5Q0765代换CQ0765方法
- 格式:pdf
- 大小:156.53 KB
- 文档页数:1
1200AP40 1200AP60、1203P60200D6、203D6 DAP8A 可互代203D6/1203P6 DAP8A2S0680 2S08803S0680 3S08805S0765 DP104、DP7048S0765C DP704加24V得稳压二极管ACT4060 ZA3020LV/MP1410/MP9141ACT4065 ZA3020/MP1580ACT4070 ZA3030/MP1583/MP1591MP1593/MP1430ACT6311 LT1937ACT6906 LTC3406/A T1366/MP2104AMC2576 LM2576AMC2596 LM2596AMC3100 LTC3406/AT1366/MP2104AMC34063A AMC34063AMC7660 AJC1564AP8012 VIPer12AAP8022 VIPer22ADAP02 可用SG5841 /SG6841代换DAP02ALSZ SG6841DAP02ALSZ SG6841DAP7A、DP8A 203D6、1203P6DH321、DL321 Q100、DM0265RDM0465R DM/CM0565RDM0465R/DM0565R 用cm0565r代换(取掉4脚得稳压二极管) DP104 5S0765DP704 5S0765DP706 5S0765DP804 DP904FAN7601 LAF0001LD7552 可用SG6841代(改4脚电阻)LD7575PS 203D6改1脚100K电阻为24KOB2268CP OB2269CPOB2268CP SG6841改4脚100K电阻为2047KOCP1451 TL1451/BA9741/SP9741/AP200OCP2150 LTC3406/AT1366/MP2104OCP2160 LTC3407OCP2576 LM2576OCP3601 MB3800OCP5001 TL5001OMC2596 LM2596/AP1501PT1301 RJ9266PT4101 AJC1648/MP3202PT4102 LT1937/AJC1896/AP1522/RJ9271/MP1540SG5841SZ SG6841DZ/SG6841DSM9621 RJ9621/AJC1642SP1937 LT1937/AJC1896/AP1522/RJ9271/MP1540STRG5643D STRG5653D、STRG8653DTEA1507 TEA1533TEA1530 TEA1532对应引脚功能接入THX202H TFC719THX203H TFC718STOP246Y TOP247YV A7910 MAX1674/75 L6920 AJC1610VIPer12A VIPer22A[audio01]ICE2A165(1A/650V、31W);ICE2A265(2A/650V、52W);ICE2B0565(0、5A/650V、23W):ICE2B165(1A/650V、31W);ICE2B265(2A/650V、52W);ICE2A180(1A/800V、29W);ICE2A280(2A/800、50W)、KA5H0365R, KA5M0365R, KA5L0365R, KA5M0365RN# u) t! u1 W1 B) R, PKA5L0365RN, KA5H0380R, KA5M0380R, KA5L0380R1、KA5Q1265RF/RT(大小两种体积)、KA5Q0765、FSCQ1265RT、KACQ1265RF、FSCQ0765RT、FSCQ1565Q这就是一类得,这些型号得引脚功能全都一样,只就是输出功率不一样。
CQ系列电源块。
4.显示器电源IC KA5S0765C/KA5S0965/KA5S01265/DP104/DP308 这些厚模开关电源电路的内部电路和引脚功能相同,主要差别是输出功率和封装形式不同。
KA5S0765 最大漏极电压:650V,最大开关电流:7A,封装形式:TO-220。
KA5S0965 650V,9A,TO-220。
KA5S01265 650V ,12A,TO-3P。
引脚功能:1 DRAIN 内部开关管漏极,2 GND 地,3 VCC 内部控制电路电源输入,4 FB 误差信号输入,5 SYNC 同步触发信号输入5.显示器电源DP904、DP804、DP704、P104之间的代换。
DP104C是常规器件,很好弄到的。
如果没有可用:5s0765c、ka2s0680、DP904、DP804、DP704、3s0680rf、CQ0765代换。
DP104,704,804可以用5S0765代换.5S0765可以代替3S0765;因为5S0765封装较小,用导线加长、拉开直接焊接。
5s0765不能代8s0765rc,否则开机后会马上保护。
谈CQ系列、5Q系列以及显示器常用电源IC代换(看论坛朋友问CQ1265跟CQ0765代换有感)1.首先谈一下CQ系列电源块的代换。
其实CQ系列的集成块都是通用的,只不过是有功率大小的差别,按功率从大到小的顺序依次是CQ1465、CQ1265、CQ0965、CQ0765、CQ0565。
但是作为用在29的机子上来说,用CQ1465代替CQ1265固然是最好,但如果手里没有CQ1465的话,用CQ1265代替完全可以胜任,一般电源设计都是有余量的。
所以我说,维修员手里常备一个型号CQ1265电源IC在手,所有的CQ系列的电源块通杀。
从大功率到小功率的上下的价格不超过两块钱的差距,但是节省的时间价值或许要超过这个价格的数倍。
维修员有必要计较那一点小小的差别吗?2.再谈一下5Q系列电源块的代换。
该型机电源电路采用了待机功耗很低的LD7575作为电源控制芯片。
它通常应用在新型的17、19英寸液晶显示器电源电路中。
除了AOC H912W+显示器外。
采用LD7575作为电源控制芯片的还有美格WB9、清华同方XP911W、联想 LXM -WL19AH/WL19CH/WL19BH、联想HKC 988A+、海尔HT-19307/22306W等机型。
LD7575有SOP-8(LD7575 PS)和DIP-8(LD7575 PN)两种封装形式。
其内部电路框图如上图所示,各引脚功能如附表所示。
一、电源电路原理LD7575在AOC H912W+液晶显示器中的实际应用电路如下图所示。
LD7575用203D6代用要改启动电阻,LD7575可以用1200AP40,LD7575ps直接代用1.整流滤波电路220V交流电压经过共态扼流圈L901、L902、跨接线路电容C909进行EMI滤波。
其中C909用于滤除低频正态噪声。
R900、R902用于拔掉电源时对电容C909起放电作用。
220V交流经BD901桥式整流输出波动直流电经滤波电容C907滤波后,生成310V的直流电压。
负温度系数热敏电阻NRgOI用来限制启动时的电流。
防止启动电流过大烧毁保险丝。
2.启动/振荡电路刚启动开关电源时,IC901(LD7575PS)所需的启动工作电压由,±310V直流电压经过R905限流后加至IC901(8)脚实现开机启动操作。
LD7575PS开始工作后。
其(5)脚输出PWM脉冲波(该脉冲控制功率管Q900并按其工作频率进行开关动作)。
Q900工作在开关状态后,开关变压器T901在次级绕组输出整机需要的各种供电电压。
‘开关变压器T901的(1)-(3)绕组产生的高频电压经R610限流、D901整流、C911滤波后。
直接输入至LD7575PS的(6)脚作为正常工作状态的供电电压。
在正常工作时。
其LD7575PS的(6)脚必须有,14V左右的电压为芯片供电。
CQ1265电源模块原理与维修A、一次供电和二次供电电路开机后,300V直流电压直接通过VD821(IN4007)半波整流、R821(2W/120欧)电阻降压、给C822(50V/47UF)充电,当CQ1265的3脚电压升到14V 时,电源芯片内部电路开始工作,芯片内部的MOS管开始导通和截止,这个时候就不在由R821支路进行提供工作电压,而是改为由辅助绕组经电阻R824 (0。
5W/10欧)、二极管VD824(AU01Z)整流、电容C822(50V/22UF)滤波,电阻R803(0。
25W/680欧)降压、二极管VD810(18V)钳位)、电容C822(50V/47UF)滤波给CQ1265的3脚提供工作电压,当3脚电压降低到10V时,芯片内部停止工作,内部MOS管也就停止了开关。
B、稳压电路正常工作时,当由于某种原因造成+B电压升高后,通过电阻R852A、R854、R854A、R855、R855A分压到V826(TL431)的1脚(也就是G极)的电压也随之升高,V826是一个基准电压为2。
5V的022U)的充电电流减少,4脚电压降低,芯片内部对应的比较器上电压就降低,比较器的另一个脚接到MOS管另一个源极取样电阻Rsense上(如上图),因此当4脚电压降低就是开关管漏极电流降低电流的降低,也就是开关管提前进入截止状态从而使得+B电压降低;反之就升高。
s5mudu65z00002012-5-20 15:00:15 000C、同步电路电路中的VD825(AU01Z)、R826(4/1W680欧)、C825(1500P)、VD823(IN4148)、R825 1/4W470欧为CQ1265的5脚(SYNC)送入同步信号[幅度一般在9V左右的脉冲电平]。
R825 和R826分压调整电平幅度,R826与C825调整延迟的时间,开关管由导通状态什么时候截止,是由4脚的电平高低来决定的,开关管的截止什么时候导通,是由5脚的脉冲电平送到内部比较器上决定的,当开关管截止后,初级绕组是向次级绕组传递能量的(也就是互感),在次级绕组能量释放完后,开关管并不是立即就导通,而是由开关变压器的初级绕组与C821组成的谐振电路,同步电路的作用就是调整延迟同步电平,使串联谐振的电压幅度谐振到最低时才导通。
