2014暑假平行四边形全章复习---经典之作
- 格式:doc
- 大小:96.50 KB
- 文档页数:2
般四边形.一.特殊平行四边形的定义.性质及判定2义:两组对边分别平行的四边形是平行四边応对称性:中心对称图形(对称中心:两条対角线的交点)位置关系: 对边平行平行四边形啖量关系: 角:对角相等, 对角线:互相平分对边相等邻角互补平行四边形菱形矩形平行四边形厂①两组对边分别平行的四边形是平行四边形(定义判定)边②两组对边分别相等的四边形是平行四边形③一组对边平行且相等的四边形是平行四边(强调:同一组对边)角:④两组对角分别相等的四边形是平行四边形对角线:⑤ 两条对角线互相平分的四边形是平行四边形定义:有一组邻边相等的平行四边形是菱形/対称性「中心对称图形(对称中心:两条对角线的交点)由对称图形(对称轴:两条对角线所在的直线)广立置关系:对边平行边L数量关系:四边相等角:对角相等,邻角互补对角线匡相垂直、平分每一条对角线平分一组对角〜L①一组邻边相等的平行四边形是菱形(定义判定)边J②四边相等的四边形是菱形L③对角线互相垂直的平行四边形是菱形对角线・J④对角线互相垂直且平分的四边形是菱形定义:有一个角是直角的平行四边形是矩形对称性中心对称图形(对称中心:两条对角线的交点)-轴对称图形 (对称轴:每组对边中点所在的直线) 厂位置关系:对边平行 边I 数量关系:对边相等角:四个角都是直角对角线:相等、平分(直角三角形斜边上的中线等于斜边的一半)L ①有一个角是直角的平行四边形是矩形(定义判定)角②三个角是直角的四边形是矩形 L ③对角线相等的平行四边形是矩形对角线④对角线相等且平分的四边形是矩形对称性屮心对称图形(对称屮心:两条对角线的交点)乜由对称图形(对称轴:对角线所在直线和每组对边屮点所在的直线) 厂位置关系:对边平行 边蠻量关系:四边相等 角:四个角都是直角 对角线:相等且垂直、平分① 有一组邻边相等,并且有一个角是直角的平行四边形是正方形(定义判定) ② 有一组邻边相等的矩形是正方形 ③ 有一个角是直角的菱形是正方形@对角线垂直的矩形是正方形 对角线⑤对角线相等的菱形是正方形、中点四边形1、 以一个四边形的四边屮点为顶点的图形称为中点四边形2、 特殊图形的中点四边形3、中点四边形的形状由原四边形的对角线数量与位置关系决定特殊四边形的性质和判定平行四边1 定义:有一组邻边相等,并且有一个角是直角的平行四边形是正方形班级 ______ 姓名________ 小组_______ 评价_______ 时间:2018年04月10 H复习目标:1、掌握平行四边形、矩形、菱形、正方形的概念;2、理解平行四边形、矩形、菱形、正方形之间的关系;3、会运用平行四边形、矩形、菱形、正方形的性质和判定解决计算与证明问题; 复习重点:运用平行四边形、矩形、菱形、正方形的性质和判定解决计算与证明问题;【一】直击中考(相信自己,我是最棒的,加油!)1、如图,在平行四边形ABCD中,对角线AC、BD相交于点0,且0A=0B o(1)求证:四边形ABCD是矩形;(2)若AD二4, ZAOD二60° ,求AB 的长.2、(2013云南21题7分)已知在△ ABC中,AB二AC二5, BC=6, AD是BC边上的中线,四边形ADBE 是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.B D3、(2016吉林18题5分)如图,菱形ABCD 的对角线AC, BD 相交于点0,且DE 〃AC, AE 〃 BD. (1) 若ZABC=60° , AB 二6,求菱形 ABCD 的面积。
《平行四边形》全章复习与巩固(基础)【学习目标】1.掌握平行四边形的性质定理和判定定理.2.掌握三角形的中位线定理.3.了解多边形的定义以及内角、外角、对角线等概念.掌握多边形的内角和与外角和公式.4.积累数学活动经验,发展推理能力.【知识网络】【要点梳理】要点一、平行四边形的定义平行四边形:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“口ABCD”,读作“平行四边形ABCD”.要点诠释:平行四边形是中心对称图形,两条对角线的交点是它的对称中心.要点二、平行四边形的性质定理平行四边形的对角相等;平行四边形的对边相等;平行四边形的对角线互相平分;要点诠释:(1)平行四边形的性质定理中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系. (2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.要点三、平行四边形的判定定理1.两组对边分别平行的四边形是平行四边形;2.