要少527+=(分).14分中含有多少个7,就是刘钢没做例题精讲或做错多少道题.所以,刘钢没做或做错题为1472÷=(道),做对题为20218-=(道).【答案】18道【巩固】 某次数学竞赛,试题共有10道,每做对一题得6分,每做错一题倒扣2分。
小学三年级下册奥数题22等间代换介绍本文档是关于小学三年级下册奥数题22的等间代换的解析和解答。
奥数题是一种培养小学生逻辑思维和数学能力的重要方式之一,通过解答这些题目,可以提升学生的思维能力和解决问题的能力。
题目描述题目22的题目描述如下:小明有一列数字,从1到6,他想进行一种操作,使得这些数字满足等间代换的规律。
等间代换是指一列数字中任意两个相邻的数字之间的差值都是相等的。
请问,小明应该如何操作这列数字,才能使得它满足等间代换的规律呢?解析与解答为了使得这列数字满足等间代换的规律,我们可以观察到以下规律:1. 等间代换的规律要求一列数字中任意两个相邻的数字之间的差值都是相等的。
因此,我们需要确定一个差值,并保证每个数字与其相邻数字的差值相等。
2. 题目中给出的数字范围是从1到6,我们可以选择差值为1来使得数字满足等间代换的规律。
基于以上规律,我们可以按照以下步骤进行操作:1. 将给出的数字从小到大排序,得到初始的数字序列:1, 2, 3, 4, 5, 6。
2. 从数字序列的第二个数字开始,每个数字都与前一个数字进行减法操作,将得到的结果作为新的数字序列。
- 数字1减去前面一个数字0,得到1。
- 数字2减去前面一个数字1,得到1。
- 数字3减去前面一个数字2,得到1。
- 数字4减去前面一个数字3,得到1。
- 数字5减去前面一个数字4,得到1。
- 数字6减去前面一个数字5,得到1。
3. 最终得到的数字序列为:1, 1, 1, 1, 1, 1,满足等间代换的规律。
通过以上操作,小明可以使得这列数字满足等间代换的规律。
总结本文档对小学三年级下册奥数题22的等间代换进行了解析和解答。
通过观察规律,我们确定了差值为1,并按照一定的操作步骤,使得数字序列满足等间代换的要求。
通过解答这样的奥数题,可以培养学生的思维能力和解决问题的能力。
专题22 平均数问题【理论基础】我们经常用各科成绩的平均分数来比较班级之间,同学之间成绩的高低,求出各科成绩的平均数就是求平均数。
平均数在日常生活中和工作中应用很广泛,例如,求平均身高问题,求某天的平均气温等。
求平均数问题的基本数量关系是:总数量÷总份数=平均数解答平均数问题的关键是要确定“总数量”以及与“总数量”相对应的“总份数”,然后用总数量除以总份数求出平均数。
二(1)班学生分三组植树,第一组有8人,共植树80棵;第二组有6人,共植树66棵;第三组有6人,共植树54棵。
平均每人植树多少棵?分析与解答:因为二(1)班学生分三组植树,由问题可知“平均范围”是三个组,是按人数平均,因此所需条件是三个组植树的总棵数和三个组的总人数。
三个组植树的总棵数为:80+66+54=200棵,总人数为:8+6+6=20人,所以平均每人植树200÷20=10棵。
练习一1.电视机厂四月份前10天共生产电视机3300台,后20天共生产电视机6300台。
这个月平均每天生产电视机多少台?2.小明参加数学考试,前两次的平均分是85分,后三次的总分是270分。
求小明这五次考试的平均分数是多少。
3.二(1)班学生分三组植树,第一组有8人,平均每人植树10棵;第二组有6人,平均每人植树11棵;第三组有6人,平均每人植树9棵。
二(1)班平均每人植树多少棵?王老师为四年级羽毛球队的同学测量身高。
其中两个同学身高153厘米,一个同学身高152厘米,有两个同学身高149厘米,还有两个同学身高147厘米。
求四年级羽毛球队同学的平均身高。
分析与解答:这道题可以按照一般思路解,即用身高总和除以总人数。
这道题还可以采用假设平均数的方法求解,容易发现,同学们的身高都在150厘米左右,可以假设平均身高为150厘米,把它当作基准数,用“基数+各数与基数的差之和÷份数=平均数”。
(153×2+152+149×2+147×2)÷(2+1+2+2)=150厘米或:150+(3×2+2-1×2-3×2)÷(2+1+2+2)=150厘米练习二1.五(1)班有7个同学参加数学竞赛,其中有两个同学得了99分,还有三个同学得了96分,另外两个同学分别得了97、89分。