©2005 Fairchild Semiconductor CorporationRev.1.1.0FPS TM is a trademark of Fairchild Semiconductor Corporation.Features•Optimized for Quasi-Resonant Converter (QRC)•Advanced Burst-Mode Operation for under 1W Standby Power Consumption•Pulse-by-Pulse Current Limit•Over Load Protection (OLP) - Auto Restart •Over V oltage Protection (OVP) - Auto Restart•Abnormal Over Current Protection (AOCP) - Latch •Internal Thermal Shutdown (TSD) - Latch•Under V oltage Lock Out (UVLO) with Hysteresis •Low Startup Current (typical : 25uA)•Internal High V oltage SenseFET •Built-in Soft Start (20ms)•Extended Quasi-Resonant SwitchingApplications•CTV•Audio AmplifierRelated Application Notes•AN4146 - Design G uidelines for Quasi-R esonantC onverters Using FSCQ-S eries Fairchild Power Switch .•AN4140 - Transformer Design Consideration for Off-L ine F lyback Converters U sing Fairchild Power Switch.DescriptionIn general, a Quasi-Resonant Converter (QRC) shows lower EMI and higher power conversion efficiency compared to conventional hard-switched converter with a fixed switching frequency. Therefore, a QRC is well suited for noise-sensitive applications, such as color TV and audio. Each product in the FSCQ-Series contains an integrated Pulse Width Modulation (PWM) controller and a SenseFET, and is specifically designed for quasi-resonant off-line Switch Mode Power Supplies (SMPS) with minimal external components. The PWM controller includes an integrated fixed frequency oscillator, under voltage lockout, leading edge blanking (LEB), optimized gate driver, internal soft start,temperature-compensated precise current sources for a loop compensation , and self protection circuitry. Compared with a discrete MOSFET and PWM controller solution, the FSCQ-Series can reduce total cost, component count, size , and weight,while simultaneously increasing efficiency, productivity, and system reliability. These devices provide a basic platform that is well suited for cost-effective designs of quasi-resonant switching flyback converters.Table 1. Maximum Output PowerNotes:1. Maximum practical continuous power in an open framedesign at 50°C ambient.2. 230 VAC or 100/115 VAC with doubler.3. The junction t emperature can limit the maximum outputpower.Typical CircuitOUTPUT POWER TABLE (3)PRODUCT 230VAC ±15%(2)85-265VAC Open Frame (1)Open Frame (1)FSCQ0565RT 70W 60 W FSCQ0765RT 100 W 85 W FSCQ0965RT 130 W 110 W FSCQ1265RT 170 W 140 W FSCQ1465RT 190 W 160 W FSCQ1565RT 210 W 170 W FSCQ1565RP250 W210 WFSCQ-SeriesFSCQ0565RT / FSCQ0765RT / FSCQ0965RT / FSCQ1265RT FSCQ1465RT / FSCQ1565RT / FSCQ1565RPGreen Mode Fairchild Power Switch (FPS TM )FSCQ-SERIESInternal Block DiagramFigure 2.Functional Block Diagram of FSCQ-Series 2FSCQ-SERIES3Pin DefinitionsPin ConfigurationFigure 3.Pin Configuration (Top View)Pin NumberPin Name Pin Function Description1Drain High voltage power SenseFET drain connection. 2GND This pin is the control ground and the SenseFET source.3VccThis pin is the positive supply input. This pin provides internal operating current for both start-up and steady-state operation.4VfbThis pin is internally connected to the inverting input of the PWM comparator.The collector of an opto-coupler is typically tied to this pin. For stable operation, a capacitor should be placed between this pin and GND. If the voltage of this pin reaches 7.5V, the over load protection triggers , which results in the FPS shutting down.5SyncThis pin is internally connected to the sync detect comparator for quasi-resonant switching. In normal quasi-resonant operation, the threshold of the sync comparator is 4.6V/2.6V. Whereas, the sync threshold is changed to3.0V/1.8V in an extended quasi-resonant operation.FSCQ-SERIES4Absolute Maximum Ratings(Ta=25°C, unless otherwise specified)Parameter Symbol Value Unit Drain Pin Voltage V DS 650V Supply VoltageV CC 20V Analog Input Voltage RangeV sync -0.3 to 13V V V FB-0.3 to V CCVDrain Current Pulsed (1)I DMFSCQ0565RT 11.2AFSCQ0765RT 15.2FSCQ0965RT16.4FSCQ1265RT 21.2FSCQ1465RT 22FSCQ1565RT 26.4FSCQ1565RP 33.2Continuous Drain Current(Tc=25°C) (Tc : Case Back Surface Temperature)I DFSCQ0565RT 2.8 A (rms)FSCQ0765RT3.8FSCQ0965RT4.1FSCQ1265RT5.3FSCQ1465RT 5.5FSCQ1565RT6.6FSCQ1565RP 8.3Continuous Drain Current * (T DL =25°C)(T DL :Drain Lead Temperature)I D *FSCQ0565RT 5 A (rms)FSCQ0765RT 7FSCQ0965RT7.6FSCQ1265RT 11FSCQ1465RT 12FSCQ1565RT 13.3FSCQ1565RP 15Continuous Drain Current (T C =100°C)I DFSCQ0565RT 1.7 A (rms)FSCQ0765RT 2.4FSCQ0965RT2.6FSCQ1265RT3.4FSCQ1465RT 