一组对边平行且相等的四边形是平行四边形;3.两组对边分别相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据.要点四、平行线间的距离1.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值.2.平行线性质定理及其推论夹在两条平行线间的平行线段相等.平行线性质定理的推论:夹在两条平行线间的垂线段相等.要点五、三角形的中位线三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于第三边,并且等于第三边的一半.要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个小三角形的周长为原三角形周长的12,每个小三角形的面积为原三角形面积的14.(3)三角形的中位线不同于三角形的中线.要点六、多边形内角和、外角和n边形的内角和为(n-2)·180°(n≥3).要点诠释:(1)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于(2)180nn-⋅°;多边形的外角和为360°.n边形的外角和恒等于360°,它与边数的多少无关. 【典型例题】类型一、平行四边形的性质与判定1、如图,在口ABCD中,点E在AD上,连接BE,DF∥BE交BC于点F,AF与BE交与点M,CE与DF交于点N.求证:四边形MFNE是平行四边形.【答案与解析】证明:∵四边形ABCD是平行四边形.∴AD=BC,AD∥BC(平行四边形的对边相等且平行)又∵DF∥BE(已知)∴四边形BEDF是平行四边形(两组对边分别平行的四边形是平行四边形)∴DE=BF(平行四边形的对边相等)∴AD-DE=BC-BF,即AE=CF又∵AE∥CF∴四边形AFCE是平行四边形(一组对边平行且相等的四边形是平行四边形)∴AF∥CE∴四边形MFNE是平行四边形(两组对边分别平行的四边形是平行四边形)【总结升华】要证明一个四边形是平行四边形首先要根据已知条件选择一种合理的判定方法,如本题中已有一边平行,只须说明另一边也平行即可,故选用“两组对边分别平行的四边形是平行四边形”来证明.举一反三:【变式】如图,等腰△ABC中,D是BC边上的一点,DE∥AC,DF•∥AB,•通过观察分析线段DE,DF,AB三者之间有什么关系,试说明你的结论.【答案】AB=DE+DF,理由:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠C=∠EDB∴DF=AE.∵等腰△ABC,∴∠B=∠C,∴∠B=∠EDB,∴DE=BE,∴AB=AE+BE=DF+DE2、完成下列各题:(1)如图1,四边形ABCD中,AB∥CD,∠B=∠D,BC=6,AB=3,求四边形ABCD的周长.(2)已知:如图2,在△ABC中,D为边BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC.求证:AB=AC.【思路点拨】(1)首先判定四边形ABCD是平行四边形,再根据平行四边形的性质和周长公式计算即可;(2)由已知条件证明△ADE≌△ADC可得到∠E=∠C,又∠E=∠B,所以∠B=∠C,进而证明AB=AC.【答案与解析】(1)解:∵AB∥CD,∴∠B+∠C=180°,又∵∠B=∠D,∴∠C+∠D=180°,∴AD∥BC,∴ABCD是平行四边形,∴AB=CD=3,BC=AD=6,∴四边形ABCD的周长=2×6+2×3=18;(2)证明:∵AD平分∠EDC,∴∠ADE=∠ADC,又DE=DC,AD=AD,∴△ADE≌△ADC,∴∠E=∠C,又∠E=∠B,∴∠B=∠C,∴AB=AC.【总结升华】(1)本题考查了平行四边形的判定和平行四边形的性质以及求平行四边形的周长;(2)本题考查了全等三角形的判定和全等三角形的性质以及等腰三角形的证明.举一反三:【变式】如图,已知口ABCD中,F是BC边的中点,连接DF并延长,交AB的延长线于点E.求证:AB=BE.【答案】证明:∵F是BC边的中点,∴BF=CF,∵四边形ABCD是平行四边形,∴AB=DC ,AB∥CD,∴∠C=∠FBE,∠CDF=∠E, ∵在△CDF 和△BEF 中C FBE CDF E CF BF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CDF≌△BEF(AAS ), ∴BE=DC , ∵AB=DC , ∴AB=BE .3、(2015•哈尔滨)如图1,口ABCD 中,点O 是对角线AC 的中点,EF 过点O ,与AD ,BC 分别相交于点E ,F ,GH 过点O ,与AB ,CD 分别相交于点G ,H ,连接EG ,FG ,FH ,EH . (1)求证:四边形EGFH 是平行四边形;(2)如图2,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD 面积相等的所有平行四边形(四边形AGHD 除外).