飞机系统 6飞机空气调节系统
- 格式:ppt
- 大小:10.50 MB
- 文档页数:63
飞机空调系统工作原理飞机空调系统是飞机上非常重要的一个设备,它能够为飞机提供舒适的环境,保障乘客和机组人员的健康和安全。
飞机空调系统工作原理复杂,涉及到空气循环、温度控制、湿度调节等多个方面。
下面我们就来详细了解一下飞机空调系统的工作原理。
首先,飞机空调系统的工作原理基于空气循环。
飞机在飞行过程中,外界空气经过进气口进入飞机,经过滤净化后,进入空调系统。
空调系统通过压缩机将空气压缩,然后通过冷凝器降温,再通过蒸发器释放冷空气。
这样循环往复,使得飞机内部始终保持舒适的温度和湿度。
其次,飞机空调系统的工作原理还包括温度控制。
在飞机上,空调系统需要根据外界温度和飞行高度来调节出风口的温度。
通常情况下,飞机在高空飞行时,外界温度非常低,因此空调系统需要加热空气,以保证乘客和机组人员的舒适度。
而在地面停机或低空飞行时,则需要降低出风口的温度,以适应外界温度的变化。
另外,飞机空调系统的工作原理还涉及到湿度调节。
在飞机上,湿度是一个非常重要的因素,过高或过低的湿度都会影响乘客和机组人员的健康和舒适度。
因此,空调系统需要通过湿度控制装置来调节飞机内部的湿度,保持在一个合适的范围内。
除了以上几点,飞机空调系统的工作原理还包括空气过滤、空气流速控制等多个方面。
空气过滤可以去除空气中的杂质和细菌,保证飞机内部空气的清洁和卫生;空气流速控制则可以根据乘客和机组人员的需求来调节出风口的风速,以确保舒适度和安全性。
总的来说,飞机空调系统的工作原理是一个复杂而精密的系统工程,它涉及到空气循环、温度控制、湿度调节、空气过滤、空气流速控制等多个方面。
只有这些方面都得到精准的控制和协调,才能确保飞机内部空气的清洁、舒适和安全。
飞机空调系统的工作原理对于飞机的正常运行和乘客的舒适度至关重要,它是现代飞机不可或缺的重要设备之一。
一、外部机身机翼结构系统二、液压系统三、起落架系统四、飞机飞行操纵系统五、座舱环境控制系统六、飞机燃油系统七、飞机防火系统一、外部机身机翼结构系统1、外部机身机翼结构系统组成:机身机翼尾翼2、它们各自的特点和工作原理1)机身机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。
在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。
2)机翼机翼是飞机上用来产生升力的主要部件,一般分为左右两个面。
机翼通常有平直翼、后掠翼、三角翼等。
机翼前后缘都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。
近来先进飞机还采用了边条机翼、前掠机翼等平面形状。
左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。
即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。
为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。
襟翼平时处于收上位置,起飞着陆时放下。
3)尾翼尾翼分垂直尾翼和水平尾翼两部分。
1.垂直尾翼垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。
通常垂直尾翼后缘设有方向舵。
飞行员利用方向舵进行方向操纵。
当飞行员右蹬舵时,方向舵右偏,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头右偏的力矩,从而使机头右偏。
同样,蹬左舵时,方向舵左偏,机头左偏。
某些高速飞机,没有独立的方向舵,整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。
2.水平尾翼水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。