3.5FSCQ1565RT4.4FSCQ1565RP5.5Single-Pulsed Avalanche Energy (2)E ASFSCQ0565RT 400mJFSCQ0765RT 570FSCQ0965RT630FSCQ1265RT 950FSCQ1465RT 1000FSCQ1565RT 1050FSCQ1565RP1050FSCQ-SERIES5Notes:1. Repetitive rating: Pulse width limited by maximum junction temperature2. L = 15mH, starting T j = 25°C, These parameters, although guaranteed at the design, are not tested in mass production.Thermal Impedance(Ta=25°C unless otherwise specified)Total Power Dissipation(Tc=25°C with Infinite Heat Sink)P DFSCQ0565RT 38WFSCQ0765RT45FSCQ0965RT49FSCQ1265RT 50FSCQ1465RT 60FSCQ1565RT 75FSCQ1565RP98Operating Junction Temperature T J +150°C Operating Ambient Temperature T A -25 to +85°C Storage Temperature Range T STG-55 to +150°C ESD Capability, HBM Model (All pins except Vfb)- 2.0(GND-Vfb=1.7kV)kV ESD Capability, Machine Model (All pins except Vfb)-300(GND-Vfb=170V)V ParameterSymbolValue UnitJunction to Case Thermal ImpedanceθJCFSCQ0565RT 3.29°C/WFSCQ0765RT 2.60FSCQ0965RT2.55FSCQ1265RT 2.50FSCQ1465RT 2.10FSCQ1565RT 2.00FSCQ1565RP1.28FSCQ-SERIES6Electrical Characteristics (SenseFET Part)(Ta=25°C unless otherwise specified)ParameterSymbol Condition Min.Typ.Max.Unit Drain-Source Breakdown Voltage BV DSS V GS = 0V, I D = 250μA 650--V Zero Gate Voltage Drain CurrentI DSSV DS = 650V,V GS = 0V --250μADrain-Source ON-State ResistanceR DS(ON)FSCQ0565RT V GS = 10V, I D = 1A - 1.76 2.2ΩFSCQ0765RTV GS = 10V, I D = 1A - 1.4 1.6ΩFSCQ0965RTV GS = 10V, I D = 1A - 1.0 1.2ΩFSCQ1265RT V GS = 10V, I D = 1A-0.750.9ΩFSCQ1465RT V GS = 10V, I D = 1A -0.70.8ΩFSCQ1565RTV GS = 10V, I D = 1A-0.530.7ΩFSCQ1565RP V GS = 10V, I D = 1A -0.530.7ΩInput Capacitance C ISSFSCQ0565RT V GS = 0V, V DS = 25V, f = 1MHz-1080-pFFSCQ0765RT -1415-FSCQ0965RT-1750-FSCQ1265RT -2400-FSCQ1465RT -2400-FSCQ1565RT -3050-FSCQ1565RP -3050-Output Capacitance C OSSFSCQ0565RT V GS = 0V, V DS = 25V,f = 1MHz-90-pFFSCQ0765RT -100-FSCQ0965RT-130-FSCQ1265RT-175-FSCQ1465RT -185-FSCQ1565RT -220-FSCQ1565RP-220-FSCQ-SERIES7Electrical Characteristics (Continued)(Ta=25°C unless otherwise specified)Note:1. These parameters, although guaranteed, are tested only in EDS (wafer test) process.2. These parameters, although guaranteed at the design, are not tested in mass production.ParameterSymbolConditionMin.Typ.Max.UnitCONTROL SECTION Switching FrequencyF OSC V FB = 5V, V CC = 18V 182022kHz Switching Frequency Variation (1)ΔF OSC -25°C ≤ Ta ≤ 85°C 0±5±10%Feedback Source Current I FB V FB = 0.8V, V CC = 18V 0.50.650.8mA Maximum Duty Cycle D MAX V FB = 5V, V CC = 18V 929598%Minimum Duty Cycle D MIN V FB = 0V, V CC = 18V -0-%UVLO Threshold Voltage V START V FB =1V 141516V V STOP V FB =1V8910V Soft Start Time (1)T SS-182022msBURST MODE SECTIONBurst Mode Enable Feedback Voltage V BEN -0.250.400.55V Burst Mode Feedback Source Current I BFB V FB = 0V60100140uA Burst Mode Switching Time T BS V FB = 0.9V, Duty =50% 1.2 1.4 1.6ms Burst Mode Hold Time T BHV FB = 0.9V -> 0V1.21.41.6msPROTECTION SECTION Shutdown Feedback Voltage V SD V CC = 18V7.07.58.0V Shutdown Delay Current I DELAY V FB = 5V, V CC = 18V 456μA Over Voltage Protection V OVP V FB = 3V 111213V Over Current Latch Voltage (1)V OCL V CC = 18V0.9 1.0 1.1V Thermal Shutdown Temp (2)T SD-140--°CFSCQ-SERIES8Electrical Characteristics (Continued)(Ta=25°C unless otherwise specified)Note:1. This parameter is the current flowing in the control IC.2. These parameters indicate inductor current.3. These parameters, although guaranteed, are tested only in EDS (wafer test) process.Parameter Symbol Condition Min.Typ.Max.Unit Sync SECTIONSync Threshold in Normal QR (H)V SH1V CC = 18V, V FB = 5V4.2 4.65.0V Sync Threshold in Normal QR (L)V SL1 2.3 2.6 2.9V Sync Threshold in Extended QR (H)V SH2 2.7 3.0 3.3V Sync Threshold in Extended QR (L)V SL2 1.6 1.8 2.0V Extended QR Enable Frequency F SYH -90-kHz Extended QR Disable Frequency F SYL-45-kHzTOTAL DEVICE SECTION Operating Supply Current (1)- In Normal Operation I OPFSCQ0565RT V FB = 5V-46mAFSCQ0765RT -46FSCQ0965RT-68FSCQ1265RT -68FSCQ1465RT -79FSCQ1565RT -79FSCQ1565RP-79- In Burst Mode (Non-switching)I OB V FB = GND -0.250.50mA Startup Current I START V CC = V START -0.1V -2550uA Sustain Latch Current (3)I SNV CC = V STOP -0.1V-50100uA CURRENT SENSE SECTIONMaximum Current Limit (2)I LIMFSCQ0565RT V CC = 18V, V FB = 5V3.08 3.5 3.92A FSCQ0765RT4.455.6FSCQ0965RT5.286.0 6.72FSCQ1265RT 