【思路点拨】(1)由四边形ABCD 是平行四边形,得到AD∥BC,根据平行四边形的性质得到∠EAO=∠FCO,证出△OAE≌△OCF,得到OE=OF ,同理OG=OH ,根据对角线互相平分的四边形是平行四边形得到结论;(2)根据两组对边分别平行的四边形是平行四边形即可得到结论. 【答案与解析】(1)证明:∵四边形ABCD 是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,在△OAE 与△OCF 中,∴△OAE≌△OCF, ∴OE=OF, 同理OG=OH ,∴四边形EGFH 是平行四边形;(2)解:与四边形AGHD 面积相等的所有平行四边形有口GBCH ,口ABFE ,口EFCD ,口EGFH ;∵四边形ABCD 是平行四边形, ∴AD∥BC,AB∥CD, ∵EF∥AB,GH∥BC,∴四边形GBCH ,ABFE ,EFCD ,EGFH 为平行四边形,∵EF过点O,GH过点O,∵OE=OF,OG=OH,∴口GBCH,口ABFE,口EFCD,口EGFH,口ACHD它们面积=口ABCD的面积,∴与四边形AGHD面积相等的所有平行四边形有口GBCH,口ABFE,口EFCD,口EGFH.【总结升华】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.4、(2016•菏泽)如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.【思路点拨】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,DG ∥BC且DG=BC,从而得到DE=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可;(2)先判断出∠BOC=90°,再利用直角三角形斜边的中线等于斜边的一半,求出EF即可.【答案与解析】解:(1)∵D、G分别是AB、AC的中点,∴DG∥BC,DG=BC,∵E、F分别是OB、OC的中点,∴EF∥BC,EF=BC,∴DG=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵∠OBC和∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M为EF的中点,OM=3,∴EF=2OM=6.由(1)有四边形DEFG是平行四边形,∴DG=EF=6.【总结升华】此题是平行四边形的判定与性质题,主要考查了平行四边形的判定和性质,三角形的中位线,直角三角形的性质,解本题的关键是判定四边形DEFG是平行四边形.类型二、三角形的中位线5、如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的()A.6 B.8 C.10 D.12【思路点拨】本题依据三角形三边关系,可求第三边大于2小于10,原三角形的周长大于12小于20,连接中点的三角形周长是原三角形周长的一半,那么新三角形的周长应大于6而小于10,看哪个符合就可以了.【答案与解析】、、,令a=4,b=6,解:设三角形的三边分别是a b c则2<c<10,12<三角形的周长<20,故6<中点三角形周长<10.故选B.【总结升华】本题重点考查了三角形的中位线定理,利用三角形三边关系,确定原三角形的周长范围是解题的关键.举一反三:【变式】(太仓市期中)△ABC中E是AB的中点,CD平分∠ACB,AD⊥CD与点D,求证:DE=(BC﹣AC).【答案】解:延长AD交BC于F,∵CD平分∠ACB,AD⊥CD,∴∠ACD=∠BCD,∠ADC=∠FDC=90°,又CD=CD,∴△ADC≌△FDC(ASA)∴AC=CF,AD=FD又∵△ABC中E是AB的中点,∴DE是△ABF的中位线,∴DE=BF=(BC﹣CF)=(BC﹣AC).类型三、多边形内角和与外角和6、一个多边形的内角和与外角和相等,则这个多边形是()A.四边形 B.五边形 C.六边形 D.八边形【思路点拨】首先设此多边形是n边形,由多边形的外角和为360°,即可得方程180(n-2)=360,解此方程即可求得答案.【答案】A;【解析】解:设此多边形是n边形,∵多边形的外角和为360°,∴180(n-2)=360,解得:n=4.∴这个多边形是四边形.【总结升华】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意多边形的外角和为360°,n边形的内角和等于180°(n-2).举一反三:【变式】若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.6【答案】A;解:设边数为n,根据题意得(n-2)•180°<360°解之得n<4.∵n为正整数,且n≥3,∴n=3.故选A.。