低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。
即飞行员拉杆时,升降舵上偏,相对气流吹向水平尾翼时,水平尾翼产生附加的负升力(向下的升力),此力对飞机重心产生一个使机头上仰的力矩,从而使飞机抬头。
飞机空调系统的基本工作原理引言航空业的迅速发展使得飞机成为现代人们常用的交通工具之一。
飞行时,舱内舒适的温度和空气质量对于乘客和机组人员来说都至关重要。
飞机空调系统被设计用于维持舱内的适宜环境,确保乘客和机组人员在飞行期间的舒适与安全。
本文将介绍飞机空调系统的基本工作原理,包括空气循环系统、温度控制系统和湿度控制系统。
1. 空气循环系统飞机空调系统中的空气循环系统起到了至关重要的作用。
它负责将外部新鲜空气引入机舱,并将舱内的污浊空气排出。
同时,它也为温度控制系统和湿度控制系统提供必要的空气流动。
空气循环系统主要由以下几个部分组成:•装在机身中的空气进气口,负责引入外部空气。
•舱内的空气处理组件,如过滤器和加热器。
过滤器可去除空气中的颗粒物和污染物,确保舱内空气的纯净度;加热器通过加热外部空气来提供恒定的舱内温度。
•空气出气口,用于排出污浊空气和调节舱内气流。
整个空气循环系统可以形成一个闭合的环路,使得舱内的空气始终保持通风和流动,以确保舒适的环境。
2. 温度控制系统温度控制系统是飞机空调系统中的另一个重要组成部分。
它通过控制空气的供应温度来调节机舱的温度。
温度控制系统包括以下几个关键组件:•空气混合器:用于混合冷却空气和加热空气,以达到所需的目标温度。
冷却空气通过空调系统中的冷凝器冷却而来,而加热空气则通过加热器加热得到。
•温度传感器:感测和监测机舱内的温度变化,并将信息传输给控制系统。
•控制系统:根据温度传感器的反馈信号控制空气混合器和加热器的工作状态,以达到所需的温度。
通过上述组件的协调工作,温度控制系统能够在不同的气候条件下,提供舒适的机舱温度,以满足乘客和机组人员的需求。
3. 湿度控制系统除了温度之外,湿度是另一个需要考虑的因素。
低湿度可能导致乘客和机组人员出现不适,而过高的湿度则容易引发结霜等问题。
因此,飞机空调系统中通常配备有湿度控制系统。
湿度控制系统的主要组成部分包括:•蒸发器:用于将过湿的空气冷却,以去除其中的水分。
6.2座舱空气温度调节系统6.2.1现代运输飞机气源系统功用:向飞机座舱空调,飞机防冰,发动机起动,液压油箱和生活水箱增压提供压缩空气。
现代运输机气源:发动机压气机引气APU压气机引气地面气源车供气发动机压气机引气控制:参量:温度、压力、流量。
引气压力控制:由引气活门完成—相应活门接通或关断。
活门出口压力高或下游温度高—引气活门自动关。
引气温度控制:由预冷器及其控制活门控制。
B737飞机气源系统控制简图6.2.2冷却系统概述典型制冷方式:冲压空气通风系统-小型机非气密座舱用蒸发循环制冷:-制冷剂相变吸热制冷空气循环制冷:-利用引气→热交换器→涡轮冷却器→冷空气优点:重量轻、尺寸小,成本低,检修、维护工作量小;调节控制方便,可靠性较高;附件在机上的安排无特殊要求;座舱通风、调温和增压可由同一系统完成。
缺点:性能系数、温度调节精度、地面可靠工作等不如蒸发循环制冷典型型式:●简单式(涡轮通风式)-早期、小型机用●升压式低压除水系统-如B707、B737、B747采用●升压式高压除水系统-如B757、B767、B777、A320采用A320组件工作原理:将空调空气分为热路、冷路以便实现温度调节空气循环制冷-采用三轮升压式高压除水系统制冷循环设置压气机以提高涡轮进口压力,是升压式制冷的基本特征冷却涡轮是系统的基本制冷附件主要附件及功用●热交换器●压气机●涡轮●风扇●水分离器●旁通活门●防冰活门基本方法:供气量基本恒定,控制冷、热路空气以合适比例混合→所需供气温度→座舱。