6.1677.84FSCQ1465RT 7.048.08.96FSCQ1565RT 7.0488.96FSCQ1565RP 10.1211.512.88Burst Peak Current I BUR(pk)FSCQ0565RT V CC = 18V, V FB = Pulse 0.450.650.85A FSCQ0765RT 0.650.9 1.15FSCQ0965RT0.60.9 1.2FSCQ1265RT 0.81.2 1.6FSCQ1465RT 0.60.9 1.2FSCQ1565RT -1-FSCQ1565RP-1-FSCQ-SERIES9Electrical CharacteristicsFSCQ-SERIES10Electrical CharacteristicsElectrical CharacteristicsElectrical CharacteristicsFunctional Description1. Startup: Figure 4 shows the typical startup circuit and the transformer auxiliary winding for the FSCQ-Series. Before the FSCQ-Series begins switching, it consumes only startup current (typically 25uA).T he current supplied from the AC line charges the external capacitor (C a1) that is connected to the Vcc pin. When Vcc reaches the start voltage of 15V (V START), the FSCQ-Series begins switching, and its current consumption increases to I OP. Then, the FSCQ-Series continues its normal switching operation and the power required for the FSCQ-Series is supplied from the transformer auxiliary winding, unless Vcc drops below the stop voltage of 9V (V STOP). To guarantee the stable operation of the control IC, Vcc has under voltage lockout (UVLO) with 6V hysteresis. Figure 5 shows the relationship between the operating supply current of the FSCQ-Series and the supply voltage (Vcc).Figure 4.Startup circuitFigure 5.Relationship Between Operating Supply Currentand Vcc Voltage The minimum average of the current supplied from the AC is given bywhere V ac min is the minimum input voltage, V start is the FSCQ-Series start voltage (15V), and R str is the startup resistor. The startup resistor should be chosen so that I sup avg is larger than the maximum startup current (50uA).Once the resistor value is determined, the maximum loss in the startup resistor is obtained aswhere V ac max is the maximum input voltage. The startup resistor should have properly-rated dissipation wattage.2. Synchronization: The FSCQ-Series employs a quasi-resonant switching technique to minimize the switching noise and loss. In this technique, a capacitor (Cr) is added between the MOSFET drain and the source as shown in Figure 6. The basic waveforms of the quasi-resonant converter are shown in Figure 7. The external capacitor lowers the rising slope of the drain voltage to reduce the EMI caused when the MOSFET turns off. To minimize the MOSFET’s switching loss, the MOSFET should be turned on when the drain voltage reaches its minimum value as shown in Figure 7.Figure 6.Synchronization CircuitI sup avg2V ac min⋅π-----------------------------V start2--------------–⎝⎠⎜⎟⎛⎞1R str---------⋅=Loss1R str---------V ac max()2V start2+2--------------------------------------------------22V start V ac max⋅⋅π-----------------------------------------------------–⎝⎠⎜⎟⎛⎞⋅=Figure 7.Quasi-resonant Operation WaveformsThe minimum drain voltage is indirectly detected by monitoring the Vcc winding voltage as shown in Figure 6and 8. Choose voltage dividers, R SY1 and R SY2, so that the peak voltage of the sync signal (V sypk ) is lower than the OVP voltage (12V) to avoid triggering OVP in normal operation. It is typical to set V sypk to be lower than OVP voltage by 3-4 V . T o detect the optimum time to turn on MOSFET, the sync capacitor (C SY ) should be determined so that T R is the same with T Q as shown in Figure 8. The T R and T Q are given as, respectivelywhere L m is the primary side inductance of the transformer,and N s and N a are the number of turns for the output winding and Vcc winding, respectively , V Fo and V Fa are the diode forward voltage drops of the output winding and Vcc winding, respectively, and C eo is the sum of the output capacitance of the MOSFET and the external capacitor, Cr.Figure 8.Normal Quasi-Resonant Operation WaveformsFigure 9.Extended Quasi-Resonant OperationIn general, the QRC has a limitation in a wide load range application, since the switching frequency increases as the output load decreases, resulting in a severe switching loss in the light load condition. To overcome this limitation, the FSCQ-Series employs an extended quasi-resonant switching operation. Figure 9 shows the mode change between normal and extended quasi-resonant operations. In the normal quasi-resonant operation, the FSCQ-Series enters into the extended quasi-resonant operation when the switching frequency exceeds 90kHz as the load reduces . To reduce the switching frequency, the MOSFET is turned on when the drain voltage reaches the second minimum level, as shown in Figure 10.T RR SY2C SY V co2.6--------R SY2R SY1R SY2+----------------------------------⋅⎝⎠⎛⎞ln ⋅⋅=T Q πL m C eo⋅⋅=V co N a V o V FO +()⋅N s----------------------------------------V Fa–=Once the FSCQ-Series enters into the extended quasi-resonant operation, the first sync signal is ignored. After the first sync signal is applied, the sync threshold levels are changed from 4.6V and 2.6V to 3V and 1.8V, respectively, and the MOSFET turn-on time is synchronized to the second sync signal. The FSCQ-Series returns to its normal quasi-resonant operation when the switching frequency reaches 45kHz as the load increases.Figure 10.Extended Quasi-Resonant Operation Wave-forms3. Feedback Control: The FSCQ-Series employs current mode control, as shown in Figure 11. An opto-coupler (such as Fairchild’s H11A817A) and shunt regulator (such as Fairchild’s KA431) are typically used to implement the feedback network. Comparing the feedback voltage with the voltage across the Rsense resistor plus an offset voltage makes it possible to control the switching duty cycle. When the reference pin voltage of the KA431 exceeds the internal reference voltage of 2.5V, the H11A817A LED current increases, pulling down the feedback voltage and reducing the duty cycle. This event typically happens when the input voltage is increased or the output load is decreased.3.1 Pulse-by-P ulse Current Limit: Because current mode control is employed, the peak current through the SenseFET is limited by the inverting input of the PWM comparator (Vfb*) as shown in Figure 11. The feedback current (I FB) and internal resistors are designed so that the maximum cathode voltage of diode D2 is about 2.8V, which occurs when all I FB flows through the internal resistors. Since D1 is blocked when the feedback voltage (Vfb) exceeds 2.8V, the maximum voltage of the cathode of D2 is clamped at this voltage, thus clamping Vfb*. Therefore, the peak value of the current through the SenseFET is limited.3.2 Leading Edge Blanking (LEB) : At the instant the internal Sense FET is turned on, there is usually a high current spike through the Sense FET, caused by the external resonant capacitor across the MOSFET and secondary-side rectifier reverse recovery. Excessive voltage across the R sense resistor can lead to incorrect feedback operation in the current mode PWM control. To counter this effect, the FSCQ-Series employs a leading edge blanking (LEB) circuit. This circuit inhibits the PWM comparator for a short time (T LEB) after the Sense FET is turned on.Figure 11.Pulse Width Modulation (PWM) Circuit 4. Protection Circuits: The FSCQ-Series has several self-protective functions such as over load protection (OLP), abnormal over current protection (AOCP), over voltage protection (OVP), and thermal shutdown (TSD). OLP and OVP are auto-restart mode protection s, while TSD and AOCP are latch mode protection s. Because these protection circuits are fully integrated into the IC without external components, the reliability can be improved without increasing cost.-Auto-restart mode protection: Once the fault condition is detected, switching is terminated and the SenseFET remains off. This causes Vcc to fall. When Vcc falls to the under voltage lockout (UVLO) stop voltage of 9V, the protection is reset and the FSCQ-Series consumes only startup current (25uA). Then, the Vcc capacitor is charged up, since the current supplied through the startup resistor is larger than the current that the FPS consumes. When Vcc reaches the start voltage of 15V, the FSCQ-Series resumes its normal operation. If the fault condition is not removed, the SenseFET remains off and Vcc drops to stop voltage again. In this manner, the auto-restart can alternately enable and disable the switching of the power SenseFET until the fault condition is eliminated (see Figure 12).