数的整除概念及练习复习
- 格式:doc
- 大小:31.00 KB
- 文档页数:5
整除知识点总结与练习一、整除的定义整除是指对于两个整数a和b,如果a能够被b整除,即a除以b的结果是一个整数,则称a能够被b整除,记作b|a。
其中a称为被除数,b称为除数,整数的除法结果称为商。
例如,6÷3=2,6除以3的结果是2,因此6能够被3整除,即3|6。
整除的定义表明了整除的两个基本特点:1. 整数a能够被整数b整除的定义是a÷b的结果是一个整数。
2. 整除的概念是具有传递性的,即如果a能够被b整除,b能够被c整除,则a能够被c整除。
二、整除的判定在计算整除时,通常需要用到整除的判定方法。
整除的判定方法主要有以下几种:1. 除法判定法:即直接计算被除数除以除数的结果是否为整数。
2. 因数判定法:利用被除数和除数的因数来判断整除关系。
3. 余数判定法:如果a能够被b整除,那么a÷b的余数为0。
4. 分解质因数判定法:将被除数和除数分解质因数,如果被除数分解后能够完全包含除数分解质因数的情况,那么a能够被b整除。
下面通过一些实例来说明整除的判定方法:例1:判断24能否被6整除?方法一:除法判定法,直接计算24÷6=4,结果为整数,因此24能够被6整除。
方法二:因数判定法,24的因数包括1、2、3、4、6、8、12,其中6是24的因数,因此24能够被6整除。
方法三:余数判定法,24÷6=4余0,余数为0,因此24能够被6整除。
方法四:分解质因数判定法,24=2³×3,6=2×3,24的分解质因数包含6的分解质因数,因此24能够被6整除。
综上所述,24能够被6整除。
例2:判断35能否被5整除?方法一:除法判定法,35÷5=7,结果为整数,因此35能够被5整除。
方法二:因数判定法,35的因数包括1、5、7、35,其中5是35的因数,因此35能够被5整除。
方法三:余数判定法,35÷5=7余0,余数为0,因此35能够被5整除。
5-2数的整除教学目标本讲是数论知识体系中的一个基石,整除知识点的特点介于“定性分析与定量计算之间”即本讲中的题型有定性分析层面的也有定量计算层面的,是很重要的一讲,也是竞赛常考的知识板块。
本讲力求实现的一个核心目标是让孩子熟悉和掌握常见数字的整除判定特性,在这个基础上对没有整除判定特性的数字可以将其转化为几个有整除判定特性的数字乘积形式来分析其整除性质。
另外一个难点是将数字的整除性上升到字母和代数式的整除性上,这个对于学生的代数思维是一个良好的训练也是一个不小的挑战。
知识点拨一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b和c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b 与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;例题精讲模块一、常见数的整除判定特征【例 1】已知道六位数20□279是13的倍数,求□中的数字是几?【巩固】六位数2008能被99整除,是多少?【巩固】六位数20□□08能被49整除,□□中的数是多少?【例 2】173□是个四位数字。
数的整除复习一.知识梳理1、整数:“零”既不是正整数,也不是负整数 2、整除:整数a 除以整数b ,如果除得的商正好是整数而没有余数,我们就说a 能被b 整除,或者说b 能整除a 。
3、因数和倍数:归纳:一个数的因数是有限的。
一个数的倍数的个数是无限的。
一个数的因数通常是成对出现的。
最小的因数是1,最大的因数是它本身。
最小的倍数是它本身,没有最大的倍数。
4、区别除尽和整除:除尽:最后结果是一个有限数;整除:最后结果是一个整数。
5、偶数与奇数如果一个整数能被2整除,称该整数为偶数。
如果一个整数不能被2整除,称该整数为奇数。
整数的分类⎩⎨⎧偶数奇数 整数正整数 零 负整数 自然数 条件: 除数、被除数都是整数 被除数除以除数,商是整数而且余数为零一个数的倍数是无限的,最小的倍数是它本身定义:整数a 能被整数b 整除,a 叫做b 的倍数,b 就叫做a 因数(也称为约数) 一个整数的因数的个数是有限的,最小的因数是1,最大的因数是它本身 因数倍数6、能被2、3、5整除的数的特征:7、素数、合数:我们把只含有因数1如果除了1分解素因数的方法:8、公因数与最大公因数如果两个整数只有公因数19、公倍数和最小公倍数:例题解析例1、填空题(1)有一个直角三角形,两条直角边是两个质数,长度和是18分米,这个三角形的面积是( )平方分米。