一、知识导航图:梯形正方形矩形菱形平行四边形四边形二、知识点复习3、梯形中常见辅助线作法(1)、平移一腰( 2)、梯形内平移两腰(3)、作高( 4)、平移对角线(5)、延长两腰(6)、连接梯形一顶点及一腰的中点4、三角形中位线定理5、直角三角形斜边上的_______________________________四、有效训练(一)四边形的概念与基本性质1.已知四边形ABCD,有以下四个条件:①//AB CD;②AB CD=;③//BC AD;④BC AD=.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有()(A)6种(B)5种(C)4种(D)3种2.点A、B、C是平面内不在同一条直线上的三点,点D是平面内任意一点,若A、B、C、D四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有()A.1个B.2个C.3个D.4个4.下列说法不正确...的是()A.一组邻边相等的矩形是正方形 B.对角线相等的菱形是正方形C.对角线互相垂直的矩形是正方形 D.有一个角是直角的平行四边形是正方形5.下列说法中正确的有()(1)邻补角的平分线互相垂直(2)对角线互相垂直平分的四边形是正方形(3)四边形的外角和等于360° (4)矩形的两条对角线相等A.1个B.2个C.3个D.4个2D CB AB 6.下列说法中错误的是( )A. 平行四边形的对角线互相平分B. 矩形的对角线互相垂直C. 菱形的对角线互相垂直平分D. 等腰梯形的对角线相等第7题图 第8题图 7.(如图,在等腰梯形ABCD 中,AD ∥BC ,AB =AD =CD . 若∠ABC =60°, BC =12,则梯形ABCD 的周长为 .8.如图,在△ABC 中,AB =BC ,AB =12cm ,F 是AB 边上的一点,过点 F 作FE ∥BC 交CA 于点E ,过点E 作ED ∥AB 交于BC 于点D ,则四边形BDEF 的周长是 . (二)折叠与剪切2.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.A .2+10B .2+210 C .12 D .18五、自我检测1.(2003.苏州)如图,□ABCD 中,∠C=108°,BE 平分∠ABC,则∠ABE 等于( ) A.18° B.36° C.72° D.108°2.(2004.四川)下列说法中,错误的是( )A.一组对边平行且相等的四边形是平行四边形B.两条对角线互相垂直且平分的四边形是菱形C.四个角都相等的四边形是矩形D.邻边相等的四边形是正方形 4.如图,□ABCD 中,AC .BD 为对角线,BC =6,BC 边上的高为4,则阴影部分的面积为( ).A 、 3B .6C .12D .245、梯形的一腰和上底所成的角为150°,若这腰的长为5cm ,中位线为4cm ,则这个梯形的面积为()A 、10cmB 、5cmC 、20cmD 、40cm7、如图,已知△ABC 中,D 是AB 的中点,E 是BC 的三等分点(BE>CE ),AE 、CD 相交于F 。
第十八章平行四边形18.1.1 平行四边形的性质第一课时平行四边形的边、角特征知识点梳理1、有两组对边分别平行的四边形叫做平行四边形,平行四边形ABCD记作□ABCD。
2、平行四边形的对边相等,对角相等,邻角互补。
3、两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条直线之间的距离。