-Latch mode protection: Once this protection is triggered, switching is terminated and the Sense FET remains off until the AC power line is un-plugged. Then, Vcc continues charging and discharging between 9V and 15V. The latch is reset only when Vcc is discharged to 6V by un-plugging theAC power line.Figure 12.Auto Restart Mode Protection4.1 Over Load Protection (OLP): Overload is defined as the load current exceeding its normal level due to an unexpected abnormal event. In this situation, the protection circuit should trigger to protect the SMPS. However, even when the SMPS is in the normal operation, the over load protection circuit can be triggered during the load transition. To avoid this undesired operation, the over load protection circuit is designed to trigger after a specified time to determine whether it is a transient situation or an overload situation. Because of the pulse-by-pulse current limit capability, the maximum peak current through the SenseFET is limited, and therefore the maximum input power is restricted with a given input voltage. If the output consumes more than this maximum power, the output voltage (V o) decreases below the set voltage. This reduces the current through the opto-coupler LED, which also reduces the opto-coupler transistor current, thus increasing the feedback voltage (Vfb). If Vfb exceeds 2.8V, D1 is blocked, and the 5uA current source starts to charge C B slowly up to Vcc. In this condition, Vfb continues increasing until it reaches 7.5V, then the switching operation is terminated as shown in Figure 13. The delay time for shutdown is the time required to charge C B from 2.8V to 7.5V with 5uA. In general, a 20 ~ 50 ms delay time is typical for most applications. OLP is implemented in auto restart mode.Figure 13.Over Load Protection4.2 Abnormal Over Current Protection (AOCP): When the secondary rectifier diodes or the transformer pins are shorted, a steep current with extremely high di/dt can flow through the SenseFET during the LEB time. Even though the FSCQ-Series has OLP (Over Load Protection), it is not enough to protect the FSCQ-Series in that abnormal case, since severe current stress will be imposed on the SenseFET until the OLP triggers. The FSCQ-Series has an internal AOCP (Abnormal Over Current Protection) circuit as shown in Figure 14. When the gate turn-on signal is applied to the power SenseFET, the AOCP block is enabled and monitors the current through the sensing resistor. The voltage across the resistor is then compared with a preset AOCP level. If the sensing resistor voltage is greater than the AOCP level, the set signal is applied to the latch, resulting in the shutdown of SMPS. This protection is implemented in the latch mode.Figure 14.AOCP Block4.3 Over Voltage Protection (OVP) : If the secondary side feedback circuit malfunctions or a solder defect causes an open in the feedback path, the current through the opto-coupler transistor becomes almost zero. Then, Vfb climbs up in a similar manner to the over load situation, forcing thepreset maximum current to be supplied to the SMPS until the over load protection triggers. Because more energy than required is provided to the output, the output voltage may exceed the rated voltage before the over load protection triggers, resulting in the breakdown of the devices in the secondary side. In order to prevent this situation, an over voltage protection (OVP) circuit is employed. In general, the peak voltage of the sync signal is proportional to the output voltage and the FSCQ-Series uses a sync signal instead of directly monitoring the output voltage. If the sync signal exceeds 12V, an OVP is triggered resulting in a shutdown of SMPS. In order to avoid undesired triggering of OVP during normal operation, the peak voltage of the sync signal should be designed to be below 12V. This protection is implemented in the auto restart mode.4.4 Thermal Shutdown (TSD) : The SenseFET and the control IC are built in one package. This makes it easy for the control IC to detect abnormal over temperature of the SenseFET. When the temperature exceeds approximately 150°C, the thermal shutdown triggers. This protection is implemented in the latch mode.5. Soft Start : The FSCQ-Series has an internal soft-start circuit that increases PWM comparator’s inverting input voltage together with the SenseFET current slowly after it starts up. The typical soft start time is 20msec. The pulse width to the power switching device is progressively increased to establish the correct working conditions for transformers, inductors, and capacitors. Increasing the pulse width to the power switching device also helps prevent transformer saturation and reduces the stress on the secondary diode during startup. For a fast