函数项级数的一致收敛性及基本性质
- 格式:ppt
- 大小:1.53 MB
- 文档页数:34
第七节 函数项级数的一致收敛性内容分布图示★ 引例(讲义例1) ★ 一致收敛的概念★ 例2 ★ 例3 ★ 魏尔斯特拉斯判别法 ★ 例4 ★ 例5 一致收敛级数的基本性质 ★ 定理2★ 定理3★ 定理4幂级数的一致收敛性★ 定理5★ 定理6 ★ 内容小结★ 课堂练习★ 习题11—7 ★ 返回讲解注意:一、 一致收敛的概念:函数项级数在收敛域I 上收敛于和)(x s ,指的是它在I 上的每一点都收敛,即对任意给定的0>ε及收敛域上的每一点x ,总相应地存在自然数),(x N ε,使 得当N n >时,恒有ε<-|)()(|x s x s n .一般来说,这里的N 不仅与ε有关,而且与x 也有关. 如果对某个函数项级数能够找到这样的一个只与ε有关而不依赖于x 的自然数N ,则当N n >时,不等式ε<-|)()(|x s x s n 对于区间I 上每一点都成立,这类函数项级数就是所谓的一致收敛的级数.定义1 设函数项级数∑∞=1)(n n x u 在区间I 上收敛于和函数)(x s , 如果对任意给定的0>ε,都存在着一个与x 无关的自然数N , 使得当N n >时, 对区间I 上的一切x 恒有ε<-=|)()(||)(|x s x s x r n n ,则称该函数项级数在区间I 上一致收敛于和)(x s ,此时也称函数序列)}({x s n 在区间I 上一致收敛于)(x s .二、定理1(魏尔斯特拉斯判别法)如果函数项级数∑∞=1)(n n x u 在区间I 上满足条件:(1));,3,2,1(|)(| =≤n a x u n n (2)正项级数∑∞=1n n a 收敛.则该函数项级数在区间I 上一致收敛. 三、 一致收敛级数的基本性质定理2 如果级数∑∞=1)(n n x u 的各项)(x u n 在区间],[b a 上都连续,且级数在区间],[b a 上一致收敛于),(x s 则)(x s 在],[b a 上也连续.定理3 设)(x u n ),3,2,1( =n 在],[b a 上连续,且级数∑∞=1)(n n x u 在区间],[b a 上一致收敛于)(x s ,则⎰xx dx x s 0)(存在,且级数∑∞=1)(n n x u 在],[b a 上可以逐项积分,即])([])([)(11∑⎰⎰∑⎰∞=∞===n xx n x x n n xxdx x u dx x u dx x s (7.2)其中,0b x x a ≤<≤ 且上式右端的级数在],[b a 上也一致收敛.定理4 如果级数∑∞=1)(n n x u 在区间],[b a 上收敛于和)(x s , 它的各项)(x u n 都有连续导数)(x u n',并且级数∑∞='1)(n nx u 在],[b a 上一致收敛,则级数∑∞=1)(n n x u 在],[b a 上也一致收敛,且可 逐项求导,即有∑∑∞=∞='='⎪⎪⎭⎫⎝⎛='11)()()(n nn n x u x u x s (7.3) 四、 幂级数的一致收敛性定理5 如果幂级数∑∞=1n n n x a 的收敛半径为,0>R 则此级数在),(R R -内的任一闭区间],[b a 上一致收敛.定理6 如果幂级数∑∞=1n n n x a 的收敛半径为,0>R 则其和函数)(x s 在),(R R -内可导,且有逐项求导公式,)(111∑∑∞=-∞=='⎪⎪⎭⎫ ⎝⎛='n n n n n n x na x a x s逐项求导后所得到的幂级数与原级数有相同的收敛半径.例题选讲:一致收敛的概念例1(讲义例1)考察函数项级数+-++-+-+-)()()(1232n n x x x x x x x的和函数的连续性.本例表明,即使函数项级数的每一项都在[a , b ]上连续,并且级数在[a , b ]上收敛,但其和函数却不一定在[a , b ]上连续;同样也可举例说明,函数项级数的每一项的导数及积分所成的级数的和也不一定等于它们的和函数的导数及积分. 那么在什么条件下,我们才能够从级数每一项的连续性得出它的和函数的连续性,从级数的每一项的导数及积分所成的级数之和得出原级数的和函数的导数及积分呢? 要回答这个问题,就需要引入函数项级数的一致收敛性概念.例2(讲义例2)研究级数∑∞=+⎪⎪⎭⎫⎝⎛+-111n n n n x n x 在区间]1,1[-上的一致收敛性.例3(讲义例3)研究级数∑∞=-0)1(n n x x 在区间[0,1]上的一致收敛性.例4(讲义例4)证明级数++++22222sin 22sin 1sin nx n x x 在),(+∞-∞上一致收敛.例5(讲义例5)判别级数∑∞=+1241n x n x在),(+∞-∞上一致收敛. 课堂练习1. 研究级数+⎪⎭⎫ ⎝⎛-+-+++⎪⎭⎫ ⎝⎛+-+++111112111n x n x x x x 在区间),0[+∞上的一致收敛性.魏尔斯特拉斯(Weierstrass, Karl Wilhelm ,1815~1897)魏尔斯特拉斯德国数学家,1815年10月31日生于德国威斯特伐利亚地区的奥斯登费尔特;1897年2月19日卒于柏林。