(2)一堆苹果,已知比50个多,比70个少,把它们可以平均分成两堆,也可以平均分成三堆,还可以平均分成五堆,这堆苹果有()个(3)六年级同学站队,每排5人多2人,每排6人多3人,每排7人则差2人,六年级学生人数不超过150人,那么他们应是( )人。
(4)某长途汽车站向北线每20分钟发一辆汽车,向南线每15分钟发一辆汽车,如果同时向两线发车,至少要经过( )分钟又同时发车。
巩固练习:(1)一盒铅笔可以平均分给2、3、5、6个小朋友,这盒铅笔最少有()人。
(2)一筐梨,按每份2个梨分多1个,每份3个多2个,每份5个多4个,筐里至少有()个梨。
整除的特征练习题整除是数学中的一个重要概念,它在我们的日常生活中也有着广泛的应用。
在数学中,整除是指一个数能够被另一个数整除,也就是说,被除数可以被除数整除,而没有余数。
在本文中,我将为大家提供一些有关整除的特征练习题,帮助大家更好地理解和掌握这一概念。
1. 练习题一:判断整除性给定两个整数a和b,判断a是否能够被b整除。
如果能够整除,则输出“a能够被b整除”,否则输出“a不能够被b整除”。
解答:要判断一个数a能否被另一个数b整除,我们可以使用取余运算符%,即a % b。
如果a % b的结果为0,那么a能够被b整除;否则,a不能够被b整除。
2. 练习题二:整除的性质给定一个整数n,判断n是否满足以下条件:n能够被2整除,同时也能够被3整除,但不能被5整除。
解答:要判断一个数n是否满足以上条件,我们可以使用逻辑运算符与(&&)和取余运算符%。
首先,我们判断n能否被2整除,即n % 2是否等于0;然后,我们判断n能否被3整除,即n % 3是否等于0;最后,我们判断n能否被5整除,即n % 5是否等于0。
如果n满足以上所有条件,则输出“n满足条件”;否则,输出“n不满足条件”。
3. 练习题三:整除的应用某班级有60名学生,他们参加了一个数学竞赛,最后的成绩按照整数排名。
现在,请你编写一个程序,能够输出前三名的学生的学号。
解答:假设每个学生的学号都是唯一的,且按照从小到大的顺序排列。
我们可以使用循环结构和条件判断来解决这个问题。
首先,我们定义一个计数器count,初始值为0;然后,我们使用一个循环,从第一个学生开始遍历到第60个学生。
在循环中,我们判断当前学生的学号是否能够被3整除,如果能够整除,则输出该学生的学号,并将计数器count加1。
当计数器count等于3时,终止循环。
4. 练习题四:整除的性质扩展给定一个整数n,判断n是否满足以下条件:n能够被7整除,同时也能够被11整除,且n除以13的余数为1。
除法运算的基本概念与练习除法是数学中的一种基本运算,用于计算一个数被另一个数相除的结果。
它在日常生活中的应用广泛,例如计算分数、求商、计算平均值等等。
本文将介绍除法的基本概念和相关练习。
一、除法的基本概念除法是数学四则运算中的一种,它与加法、减法和乘法一样重要。
除法运算可以简单地表示为“被除数 ÷除数 = 商”,其中“被除数”是要被除以的数,而“除数”是除数。
商是除法运算的结果,表示被除数被除数的次数。
除法的基本概念还包括以下几点:1. 除数不能为零:除数为零是没有意义的,因为任何数除以零都不存在唯一的结果。
所以在进行除法运算时,需要确保除数不为零。
2. 商可以是整数或小数:商可以是整数,这种情况下除法运算称为整除;商也可以是小数,这种情况下除法运算称为带余除法。
3. 除数和被除数可以是正数、负数或零:除法运算中,除数和被除数可以是正数、负数或零,结果的正负取决于除数和被除数之间的关系。
二、除法练习为了帮助读者更好地理解和掌握除法运算,下面提供一些练习题。
练习1:整除计算以下整数除法的商:1. 36 ÷ 6 =2. 63 ÷ 9 =3. 90 ÷ 5 =4. 120 ÷ 8 =练习2:带余除法计算以下带余除法的商和余数:1. 25 ÷ 4 = 商____ 余____2. 43 ÷ 7 = 商____ 余____3. 55 ÷ 6 = 商____ 余____4. 78 ÷ 9 = 商____ 余____练习3:混合运算计算以下混合运算的结果:1. 28 + 15 ÷ 5 =2. (60 - 32) ÷ 8 =3. 72 ÷ (4 + 2) =4. 14 × 2 ÷ 7 =以上练习题旨在巩固对除法运算的理解和应用,读者可以根据自己的需要进行练习,并核对答案。
综述:除法是数学中的一种基本运算,通过除法我们可以计算一个数被另一个数相除的结果。
数的整除练习题数的整除练习题数的整除是数学中的一项基本概念,也是我们日常生活中常常会遇到的问题。
无论是在学校的数学课堂上,还是在购物时计算折扣,整除都扮演着重要的角色。
本文将通过一些练习题来帮助读者加深对数的整除的理解和应用。