小学奥数竞赛模拟试卷(15套)(总32页)-本页仅作为预览文档封面,使用时请删除本页-模拟试卷.1 姓名得分一、填空题:3.一个两位数,其十位与个位上的数字交换以后,所得的两位数比原来小27,则满足条件的两位数共有______个.5.图中空白部分占正方形面积的______分之______.6.甲、乙两条船,在同一条河上相距210千米.若两船相向而行,则2小时相遇;若同向而行,则14小时甲赶上乙,则甲船的速度为______.7.将11至17这七个数字,填入图中的○内,使每条线上的三个数的和相等.8.甲、乙、丙三人,平均体重60千克,甲与乙的平均体重比丙的体重多3千克,甲比丙重3千克,则乙的体重为______千克.9.有一个数,除以3的余数是2,除以4的余数是1,则这个数除以12的余数是______.10.现有七枚硬币均正面(有面值的面)朝上排成一列,若每次翻动其中的六枚,能否经过若干次的翻动,使七枚硬币的反面朝上______(填能或不能).二、解答题:1.浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克,混合后所得到的酒精溶液的浓度是多少?2.数一数图中共有三角形多少个?3.一个四位数,它的第一个数字等于这个数中数字0的个数,第二个数字表示这个数中数字1的个数,第三个数字表示这个数中数字2的个数,第四个数字等于这个数中数字3的个数,求出这个四位数.模拟试卷.2 姓名得分一、填空题:1.用简便方法计算:2.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高______%.3.算式:(121+122+…+170)-(41+42+…+98)的结果是______(填奇数或偶数).4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.5.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛______场.6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.7.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘米.8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.9.在下面16个6之间添上+、-、×、÷、(),使下面的算式成立:6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 = 1997二、解答题:1.如图中,三角形的个数有多少?2.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间代表共有几人3.现有10吨货物,分装在若干箱内,每箱不超过一吨,现调来若干货车,每车至多装3吨,问至少派出几辆车才能保证一次运走?4.某轮船公司较长时间以来,每天中午有一只轮船从哈佛开往纽约,并且在每天的同一时间也有一只轮船从纽约开往哈佛,轮船在途中所花的时间,来去都是七昼夜,问今天中午从哈佛开出的轮船,在整个航运途中,将会遇到几只同一公司的轮船从对面开来?模拟试卷.3 姓名得分一、填空题:1.×+11×+537×=______.2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.甲容器中有纯酒精11升,乙容器中有水15升,第一次将甲容器中的一部分纯酒精倒入乙容器,使酒精与水混合;第二次将乙容器中的一部分混合液倒入甲容器,这样,甲容器中的纯酒精含量为%,乙容器中纯酒精含量为25%,那么,第二次从乙容器倒入甲容器的混合液是多少升?2.1993年,一个老人说:“今年我的生日已过,40多年前的今天,我还是20多岁的青年,那时我的年龄刚好等于那年年份的四个数字之和.”老人到1997年是多大年纪?3.甲、乙两车同时从A、B两地出发相向而行,在距B地54千米处相遇,他们各自到达对方车的出发地后立即返回原地,途中又在距A地42千米处相遇.求两次相遇地点的距离.4.下午当钟表的时针和分针重合,秒针指在49秒附近时,钟表表示的时间是多少(精确到秒)模拟试卷.4 姓名得分一、填空题:1.如果A=11111102222221,B=33333326666665,那么A与B中较大的数是。