知识点训练1.(3分)如图,两X对边平行的纸条,随意穿插叠放在一起,转动其中一X,重合的局部构成一个四边形,这个四边形是________.2.(3分)如图,在□ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,那么图中共有平行四边形( )A.6个B.7个C.8个D.9个3.(3分)在□ABCD中,AB=6 cm,BC=8 cm,那么□ABCD的周长为cm.4.(3分)用40 cm长的绳子围成一个平行四边形,使其相邻两边的长度比为3∶2,那么较长的边的长度为cm.5.(4分)在□ABCD中,假设∠A∶∠B=1∶5,那么∠D=;假设∠A+∠C=140°,那么∠D=.6.(4分)(2014·XX)如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,那么□ABCD 的周长是.7.(4分)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,假设∠EAD =53°,那么∠BCE的度数为( )A.53°B.37°C.47°D.123°8.(8分)(2013·XX)如下图,在平行四边形ABCD中,BE=DF.求证:AE=CF.9.(4分)如图,点E,F分别是□ABCD中AD,AB边上的任意一点,假设△EBC的面积为10 cm²,那么△DCF的面积为。
10.(4分)如图,梯形ABCD中,AD∥BC,记△ABO的面积为S1,△COD的面积为S2,那么S1,S2的大小关系是( )A.S1>S2 B.S1=S2 C.S1<S2 D.无法比拟11.在□ABCD中,∠A∶∠B∶∠C∶∠D的值可能是( )A.1∶2∶3∶4 B.1∶2∶2∶1C.2∶2∶1∶1 D.2∶1∶2∶112.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论:①MN∥BC;②MN=AM,以下说法正确的选项是( )A.①②都对B.①②都错C.①对②错D.①错②13.如图,在□ABCD中,BE⊥CD,BF⊥AD,垂足分别为E,F,CE=2,DF=1,∠EBF =60°,那么□ABCD的周长为__.14.(2013·XX)如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,那么∠DAE的度数为。
D C B A O D C B A DC B A OD C B A 平行四边形全章复习【基础知识回顾】一、平行四边形1、平行四边形的定义:两组对边分别 的四边形是平行四边形,平行四边形ABCD 可写成 。
2、平行四边形的特质:⑴平行四边形的两组对边分别 ;如图几何语言为: ∵ ∴ 。
⑵平行四边形的两组对角分别;如图几何语言为:∵ ∴ 。
⑶平行四边形的对角线 ;如图几何语言为:∵ ∴ 。
3、平行四边形的判定:⑴用定义判定:两组对边分别平行的四边形是平行四边形。
⑵两组对边分别 的四边形是平行四边形。
如图几何语言为:∵ ∴ 。
⑶一组对它 的四边形是平行四边形。
如图几何语言为: ∵ ∴ 。
⑷两组对角分别 的四边形是平行四边形。
如图几何语言为:∵ ∴ 。
⑸对角线 的四边形是平行四边形。
如图几何语言为:∵ ∴ 。
注:特别的:一组对边平行,另一组对边相等的四边形和一组对边相等、一组对角相等的四边形的两个命题都不被保证是平行四边形。
4、平行四边形的面积如图:计算公式S □ = × = × 。
注:1、夹在两平行线间的平行线段 ,两平行线之间的距离处处 。
二、矩形1、定义:有一个角是 角的平行四边形叫做矩形。
2、矩形的性质:⑴矩形的四个角都 ;⑵矩形的对角线 。
3、矩形的判定:⑴用定义判定;⑵有三个角是直角的 是矩形;⑶对角线相等的 是矩形。
注:1、矩形是 对称图形对称轴有 条。
2、矩形被它的对角线分成两对全等的 三角形。
二、菱形1、定义:有一组邻边 的平行四边形叫做菱形。
2、菱形的性质:⑴菱形的四条边都 。
⑵菱形的对角线 且每条对角线 。
3、菱形的判定:⑴用定义判定;⑵对角线互相垂直的 是菱形;⑶四条边都相等的 是菱形。
注1、菱形是 对称图形,它有 条对称轴,分别是 。
2、菱形被对角线分成四个全等的 三角形和两对全等的 三角形。
3、菱形的面积可以用平行四边形面积公式计算,也可以用两对角线乘积的 来计算4、菱形常见题目是内角为1200或600时,利用等边三角形或直角三角形知识点的的题目。
平行四边形全章复习与巩固【知识网络】【要点梳理】 要点一、平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形. 2.性质:(1)对边平行且相等; (2)对角相等;邻角互补; (3)对角线互相平分; (4)中心对称图形. 3.面积:高底平行四边形⨯=S4.判定:边:(1)两组对边分别平行的四边形是平行四边形; (2)两组对边分别相等的四边形是平行四边形; (3)一组对边平行且相等的四边形是平行四边形.知识点角:(4)两组对角分别相等的四边形是平行四边形; (5)任意两组邻角分别互补的四边形是平行四边形. 边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形; 对角线:(7)对角线互相平分的四边形是平行四边形. 