build up of the output voltage, an offset is introduced in the soft-start reference current.6. Burst Operation : In order to minimize the power consumption in the standby mode, the FSCQ-Series employs burst operation. Once FSCQ-Series enters into the burst mode, FSCQ-Series allows all output voltages and effective switching frequency to be reduced. Figure 15 shows the typical feedback circuit for C-TV applications. In normal operation, the picture on signal is applied and the transistor Q1 is turned on, which de-couples R3, D z and D1 from the feedback network. Therefore, only V o1 is regulated by the feedback circuit in normal operation and determined by R1 and R2 as In the standby mode, the picture ON signal is disabled and the transistor Q1 is turned off, which couples R3, Dz, and D1 to the reference pin of KA431. Then, V o2 is determined by the zener diode breakdown voltage. Assuming that the forward voltage drop of D1 is 0.7V, V o2 in standby mode is approximately given byFigure 15.Typical Feedback Circuit to Drop Output Volt-age in Standby ModeFigure 17 shows the burst mode operation waveforms. When the picture ON signal is disabled, Q1 is turned off and R3 and Dz are connected to the reference pin of KA431 through D1. Before V o2 drops to V o2stby, the voltage on the reference pin of KA431 is higher than 2.5V, which increases the current through the opto LED. This pulls down the feedback voltage (V FB) of FSCQ-Series and forces FSCQ-Series to stop switching. If the switching is disabled longer than 1.4ms, FSCQ-Series enters into burst operation and the operating current is reduced from I OP to 0.25mA (I OB). Since there is no switching, V o2 decreases until it reaches V o2stby. As V o2 reaches V o2stby, the current through the opto LED decreases allowing the feedback voltage to rise. When the feedback voltage reaches 0.4V, FSCQ-Series resumes switching with a predetermined peak drain current of 0.9A. After burst switching for 1.4ms, FSCQ-Series stops switching and checks the feedback voltage. If the feedback voltage is below 0.4V, FSCQ-Series stops switching until the feedback voltage increases to 0.4V. If the feedback voltage is above 0.4V, FSCQ-Series goes back to the normal operation. The output voltage drop circuit can be implemented alternatively as shown in Figure 16. In the circuit of Figure 16, the FSCQ-Series goes into burst mode, when picture off signal is applied to Q1. Then, V o2 is determined by the zener diode breakdown voltage. Assuming that the forwardV o1norm 2.5R1R2+R2--------------------⎝⎠⎛⎞⋅=V o2stby V Z0.7 2.5++=voltage drop of opto LED is 1V , the approcimate value of V o2 in standby mode is given byFigure 16.Feedback Circuit to Drop Output Voltage inStandby ModeV o2stbyV Z 1+=Figure 17. Burst Operation WaveformsFSCQ0565RT Typical Application CircuitFeatures•High E fficiency (>83% at 90Vac I nput)•Wider L oad R ange through the E xtended Q uasi-R esonant O peration •Low Standby Mode Power Consumption (<1W)•Low Component Count•Enhanced System Reliability Through V arious Protection Functions •Internal Soft-Start (20ms)Key Design Notes•24V output is designed to drop to around 8V in standby mode1. SchematicApplicationOutput PowerInput Voltage Output Voltage (Max Current)C-TV59WUniversal Input (90-270Vac)12V (0.5A)18V (0.3A)125V (0.3A)24V (0.4A)2. Transformer Schematic Diagram3.Winding Specification4.Electrical Characteristics5. Core & Bobbin Core : EER3540Bobbin : EER3540Ae : 107 mm 2No Pin (s →f)Wire Turns Winding Method N p1 1 - 30.5φ × 132Center Winding N 125V/216 - 150.5φ × 132Center Winding N 24V 18 - 170.4φ × 213Center Winding N 12V 12 - 130.5φ × 27Center Winding N p2 3 - 40.5φ × 132Center Winding N 125V/215 - 140.5φ × 132Center Winding N 18V 11 - 100.4φ × 210Center Winding Na7 - 60.3φ × 120Center WindingPinSpecification Remarks Inductance1 - 3740uH ± 5%1kHz, 1V Leakage Inductance1 - 310uH Max2ndall short6.Demo Circuit Part ListPart Value Note Part Value NoteFuse C210470pF / 1kV Ceramic Capacitor FUSE250V / 2A C301 2.2nF / 1kV AC Ceramic Capacitor NTC InductorRT1015D-9BEAD101BEADResistor BEAD2015uH3A R101100kΩ0.25 W DiodeR102150kΩ 0.25 W D1011N49371A, 600V R103 5.1Ω0.25 W D1021N49371A, 600V R104 1.5kΩ0.25 W D1031N41480.15A, 50V R105470Ω0.25 W D104ShortR106 1.5kΩ 1 W D105OpenR107Open ZD1011N474618V, 1W R2011kΩ0.25 W ZD102OpenR2021kΩ0.25 W ZD2011N5231 5.1V, 