小学奥数题竞赛真题小学奥数题竞赛真题:小学六年级奥数竞赛100道测试题,附答案解析:1、有 28位小朋友排成一行 .从左边开始数第 10位是学豆,从右边开始数他是第几位?2、纽约时间是香港时间减 13小时 .你与一位在纽约的朋友约定,纽约时间 4月1日晚上 8时与他通电话,那么在香港你应几月几日几时给他打电话?3、鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?4、请找出下面哪个图形与其他图形不一样.5、四个房间,每个房间里不少于 2人,任何三个房间里的人数不少 8人,这四个房间至少有多少人?6、在 1998的约数(或因数)中有两位数,其中最大的是哪个数?7、英文测验,小明前三次平均分是 88分,要想平均分达到 90分,他第四次最少要得几分?8、相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗?9、将 0, 1, 2, 3, 4, 5, 6, 7, 8, 9这十个数字中,选出六个填在下面方框中,使算式成立,一个方框填一个数字,各个方框数字不相同 .□ +□□ =□□□问算式中的三位数最大是什么数?10、有一个号码是六位数,前四位是 2857,后两位记不清,即 2857□□但是我记得,它能被 11和 13整除,请你算出后两位数 .11、观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?12、一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.13、一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.14、幼儿园的老师把一些画片分给 A, B, C三个班,每人都能分到 6张 .如果只分给 B班,每人能得 15张,如果只分给 C班,每人能得 14张,问只分给 A班,每人能得几张?15、两人做一种游戏:轮流报数,报出的数只能是 1, 2, 3, 4, 5, 6, 7, 8.把两人报出的数连加起来,谁报数后,加起来的数是123,谁就获胜,让你先报,就一定会赢,那么你第一个数报几?16、四个小动物排座位,一开始,小鼠坐在第1号位子上,小猴坐在第2号,小兔坐在第3号,小猫坐在第4号.以后它们不停地交换位子,第一次上下两排交换.第二次是在第一次交换后左右两列交换,第三次再上下两排交换,第四次再左右两列交换…这样一直换下去.问:第五次交换位子后,小兔坐在第几号位子上?17、狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
22、数字串问题【找规律填数】例1 找规律填数(杭州市上城区小学数学竞赛试题)(1992年武汉市小学数学竞赛试题)讲析:数列填数问题,关键是要找出规律;即找出数与数之间有什么联系。
第(1)小题各数的排列规律是:第1、3、5、……(奇数)个数分别别是4和2。
第(2)小题粗看起来,各数之间好像没有什么联系。
于是,运用分数得到了例2 右表中每竖行的三个数都是按照一定的规律排列的。
按照这个规律在空格中填上合适的数。
(1994年天津市小学数学竞赛试题)讲析:根据题意,可找出每竖行的三个数之间的关系。
不难发现每竖行中的第三个数,是由前两数相乘再加上1得来的。
所以空格中应填33。
【数列的有关问题】数是几分之几?(第一届《从小爱数学》邀请赛试题)讲析:经观察发现,分母是1、2、3、4、5……的分数个数,分别是1、3、5、7、9……。
所以,分母分别为1、2、3……9的分数共例2 有一串数:1,1993,1992,1,1991,1990,1,1989,1988,…这个数列的第1993个数是______(首届《现代小学数学》邀请赛试题)讲析:把这串数按每三个数分为一组,则每组第一个数都是1,第二、三个数是从1993开始,依次减1排列。
而1993÷3=664余1,可知第1993个数是1。
例3 已知小数0.12345678910111213……9899的小数点后面的数字,是由自然数1—99依次排列而成的。
则小数点后面第88位上的数字是______。
(1988年上海市小学数学竞赛试题)讲析:将原小数的小数部分分成A、B两组:A中有9个数字,B中有180个数字,从10到49共有80个数字。
所以,第88位上是4。
例4 观察右面的数表(横排为行,竖排为列);几行,自左向右的第几列。
(全国第三届“华杯赛”决赛试题)讲析:第一行每个分数的分子与分母之和为2,第二行每个分数的分子与分母之和为3,第三行每个分数的分子与分母之和为4,……即每行各数的分子与分母之和等于行数加1。