要点诠释:平行线的性质: (1)平行线间的距离都相等; (2)等底等高的平行四边形面积相等. 要点二、矩形1.定义:有一个角是直角的平行四边形叫做矩形. 2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角; (3)对角线互相平分且相等;(4)中心对称图形,轴对称图形. 3.面积:宽=长矩形 S4.判定:(1) 有一个角是直角的平行四边形是矩形. (2)对角线相等的平行四边形是矩形. (3)有三个角是直角的四边形是矩形. 要点诠释:由矩形得直角三角形的性质: (1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半. 要点三、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形. 2.性质:(1)具有平行四边形的一切性质;(2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形.3.面积:2对角线对角线高==底菱形⨯⨯S4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形; (3)四边相等的四边形是菱形.要点四、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形. 2.性质:(1)对边平行; (2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角; (5) 两条对角线把正方形分成四个全等的等腰直角三角形; (6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线 4.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形; (3)对角线相等的菱形是正方形; (4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形; (6)四条边都相等,四个角都是直角的四边形是正方形.类型一、平行四边形例1、如图,在口ABCD中,点E在AD上,连接BE,DF∥BE交BC于点F,AF与BE交于点M,CE与DF交于点N.求证:四边形MFNE是平行四边形.举一反三:【变式】如图,等腰△ABC中,D是BC边上的一点,DE∥AC,DF∥AB,通过观察分析线段DE,DF,AB三者之间有什么关系,试说明你的结论.典型例题例2、如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.举一反三:【变式】如图1,口ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.(1)求证:四边形EGFH是平行四边形;(2)如图2,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外).类型二、矩形例3、已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.例4、如图所示,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处,求EF的长.举一反三:【变式】把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB = 3cm,cm.BC = 5cm,则重叠部分△DEF的面积是__________2类型三、菱形例5、如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则∠CDF等于( ).A.80°B.70°C.65°D.60°举一反三:【变式】用两张等宽的纸带交叉重叠地放在一起,重合的四边形ABCD是菱形吗?如果是菱形请给出证明,如果不是菱形请说明理由.类型四、正方形例6、如图,矩形ABCD中,AD=6,DC=8,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA 上,AH=2,连结CF.(1)若DG=2,求证:四边形EFGH为正方形;(2)若DG=6,求△FCG的面积.举一反三:【变式】如图所示,E、F、G、H分别是四边形ABCD各边中点,连接EF、FG、GH、HE,则四边形EFGH为________形.(1)当四边形满足________条件时,四边形EFGH是菱形.(2)当四边形满足________条件时,四边形EFGH是矩形.