0.5W R20339kΩ0.25 W D2011N41480.15A, 50V R204 4.7kΩ0.25 W, 1%D202EGP20J2A, 600V R205220kΩ0.25 W, 1%D203EGP20D2A, 200V R206 5.1kΩ0.25 W D204EGP20D2A, 200V R207 5.1kΩ0.25 W D205EGP20D2A, 200V R2081kΩ0.25 WVR20130kΩBridge DiodeCapacitor BD101GSIB6606A, 600V C101330n/275VAC Box Capacitor Line FilterC102220uF / 400V Electrolytic LF10114mH C10310uF / 50V Electrolytic TransformerC10410uF / 50V Electrolytic T101EER3540C105 3.9nF / 50V Film Capacitor SwitchC10647nF / 50V Film Capacitor SW201ON/OFF For MCU Signal C107680pF / 1kV Film Capacitor ICC108Open IC101FSCQ0565RT TO-220F-5L C201100uF / 160V Electrolytic OPT101FOD817AC20247uF / 160V Electrolytic Q201KA431LZ TO-92 C2031000uF / 35V Electrolytic Q202KSC945C2041000uF / 35V ElectrolyticC2051000uF / 35V ElectrolyticC20622nF / 50V Film CapacitorC207470pF / 1kV Ceramic CapacitorC208470pF / 1kV Ceramic CapacitorC209470pF / 1kV Ceramic Capacitor。
液晶电源管理芯片代换大全1200AP40 1200AP60、1203P60200D6、203D6 DAP8A 可互代203D6/1203P6 DAP8A2S0680 2S08803S0680 3S08805S0765 DP104、DP7048S0765C DP704加24V的稳压二极管ACT4060 ZA3020LV/MP1410/MP9141ACT4065 ZA3020/MP1580ACT4070 ZA3030/MP1583/MP1591MP1593/MP1430ACT6311 LT1937ACT6906 LTC3406/AT1366/MP2104AMC2576 LM2576AMC2596 LM2596AMC3100 LTC3406/AT1366/MP2104AMC34063A AMC34063AMC7660 AJC1564AP8012 VIPer12AAP8022 VIPer22ADAP02 可用SG5841 /SG6841代换DAP02ALSZ SG6841DAP02ALSZ SG6841DAP7A、DP8A 203D6、1203P6DH321、DL321 Q100、DM0265RDM0465R DM/CM0565RDM0465R/DM0565R 用cm0565r代换(取掉4脚的稳压二极管)DP104 5S0765DP704 5S0765DP706 5S0765DP804 DP904FAN7601 LAF0001LD7552 可用SG6841代(改4脚电阻)LD7575PS 203D6改1脚100K电阻为24KOB2268CP OB2269CPOB2268CP SG6841改4脚100K电阻为20-47KOCP1451 TL1451/BA9741/SP9741/AP200OCP2150 LTC3406/AT1366/MP2104OCP2160 LTC3407坂面精通家电维修中心电话0598-OCP2576 LM2576OCP3601 MB3800OCP5001 TL5001OMC2596 LM2596/AP1501PT1301 RJ9266PT4101 AJC1648/MP3202PT4102 LT1937/AJC1896/AP1522/RJ9271/MP1540SG5841SZ SG6841DZ/SG6841DSM9621 RJ9621/AJC1642SP1937 LT1937/AJC1896/AP1522/RJ9271/MP1540STR-G5643D STR-G5653D、STR-G8653DTEA1507 TEA1533TEA1530 TEA1532对应引脚功能接入THX202H TFC719THX203H TFC718STOP246Y TOP247YVA7910 MAX1674/75 L6920 AJC1610VIPer12A VIPer22A[audio01]ICE2A165(1A/650V.31W);ICE2A265(2A/650V.52W);ICE2B0565(0.5A/650V.23W):ICE2B165(1A/650V.31W);ICE2B265(2A/650V.52W);ICE2A180(1A/800V.29W);ICE2A280(2A/800.50W).KA5H0365R, KA5M0365R, KA5L0365R, KA5M0365RN# u) t! u1 W1 B) R, PKA5L0365RN, KA5H0380R, KA5M0380R, KA5L0380R1、KA5Q1265RF/RT(大小两种体积)、KA5Q0765、FSCQ1265RT、KACQ1265RF、FSCQ0765RT、FSCQ1565Q这是一类的,这些型号的引脚功能全都一样,只是输出功率不一样。
长虹电视超级芯片与高频头代换大全CH—16机芯微处理器的代换1.CH05T1602、CH05T1604、CH05T1607三者间可以相互直接代换,代换后若机器出现TV无伴音,则将总线数据中OP2项置于64。
2.CH05T1609、CH05T1623,1631三者间可以相互代换,但代换时,应注意:使用CH05T1609芯片时,主板上C171容量应为1200PF;使用CH05T1623芯片时,主板上C171容量应为3900PF。
3.CH05T1609、CH05T1623与CH05T1602、CH05T1604、CH05T1607不能互换,因为两者间软件截然不同,前者为飞利浦软件,后者为四川长虹统一软件.4.CH05T1601与CH05T1603可以相互代换,但要注意以下几点:①CH05T1601应对应TDA9383“N2H”版本(IC表面最下面中间有“N2H”字样),同时相关元件位号、型号对应如下:R171-0。
166W/2。
7KΩ;C171-63V/4700PF;C171A-63V/820PF;②CH05T1603对应TDA9383“N2I"版本(IC表面最下面中间有“N2H”字样),同时相关元件位号、型号对应如下:R171—0。
166W/3.9K Ω;C171-63V/1200PF;C171A—63V/330PF。
③CH05T1601与CH05T1603互换,需更换外围元件;④用CH05T1601或CH05T1603代换TDA9383PS时,应注意TDA9383PS的版本及与CH05T1601、CH05T1603的对应关系,并更改相应的外围元件;5.CH05T1606与CH05T1608可以互换,但OSD显示风格及EEPROM数据不同,代换时需征得用户同意。
6。
CH05T1619可以代换CH05T1608,但EEPROM数据不同,总线数据中增加一调节项“PWL”,该数据设置为“14",CH05T1619与CH05T1608OSD显示风格相同.7.CH05T1619可以代换CH05T1606,但EEPROM数据不同,总线数据中增加一调节项“PWL”,该数据设置为“14”,CH05T1619与CH05T1606OSD显示风格不同。
电源IC DL321代换:维修中九电源,我觉得以下配件必备:1:16V1000UF电容。
很多机器发现不开机,或电源输出低、开机正常,接75欧线反复启动、或收台少等疑难故障,换掉它,可以起到事功半倍的效果。
2:IN4007二极管。
3:TL431.4:光耦。
5:10UF|400V电容。
6:FR309二极管。
7:2.2欧功率电阻。
8:各种8脚电源IC。
或DVB万能电源板。
9:10D 471K压敏电阻。
(厂家太缺德,如在整流前加一个压敏电阻,可省去我们维修人员多少劳累和钱财呀!我发现,电源只要有压敏电阻,很少坏整流后的原件.)电源IC代换资料,如有差错,请斧正。
1:THX203=RM6203、1803、1203、TFC718S、JH82032:VIP22P=8022、T0165、sd4841p(两IC的3和4脚要对调)3:DH321=DL0165、Q100、DM0265R、4:TM0165暂时没有找到资料。
注意:它绝对不能与321、DL0165R直接代换。
(2:VIP22P=8022、T0165、SD4148P楼主及各位朋友请注意了,是SD4841不是SD4148,楼主型号也写错了,技术这活要认真对待才行。
VIP22和SD4841是不同的不能直接代换的,(不知楼主有否自己试过?这样会误人的),经过本人试验,SD4841用原装型号,较好,实在要换的话,经过本人成功代换,用VIP22A改变脚接线,再换可行。
(具体是两IC的3和4脚要对调,否则烧IC),两IC 功能对比如下:SD4841:1,控制电路地;2,MOSFET接地;3,电源,4,反馈输入。
5,空;6-8,漏极。
VIPER22:1-2,源极接地;3,反馈输入。
4,电源;5-8,漏极。
不知道的话,不要误导人,好不好。
另外0165和VIP22那就更不能换了,请看我附上0165的资料:)(引用第19楼李章元于2011-06-06 11:37发表的:2:VIP22P=8022、T0165、SD4148P楼主及各位朋友请注意了,VIP22和SD4841是不同的不能直接代换的,(不知楼主有否自己试过?这样会误人的),经过本人试验,SD4841用原装型号,较好,实在要换的话,用VIP22A改变脚接线,再换。