舱温自动调节与控制基本原理B737-300空调组件调节方式人工调节自动调节自动调温系统主要附件温度传感器温度选择器温度控制器:调温基本控制双向电机及双温活门-执行机构●已调空气→混合总管→座舱(顶棚、地板两侧、驾驶舱地板、天花板、个人通风口等)本节小结主要问题:●现代运输机气源●典型制冷方式、空气循环制冷典型型式●升压式高压除水系统的工作原理●座舱调温的基本方法●温度调节和控制的基本原理●热交换器、空气循环机、温度选择器、双温活门的功用。
民用飞机主要系统有哪些1、空调系统2、自动驾驶系统3、通讯系统4、电源系统5、防火系统6、飞控系统7、燃油系统8、液压系统9、防冰系统10、仪表系统11、起落架系统12、灯光系统13、导航系统14、氧气系统15、引气系统16、水系统17、发动机各个系统、发动机振动监测仪发动机接口控制装置18、主飞行控制系统19、驾驶舱控制系统20、照明系统21、内装饰系统22、控制板组件23、水/废水系统24、应急撤离系统25、氧气系统26、驾驶员座椅27、风档玻璃和通风窗28、风档温控和雨刷系统29、风门作动器30 航电系统31、高升力系统32、空气管理系统33、起落架系统图书目录编辑1.1 引言1.2 飞行控制原理1.3 飞行操纵面1.4 主飞行控制1.5 副飞行控制1.6 商用飞机1.6.1 主飞行控制1.6.2 副飞行控制1.7 飞行操纵联动系统1.7.1 操纵连杆系统1.7.2 钢索和滑轮系统1.8 增升控制系统1.9 配平和感觉1.9.1 配平1.9.2 感觉1.10 飞控作动装置1.10.1 简单的机械/液压式作动装置1.10.2 具有电信号的机械式作动装置1.10.3 多余度作动装置1.10.4 机械式螺旋作动器1.10.5 组合作动器组件(iap)1.10.6 先进作动机构1.11 民用系统的实施1.11.1 顶层比较1.11.2 空中客车的实施1.12 电传控制律1.13a380飞控作动1.14 波音777的实施1.15 飞行控制、引导和飞行管理的相互关系参考文献控制系统编辑2.1 引言2.1.1 发动机/机体接口2.2 发动机技术和工作原理2.3 控制问题2.3.1 燃油流量控制2.3.2 空气流量控制2.3.3 控制系统2.3.4 控制系统参数2.3.5 输入信号2.3.6 输出信号2.4 系统实例2.5 设计准则2.6 发动机起动2.6.1 燃油控制2.6.2 点火控制2.6.3 发动机旋转2.6.4 油门杆2.6.5 起动顺序2.7 发动机指示2.8 发动机滑油系统2.9 发动机功率的提取2.10 反推力2.1l 现代民用飞机上的发动机控制参考文献燃油系统编辑3.1 引言3.2 燃油系统的特性3.3 燃油系统部件说明3.3.1 输油泵3.3.2 燃油增压泵3.3.3 输油阀3.3.4 止回阀(nrv)3.4 燃油油量测量3.4.1 油面传感器3.4.2 燃油油量测量传感器3.4.3 燃油油量测量基础3.4.4 油箱形状3.4.5 燃油的性质3.4.6 燃油油量测量系统3.4.7 福克f50/f100系统3.4.8 空中客车a3203.4.9 “智能型”传感器3.4.10 超声波传感器3.5 燃油系统的工作模式3.5.1 增压3.5.2 发动机供油3.5.3 燃油传输3.5.4 加油/放油3.5.5 通气系统3.5.6 用燃油作为热沉3.5.7 外部燃油箱(副油箱)3.5.8 应急放油3.5.9 空中加油3.6 综合民机系统3.6.1 庞巴迪“环球快车”3.6.2 波音7773.6.3 a340-500/600燃油系统3.7 燃油箱的安全性3.7.1 燃油惰性化原理3.7.2 空气分离技术3.7.3 典型的燃油惰性化系统3.8 极区运行——冷燃油管理3.8.1 最少设备清单(mel)3.8.2 冷燃油特性3.8.3 燃油温度指示参考文献液压系统编辑4.1 引言4.2 液压系统设计4.3 液压作动4.4 液压油4.5 油液压力4.6 油液温度4.7 油液流量4.8 液压管路4.9 液压泵4.10 油液调节4.11 液压油箱4.12 告警和状况指示4.13 应急动力源4.14 设计验证4.15 飞机系统的应用实例4.15.1 阿佛罗rj型飞机液压系统4.15.2 