年级四年级学科奥数版本通用版课程标题复杂年龄问题(二)有一些比较特殊的年龄问题,条件比较隐蔽,并且有些不仅仅与和差倍问题结合,还要运用数论、逻辑推理等知识综合讨论,这样就使问题变得极其复杂。
下面我们一起来学习这些综合性很强的年龄问题。
一、年龄问题的主要特点是:1. 两人年龄的差是不变的量;2. 两人年龄的倍数关系是变化的量;3. 每个人的年龄随着时间的增加都增加相等的量。
二、年龄问题的解题要点是:1. 入手:分析题意从表示年龄间倍数关系的条件入手理解数量关系2. 关键:抓住“年龄差”不变这一特点3. 解法:应用“差倍”、“和倍”或“和差”问题的数量关系式4. 年龄问题解题正确率的保证:验算5. 我们掌握了关于年龄问题的几点规律,再借助线段图来处理一些较复杂的问题,那么有关年龄的应用题就不难解决了三、解年龄问题的方法:画图,列表等例1 今年,祖父的年龄是小明年龄的6倍。
几年后,祖父的年龄将是小明年龄的5倍。
又过几年以后,祖父的年龄将是小明年龄的4倍。
求:祖父今年是多少岁?分析与解:观察年龄差:今年祖父与小明的年龄差是小明年龄的5倍;几年后祖父与小明的年龄差是小明当时年龄的4倍;又过几年以后祖父与小明的年龄差是小明年龄的3倍,所以年龄差是5,4,3的倍数,很快就能得到年龄差应该是60(当然不可能是120,180等),今年小明的年龄是:60÷(6-1)=12岁,那么祖父就是12+60=72(岁)。
例2 三名男青年王强、张胜、李明和三名女青年芳芳、丽丽、蓉蓉这六个人是三对兄妹,哥哥比妹妹都大5岁,王强比芳芳大1岁,王强与丽丽的年龄和为48岁,张胜与丽丽的年龄和为52,他们六人中各对兄弟妹分别是谁和谁?(只写出答案,不列式)分析与解:由于哥哥比妹妹都大5岁,两人年龄之和一定是奇数,所以王强与丽丽不是兄妹,张胜与丽丽也不是兄妹。
又因为王强只比芳芳大一岁,因而也不是兄妹,所以王强与蓉蓉是兄妹,从而张胜与芳芳是兄妹,剩下李明与丽丽是兄妹。
1 模拟试卷.2
2 姓名得分
一、填空题:
1.11
4
×17.6+36÷
4
5
+2.64×12.5=。
2.设A=30×70×110×170×210,那么不是A的约数的最小质数为
______.
3.一张试卷共有15道题,答对一道题得6分,答错一道题扣4分,小明答完了全部的题目却得了0分,那么他一共答对了______道题.
4.一行苹果树有16棵,相邻两棵间的距离都是3米,在第一棵树旁有一口水井,小明用1只水桶给苹果树浇水,每棵浇半桶水,浇完最后一棵时,小明共走了______米.
5.有一个四位数,它的个位数字与千位数字之和为10,且个位既是偶数又是质数,去掉个位数字和千位数字,得到一个两位质数,又知道这个四位数能被72整除,则这个四位数是______·
6.甲、乙二人分别以每小时3千米和5千米的速度从A、B两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达B地共行4小时,那么A、B两地相距______千米.
7.如图,在△ABC中,DC=3BD,DE=EA,若△ABC面
积是2,则阴影部分的面积是______.
8.小朋从1997年的日历中抽出14张,是从5月14日到5月27日连续14天的.这14天的日期数相加是287.小红也抽出连续的14天的日历14张,这14天的日期数虽然与小明的不相同,但相加后恰好也是287.小红抽出的14张是从______月______日到______月______日的.
9.今有五个自然数,计算其中任意三个数的和,得到了10个不同的自然数,它们是:15、16、18、19、21、22、23、26、27、29,这五个数的积是______.
10.某工厂的记时钟走慢了,使得标准时间每70分钟分针与时针重合一次.李师傅按照这慢钟工作8小时,工厂规定超时工资要比原工资多3.5倍,李师傅原工资每小时3元,这天工厂应付给李师傅超时工资______元.
二、解答题:
1.计算
问参加演出的男、女生各多少人?
3.国际象棋比赛的奖金总数为10000元,发给前五名.每一名次的奖金都不一样,名次在前的钱数是比名次在后的钱数多,每份奖金钱数都是100元的整数倍.现在规定,第一名的钱数是第二、三名两人之和,第二名的钱数是第四、五名两人之和,那么第三名最多能得多少元?
4.在一条公路上,甲、乙两地相距600米,小明和小强进行竞走训练,小明每小时行走4千米,小强每小时行走5千米.9点整,他们二人同时从甲、乙两地出发相向而行,1分后二人都调头反向而行,又过3分,二人又都调头相向而行,依次按照1、3、5、7、…(连续奇数)分钟数调头行走,那么二人相遇时是几点几分?。