(3)当四边形满足________条件时,四边形EFGH是正方形.在横线上填上合适的条件,并说明你所填条件的合理性.课后练习一.选择题 1. 如图,□ABCD 中,AB=3cm ,AD=4cm ,DE 平分∠ADC 交BC 边于点E ,则BE 的长等于( ) A.2cm B.1cm C.1.5cm D.3cm2.在口ABCD 中,AB =3cm ,AD =4cm ,∠A =120°,则口ABCD 的面积是( ) cm ². A.33 B.36 C.315 D.3123.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,E 、F 是对角线AC 上的两点,给出下列四个条件:①AE=CF ;②DE=BF ;③∠ADE=∠CBF ;④∠ABE=∠CDF .其中不能判定四边形DEBF 是平行四边形的有( )A .0个B .1个C .2个D .3个4. 在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( ).A .测量对角线是否相互平分B .测量两组对边是否分别相等C .测量一组对角是否都为直角D .测量其中三个角是否都为直角5.正方形具备而菱形不具备的性质是( )A. 对角线相等;B. 对角线互相垂直;C. 每条对角线平分一组对角;D. 对角线互相平分.6. 如图所示,口ABCD 的周长为16cm ,AC 、BD 相交于点O ,OE ⊥AC ,交AD 于点E ,则△DCE 的周长为( ).A.4 cm B.6 cm C.8 cm D.10 cm7. 矩形对角线相交成钝角120°,短边长为2.8cm,则对角线的长为()A.2.8cm B.1.4cm C.5.6cm D.11.2cm8. 如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为()A.16a B.12a C.8a D.4a二.填空题9.如图,若口ABCD与口EBCF关于B,C所在直线对称,∠ABE=90°,则∠F=______.10.矩形的两条对角线所夹的锐角为60 ,较短的边长为12,则对角线长为__________.11.如图,菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为______.12.如图,在△ABC中,AB=AC=5,D是BC边上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,那么四边形AFDE的周长是.13.如图, 有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角形的直角顶点落在点A,两条直角边分别与CD交于点F,与CB的延长线交于点E,则四边形AECF的面积是 _________.cm,对角线AC=4cm,则菱形的边长是______cm.14.已知菱形ABCD的面积是12215.菱形ABCD中,AE垂直平分BC,垂足为E,AB=4cm.那么,菱形ABCD的面积是________,对角线BD的长是_________.16. 如图,在矩形ABCD中,对角线AC、BD交于点O,若∠AOD=120°,AB=1,则AC= ,BC = .三.解答题17.已知,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、BD、CD、AC的中点,求四边形EFGH的周长.18. 如图,在口ABCD中,AC、BD交于点O,AE⊥BC于E,EO交AD于F,求证:四边形AECF是矩形.19.如图,在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE于F,连接DE.证明:DF=DC.20. 已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.(1)求证:BE = DF;(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.。
B
平行四边形全章复习
【知识回顾】:
1、平行四边形定义: 有两组对边分别平行的四边形叫做平行四边形。
平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分。
∵ AB ∥CD ,AD ∥BC
∴ AB=CD ,AD=BC
∠A=∠C ,∠B=∠D
AO=CO ,BO=DO
2、矩形的定义:有一个角是直角的平行四边形。
矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等(即如右图AC=BD ).