bae系统公司“霍克”200飞机液压系统4.15.3 “狂风”式飞机液压系统4.16 民用运输机比较4.16.1 空中客车a3204.16.2 波音7674.17 起落架系统4.17.1 前起落架4.17.2 主起落架4.17.3 刹车防滑和拐弯操纵4.17.4 电子控制4.17.5 自动刹车4.17.6 多轮系统4.17.7 减速伞参考文献电气系统编辑5.1 引言5.1.1 电源系统的发展5.2 飞机电气系统5.3 发电5.3.1 直流发电5.3.2 交流发电5.3.3 发电控制5.4 初级功率分配5.5 功率转换和能量储存5.5.1 变流器5.5.2 变压整流器(tru)5.5.3 自耦变压器5.5.4 电瓶充电器5.5.5 电瓶5.6 次级功率分配5.6.1 功率切换5.6.2 负载保护5.7 典型的飞机直流系统5.8 典型的民用运输机电气系统5.9 电气负载5.9.1 电机和作动器5.9.2 直流电机5.9.3 交流电机5.9.4 照明5.9.5 加热5.9.6 子系统控制器和航空电子系统5.9.7 地面电源5.10 应急发电5.10.1 冲压空气涡轮5.10.2 备用电源变流器5.10.3 永磁发电机(pmg)5.11 现代系统的发展5.11.1 电气负载管理系统(elms)5.11.2 变速/恒频(vscf)系统5.11.3 270vdc 系统5.11.4 多电飞机(mea)5.12 电气系统最新的发展5.12.1 空客a380电气系统概述5.12.2 a400m5.12.3 波音787电气系统综述5.13 电气系统的显示装置参考文献气压系统编辑6.1 引言6.2 引气的应用6.3 发动机引气的控制6.4 引气系统指示6.5 引气系统的使用对象6.5.1 机翼和发动机的防冰6.5.2 发动机的起动6.5.3 反推力装置6.5.4 液压系统6.6 总静压系统6.6.1 总静压测量的新方法参考文献环境控制系统编辑7.1 引言7.2 对控制环境的需求7.2.1 气动力加热7.2.2 太阳加热7.2.3 航空电子设备的热载荷7.2.4 飞机系统的热载荷7.2.5 座舱调节的需要7.2.6 航空电子设备调节的需要7.3 国际标准大气(isa)7.4 环境控制系统设计7.4.1 冲压空气冷却7.4.2 燃油冷却7.4.3 发动机引气7.4.4 引气流量和温度的控制7.5 制冷系统7.5.1 空气循环式制冷系统7.5.2 涡轮风扇系统7.5.3 升压式系统7.5.4 逆升压式7.5.5 冲压驱动逆升压式7.5.6 蒸发循环式制冷系统7.5.7 液冷式系统7.5.8 消耗性热沉7.6 湿度控制7.7 现有系统的低效率7.8 空气分配系统7.8.1 航空电子设备的冷却7.8.2 非调节舱7.8.3 调节舱7.8.4 调节舱的设备架7.8.5 地面冷却7.8.6 座舱分配系统7.9 座舱噪声7.10 座舱增压7.1l 缺氧7.12 分子筛氧浓缩器7.13 耐过载能力7.14 驱散雨滴7.15 防雾和除雾7.16 飞机结冰参考文献应急系统编辑8.1 引言8.2 告警系统8.3 火警探测和灭火8.4 应急动力源8.5 防爆8.6 应急供氧8.7 乘客撤离8.8 飞行人员救生8.9 计算机控制的座椅8.10 弹射系统的定时8.11 高速救生8.12 事故记录仪8.13 应急坠毁电门8.14 应急着陆8.15 应急系统试验参考文献旋转翼系统编辑9.1 引言9.2 直升机的特殊要求9.3 直升机飞行的原理9.4 直升机飞行控制系统9.5 主飞行控制作动9.5.1 人工操纵9.5.2 增稳9.5.3 自动驾驶仪模式9.6 主要的直升机系统9.6.1 发动机和传动系统9.6.2 液压系统9.6.3 电气系统9.6.4 健康监控系统9.6.5 特殊的直升机系统9.7 直升机自动飞行控制系统9.7.1 eh101飞行控制系统9.7.2 偏航控制的“无尾桨”(notar)方法9.8 主动控制技术9.9 先进的战区直升机9.9.1 目标截获和标示系统(tads)/驾驶员夜视系统(pnvs)9.9.2 ah-64c/d“长弓”阿帕奇直升机9.10 