1. 请问下列哪个数能够整除12:8、5、3、2?解答:整除是指一个数可以被另一个数整除,即没有余数。
我们可以逐个尝试这些数与12相除,看是否有余数。
首先,8 ÷ 12 = 0余8,所以8不能整除12。
然后,5 ÷ 12 = 0余5,所以5也不能整除12。
接下来,3 ÷ 12 = 0余3,所以3也不能整除12。
最后,2 ÷ 12 = 0余2,所以2也不能整除12。
综上所述,以上四个数都不能整除12。
2. 某个数能够整除15和35,那么它能够整除多少?解答:我们可以找出15和35的公约数,即能够同时整除这两个数的数。
首先,列出15的因数:1、3、5、15。
然后,列出35的因数:1、5、7、35。
可以看到,15和35的公约数是1和5。
所以,某个数能够整除15和35的话,它一定能够整除1和5。
因此,它能够整除的数有1和5。
3. 请问下列哪个数能够整除24:12、8、6、4?解答:同样地,我们可以逐个尝试这些数与24相除。
首先,12 ÷ 24 = 0余12,所以12不能整除24。
然后,8 ÷ 24 = 0余8,所以8也不能整除24。
接下来,6 ÷ 24 = 0余6,所以6也不能整除24。
最后,4 ÷ 24 = 0余4,所以4也不能整除24。
综上所述,以上四个数都不能整除24。
4. 某个数能够整除18和27,那么它能够整除多少?解答:同样地,我们列出18和27的因数。
18的因数是1、2、3、6、9、18,27的因数是1、3、9、27。
可以看到,18和27的公约数是1、3和9。
所以,某个数能够整除18和27的话,它一定能够整除1、3和9。
数的整除整理复习数的整除是小学数学中的一个重要内容,同时也是许多其他数学学科的基础知识。
在学习这一知识点时,需要掌握如何判断一个数是否能够被另一个数整除,并学会运用相关的计算方法,以便在实际问题中进行运用。
一、基本概念1.1 什么是整除一个整数a能被另一个整数b整除,是指存在另一个整数x,使得a = b × x。
用数学符号表示为:b | a (读作b整除a),即b是a的因数(或因子),a是b的倍数。
例如,4 | 12,表示4是12的因数,12是4的倍数,即12能被4整除。
1.2 整数的因数和倍数一个整数可以被其他整数整除,这意味着这个整数可以被其他整数整除,这些整数就是这个整数的因数。
例如,正整数12的因数为1、2、3、4、6、12。
一个整数的倍数是指能够被这个整数整除的数。
例如,12的倍数有12、24、36,即任何正整数n × 12都是12的倍数。
1.3 两个以上整数的公共因数对于两个以上的整数,如果它们有一个共同的因子,那么这个因子称为它们的公共因数。
例如,20和30的公共因数是1、2、5、10。
如果两个数没有公共因数(除1以外),那么它们称为互质数。
二、整除的判定方法判定一个数是否能被另一个数整除,常用的方法有以下几种:2.1 因数分解法因式分解法是指将一个数分解为若干个质因数的乘积,然后将这个数的因子全部列出来,再判断这个数是否能够被给定的整数整除。
对于一个正整数n,若其能分解为若干个质因数的乘积,其表达式为n = p1^k1 × p2^k2 × ... × pn^kn,则它的所有因子为p1^i1 × p2^i2 × ... × pn^in,其中0 ≤ i1 ≤ k1, 0 ≤ i2 ≤k2, …, 0 ≤ in ≤ kn。
例如,判断72是否能被8整除,我们先将72分解为2^3 × 3^2,再列出72的所有因子为1、2、3、4、6、8、9、12、18、24、36、72,经过检查,发现8是72的一个因子,因此72能够被8整除。
高中的整除练习题及讲解在高中数学中,整除的概念是基础而重要的。
整除指的是一个整数除以另一个不是零的整数,得到的商是整数,而没有余数。
以下是一些练习题和相应的讲解,帮助学生更好地理解和掌握整除的概念。
练习题1:确定下列数是否可以被给定的数整除。
- 48是否可以被6整除?- 51是否可以被3整除?讲解:- 48 ÷ 6 = 8,商是整数,没有余数,所以48可以被6整除。
- 51 ÷ 3 = 17,商是整数,但余数为0,所以51可以被3整除。
练习题2:如果一个数可以被2整除,那么它一定是偶数。
请找出下列数中的偶数。
- 34, 57, 78, 91讲解:- 34 ÷ 2 = 17,商是整数,没有余数,所以34是偶数。
- 57 ÷ 2 = 28.5,商不是整数,所以57不是偶数。
- 78 ÷ 2 = 39,商是整数,没有余数,所以78是偶数。
- 91 ÷ 2 = 45.5,商不是整数,所以91不是偶数。
练习题3:找出下列数中可以被5整除的数。
- 15, 25, 35, 45讲解:- 15 ÷ 5 = 3,商是整数,没有余数,所以15可以被5整除。