矩形性质的外延:
直角三角形斜边上的中线等于斜边的一半(即如右图CD=21AB ). 3、菱形的定义:邻边相等的平行四边形。
菱形的性质:菱形的四条边都相等;
菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
S 菱形=1/2×ab (a 、b 为两条对角线)
4、正方形的定义:一个角是直角的菱形或邻边相等的矩形。
正方形的性质:四条边都相等,四个角都是直角。
正方形既是矩形,又是菱形。
5、特殊四边形识别方法小结:
(1) 识别平行四边形的方法:
①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形; ③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;
⑤一组对边平行且相等的四边形是平行四边形。
(2) 识别矩形的方法:
①有一个角是直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;
③有三个角是直角的四边形是矩形;④对角线相等且互相平分的四边形是矩形。
(3) 识别菱形的方法:
①有一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形;
③四边都相等的四边形是菱形;④对角线互相垂直平分的四边形是菱形。
(4) 识别正方形的方法:
①有一组邻边相等且有一个角是直角的平行四边形是正方形;②对角线互相垂直且相等的平行四边形是正方形;
③有一组邻边相等的矩形是正方形;④对角线互相垂直的矩形是正方形;
⑤有一个角是直角的菱形是正方形;⑥对角线相等的菱形是正方形;
⑦对角线互相垂直平分且相等的四边形是正方形。
小结:把以上识别方法的编号分别填入下图中的每一条带方向的线上:
(如平行四边形的第一种识别方法的编号为(1)①,其他方法类似)
1F E D C B
A 【直击考点】:
1. (2011江苏苏州,12,3分)如图,在四边形ABCD 中,AB ∥CD ,AD ∥BC ,AC 、BD 相交于点0.
若AC=6,则线段AO 的长度等于_______.
2. (2011广州,2,3分)如图,已知□ABCD 的周长为32,AB=4,则BC=( )
A. 4
B. 12
C. 24
D. 28
3. (2011湖南常德,12,3分)在平面直角坐标系中,□ABCD 的顶点A 、B 、C 的坐标分别是(0,0)、 (3,0)、(4,2)则顶点D 的坐标为( )
A .(7,2) B. (5,4) C.(1,2) D. (2,1)
4. (2011广西防城港 5,3分)如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于
点E ,CF ∥AE 交AE 于点F ,则∠1=( )
A .40°
B .50°
C .60°
D .80°
6. (2011•黔南,11,4分)将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积.
则这样的折纸方法共有( )
A 、1种
B 、2种
C 、4种
D 、无数种
7. (2011•郴州)如图,下列四组条件中.不能判定四边形ABCD 是平行四边形的是( )
A 、AB=DC ,AD=BC
B 、AB ∥D
C ,A
D ∥BC
C 、AB ∥DC ,AD=BC
D 、AB ∥DC ,AB=DC
第1题图 第2题图 第4题图 第7题图
8. (2011•湖南张家界,6,3)顺次连接任意四边形四边中点所得的四边形一定是( )
A 、平行四边形
B 、矩形
C 、菱形
D 、正方形
9. (2011浙江嘉兴,10,3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不
重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四
个平行四边形周长的总和为( )
A .48cm
B .36cm
C .24cm
D .18cm
10. (2011邵阳,7,3分)如图所示,在□ABCD 中,对角线AC 、BD
相交于点O ,且AB ≠AD ,则下列式子不正确的是( )
A.AC ⊥BD
B.AB =CD
C.BO =OD
D.∠BAD =∠BCD
11. (2011浙江金华,15,4分)如图,在□ABCD 中,AB =3,
AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为
点F ,与DC 的延长线相交于点H ,则△DEF 的
面积是 .
12. (2011四川凉山,20,7分)如图,E F 、是平行四边形ABCD 的对角线AC 上的点,CE AF ,
请你猜想:线段BE 与线段DF 有怎样的关系?并对你的猜想加以证明.。