偏转式旋翼系统9.10.1 偏转式旋翼的原理和发展9.10.2 v-22“鱼鹰”9.10.3 民用倾转旋翼机参考文献先进系统编辑10.1 引言10.1.1 短距起降机动技术验证机(smtd)10.1.2 飞行器管理系统(vms)10.1.3 多电飞机lo.1.4 多电发动机10.2 隐身性10.2.1 联合攻击战斗机(jsf)10.3 综合飞行和推进控制(ifpc)10.4 飞行器管理系统10.5 多电飞机10.5.1 发动机功率的提取10.5.2 波音787(多电)电气系统10.5.3 多电液压系统10.5.4 多电环控系统10.6 多电作动10.6.1 电静液作动器(eha)10.6.2 机电作动器(ema)10.6.3 电刹车10.7 多电发动机10.7.1 常规发动机特性10.7.2 多电发动机特性10.8 隐身设计的影响10.8.1 洛克希德公司f-117a“夜鹰”10.8.2 诺斯罗普公司b-2“幽灵”10.8.3 联合攻击战斗机——f-35“闪电”Ⅱ10.9 技术发展/验证机10.9.1 270v直流容错发电系统10.9.2 热能量管理组件10.9.3 afti f-16飞行验证10.10 预报系统参考文献设计研制编辑11.1 引言11.1.1 系统没计11.1.2 研制程序11.2 系统设计11.2.1 主要机构和文件11.2.2 设计指南和认证技术11.2.3 研制程序的主要部分11.3 主要的安全性程序11.3.1 功能危险性分析(fha)11.3.2 初步系统安全性分析(pssa)11.3.3 系统安全性分析(ssa)11.3.4 共同源分析(cca)11.4 需求的捕捉11.4.1 自上而下法11.4.2 自下而上法11.4.3 捕捉需求的实例11.5 故障树分析(fta)11.6 依存关系图11.7 故障模式和影响分析(fmea)11.8 元(部)件可靠性11.8.1 分析的方法11.8.2 使用中数据11.9 调遣可靠性11.10 马尔柯夫分析11.11 研制程序11.11.1 产品寿命周期11.11.2 初步设计(原理)阶段11.11.3 定义阶段11.11.4 设计阶段11.11.5 制造阶段11.11.6 试验阶段(鉴定阶段)11.11.7 使用阶段11.11.8 整修或报废11.11.9 研制大纲11.11.10 v形图11.12 双发飞机延长航程运行参考文献环境条件编辑13.1 引言13.2 环境因素13.2.1 高度13.2.2 温度13.2.3 油液污染13.2.4 太阳辐射13.2.5 淋雨湿度潮湿13.2.6 霉菌13.2.7 盐雾/轻盐雾13.2.8 沙、尘13.2.9 爆炸性大气13.2.10 加速度13.2.11 浸渍13.2.12 振动13.2.13 噪声13.2.14 冲击13.2.15 爆炸冲击13.2.16 酸性大气13.2.17 温度湿度振动高度13.2.18 结冰/冻雨13.2.19 声音振动温度13.2.20 射频辐射13.2.2l 闪电(雷击)13.2.22 核、生物和化学武器的污染13.3 试验和鉴定程序参考文献[1] 航空电子技术编辑12.1 引言12.2 微电子器件的性质12.2.1 处理器12.2.2 存储器器件12.2.3 数字式数据总线12.2.4 a429数据总线12.2.5 mil-std-1553b12.2.6 arinc 629数据总线12.2.7 商用货架产品(cots)数据总线12.3 飞机系统的数据总线综合12.3.1 战斗机技术验证机(eap)12.3.2 空中客车a330/a34012.3.3 波音77712.3.4 支线飞机/公务喷气机12.3.5 a380航空电子结构12.3.6 波音787航空电子结构12.3.7 cots数据总线——ieee 139412.4 光纤总线12.5 航空电子设备集装标准12.5.1 航空运输无线电台(atr)标准12.5.2 模块原理装置(mcu)12.6 典型的lru结构12.7 综合模块化航空电子设备飞机主要系统简介。