- 25 ÷ 5 = 5,商是整数,没有余数,所以25可以被5整除。
- 35 ÷ 5 = 7,商是整数,没有余数,所以35可以被5整除。
- 45 ÷ 5 = 9,商是整数,没有余数,所以45可以被5整除。
练习题4:如果一个数的个位是0或5,那么它可以被5整除。
请验证下列数是否符合这个规则。
- 105, 205, 305讲解:- 105的个位是5,105 ÷ 5 = 21,商是整数,没有余数,所以105可以被5整除。
- 205的个位是5,205 ÷ 5 = 41,商是整数,没有余数,所以205可以被5整除。
- 305的个位是5,305 ÷ 5 = 61,商是整数,没有余数,所以305可以被5整除。
初中数学竞赛精品标准教程及练习01数的整除数的整除是初中数学竞赛中常见的考点之一,在解题过程中需要掌握一些基本的概念和操作方法。
本文将介绍数的整除的基本概念和性质,并附上一些练习题供大家练习。
一、整除的定义对于两个整数a和b,如果存在一个整数c,使得a=c*b,那么我们就说a能够被b整除,b是a的一个因数,同时也说b是a的一个除数,记作b,a。
例如,2能够被4整除,就表示4是2的一个因数。
二、整除性质1.若a能够被c整除,而c能够被b整除,则a能够被b整除。
2.若a能够被b整除,且b能够被c整除,则a能够被c整除。
3.0除以任何非零整数都为0。
4.任何整数除以1都为本身。
5.任何整数除以0是没有意义的,应避免这样的操作。
三、整除的判定方法1.因数的概念:如果a能够被b整除,那么a一定是b的倍数,b一定是a的因数。
2.除数的性质:如果一个数a的除数是b,那么b的倍数一定是a的倍数。
3.余数的性质:如果一个数a除以b的余数为0,那么a一定能够被b整除。
四、整除的应用整除的概念和性质在解决一些实际问题时经常用到。
例如,求一个数的因数或倍数,判断一个数是否是另一个数的因数等等。
在这些问题中,我们可以应用整除性质和判定方法,进行推理和计算。
五、练习题1.一个数能够同时被3和5整除,它最小是多少?2.一个两位数,可以被3整除,这个两位数的十位数字加上个位数字等于6,这个两位数最大是多少?3.一个数同时是4和5的倍数,它最大是多少?解答:1.因为一个数能够同时被3和5整除,那么这个数一定是3和5的公倍数,即这个数是3和5的最小公倍数。
最小公倍数是两个数的乘积除以它们的最大公因数。
由于3和5没有公因数,所以它们的最大公因数是1,最小公倍数是3*5=15、所以这个数最小是152.设这个两位数为10a+b,其中a为十位数字,b为个位数字。
根据题意,有10a+b可以被3整除,且a+b=6、根据整除的判定方法,可以得到10a+b的各个位数之和能够被3整除。
数的整除
1.整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b 整除,或者说b能整除a 。
2.a就叫做b的倍数,b就叫做a的因数。
倍数和因数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的因数。
3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。
4.一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
5.个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
6.个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
7.一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
8.一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
9.一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
10.一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
11.能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。
自然数按能否被2 整除的特征可分为奇数和偶数。
12.一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
13.一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。