渤海大学学士学位论文题目:函数项级数一致收敛判定与性质系别:数学系专业:数学与应用数学姓名:班级:指导教师:目录摘要------------------------------------------------------------------------------1 英文摘要------------------------------------------------------------------------1 引言------------------------------------------------------------------------------2 一预备知识-----------------------------------------------------------------2 二函数项级数一致收敛的柯西准则-----------------------------------7(一)M判别法----------------------------------------------------------8(二)阿贝尔判别法----------------------------------------------------9(三)狄立克雷判别法-------------------------------------------------9 三函数项级数一致收敛的其他判别法------------------------------12(一)比式判别法-------------------------------------------------12(二)根式判别法-------------------------------------------------13(三)对数判别法-------------------------------------------------13 四函数项级数的性质--------------------------------------------------15 五反例证明--------------------------------------------------------------16 参考文献----------------------------------------------------------------21函数项级数一致收敛的判定与性质张月姣(渤海大学数学系辽宁锦州 121000 中国)摘要:利用柯西准则,证明函数项级数一致收敛的两个判别法。
为什么函数项级数内闭一致收敛文章题目:探究函数项级数内闭一致收敛的原因在数学分析领域中,函数项级数内闭一致收敛是一个重要的概念。
它不仅在数学理论中有着重要的地位,也在实际问题的研究中发挥着重要作用。
本文将从函数项级数内闭一致收敛的定义和特性入手,探讨其原因,并对其在数学和科学研究中的应用进行分析。
一、函数项级数内闭一致收敛的定义和特性1. 函数项级数的定义函数项级数即由一系列函数组成的级数,形式为∑(n=1到∞)fn(x),其中每一项fn(x)都是定义在某个区间上的函数。
2. 内闭一致收敛的定义对于给定函数项级数∑(n=1到∞)fn(x),如果对任意ε>0,存在自然数N,使得当m≥n≥N时,有|∑(k=n到m)fn(x)|<ε对任意x∈E都成立,那么称该函数项级数在E上内闭一致收敛。
3. 特性函数项级数内闭一致收敛的特性包括一致收敛、极限函数连续等。
具体而言,内闭一致收敛意味着极限函数的存在,并且该极限函数在区间上连续。
二、函数项级数内闭一致收敛的原因探究在深入探究函数项级数内闭一致收敛的原因时,我们可以从以下几个方面入手:1. 函数项级数内闭一致收敛的几何解释函数项级数内闭一致收敛可以被解释为一个区间上的一致收敛。
这意味着,对于每一个ε>0,存在N,使得当m≥n≥N时,函数项级数的部分和与其极限函数之差小于ε,从而函数项级数在该区间上表现出较强的稳定性。
2. 一致收敛性质的影响一致收敛性质保证了在给定区间上的整体收敛性,这使得函数项级数的极限函数存在并且在该区间上连续。
这与点wise收敛不同,点wise收敛只能保证每个点上的收敛性,无法保证极限函数的连续性。
3. 函数项级数内闭一致收敛的充分条件内闭一致收敛的充分条件之一是Cauchy准则。
对于给定的ε>0,存在N,使得当m≥n≥N时,有|∑(k=n到m)fn(x)|<ε,这保证了函数项级数的部分和随着n的增大而趋向一个极限值,从而使得函数项级数内闭一致收敛。