14.1不是质数也不是合数,自然数除了1外,不是质数就是合数。
如果把自然
数按其因数的个数的不同分类,可分为质数、合数和1。
15.每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。
16把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如把28分解质因数
17.几个数公有的因数,叫做这几个数的公因数。
其中最大的一个,叫做这几个数的最大公因数,例如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。
其中,1、2、3、6是12和1 8的公因数,6是它们的最大公因数。
18.公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公因数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。
如果两个数是互质数,它们的最大公因数就是1。
19.几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……
3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。
一、填空题
1、24和8,()是()的约数,()是()的倍数。
2、在1、2、
3、9、2
4、41和51中,奇数是(),偶数是(),质数是(),合数是(),()是奇数但不是质数,()是偶数但不是合数。
3、一个数的最小倍数是12,这个数有()个约数。
4、21的所有约数是(),21的全部质因数有()
5、一个合数的质因数是10以内所有的质数,这个合数是()。
6、a=2×2×5 ,b=2×3×3,a、b两数的最大公约数是(),最小公倍数是()。
7、a与b是互质数,它们的最大公约数是(),它们的最小公倍数是()。
8、把171分解质因数是()。
二、判断(对的打“√”,错的打“×”)
1、互质的两个数没有公约数。
( )
2、所有的质数都是奇数。
()
3、质数可能是奇数也可能是偶数。
()
4、8能被0.4整除。
()
5、18既是18的约数,又是18的倍数。
( )
6、有公约数1的两个数,叫做互质数。
()
7、因为8和13的公约数只有1,所以8和13是互质数。
()
8、所有偶数的公约数是2。
()
三、选择(将正确答案的序号填在括号里)
1、把210分解质因数是()
(1)210=2×7×3×5×1
(2)210=2×5×21 (3)210=3×5×2×7
2、两个奇数的和()
(1)是奇数(2)是偶数(3)可能是奇数,也可能是偶数
3、如果a、b都是自然数,并且a÷b=4,那么数a和数b的最大公约数是()。
(1)4 (2)a (3)b
4、一个合数至少有()个约数。
(1)1 (2)2 (3)3
5、6是36和48的()
(1)约数(2)公约数(3)最大公约数
6、一个正方形的边长是一个奇数,这个正方形的周长一定是()
(1)质数(2)奇数(3)偶数
7、下面各数中能被3整除的数是()
(1)84 (2)8.4 (3)0.6
8、下列各数中,同时能被2、3和5整除的最小数是()
(1)100 (2)120 (3)300
9、8和5是()
(1)互质数(2)质数(3)质因数
10、已知a能整除23,那么a是()
(1)46 (2)23 (3)1或23
11、如果用a表示自然数,那么偶数可以表示为()
(1)a+2 (2)2a (3)a-1 (4)2a-1
12、一个能被9、12、15整除的最小数是()
(1)3 (2)90 (3)180
能力素质提高
1、甲、乙两数的最大公约数是3,最小公倍数是30,已知甲数是6,乙数是()。
2、一个数被6、7、8除都余1,这个数最小是()。
3、有9、7、2、1、0五个数字,用其中的四个数字,组成能同时被2、3、5整除的最小的四位数是()。
4、某公共汽车始发站,1路车每5分钟发车一次,2路车每10分钟发车一次,3路车每12分钟发车一次。
这三路汽车同时发车后,至少再经过()分钟又同时发车?
渗透拓展创新
5、五1班同学上体育课,排成3行少1人,排成4行多3人,排成5行少1人,排成6行多5人。
问上体育课的同学最少多少名?
6、小红在操场周围种树,开始时每隔3米种一棵,种到9棵后,发现树苗不够,于是决定重种,改为每隔4米一棵,这时重种时,不必再拔掉的树有多少棵?
7、智能趣题欣赏
一次数学竞赛,结果学生中1/7获得一等奖,1/3获得二等奖,1/2获得三等奖,其余获纪念奖。
已知参加这次竞赛的学生不满50人,问获纪念奖的有多少人?。