6
例1 如图,一个堆放铅笔的 V形
架的最下面一层放一支铅笔,往 上每一层都比它下面一层多一支, 最上面一层放120支。这个V形架 上共放着多少支铅笔?
解:由题意可知,这个V形架上共放着120层铅
笔,且自下而上各层的铅笔数成等差数列,记
为{an},其中 a1=1 , a120=120.根据等差数列前n项 和的公式,得
120 (1120)
S120
2
7 260
答:V形架上共放着 7 260支铅笔。
7
例2 等差数列 10,6,2,2,…前多少项的和是54?
解:设题中的等差数列为{an},前n项和是 Sn,
则a1= 10,d= 6(10) 4,设 Sn=54, 根据等差数列前 n项和公式,得
10n n(n 1) 4 54 n2 6n 27 0
100个101
所以 2x 101100, x=5050.
这个问题,可看成是求等差数列 1,2,3,…, n,…的前100项的和。
3
下面将对等差数列的前n项和公式进行推导
设等差数列a1,a2,a3,… 它的前n 项和是 Sn=a1+a2+…+an-1+an (1) 若把次序颠倒是Sn=an+an-1+…+a2+a1 (2) 由等差数列的性质 a1+an=a2+an-1=a3+an-2=… 由(1)+(2) 得 2sn=(a1+an)+(a1+an)+(a1+an)+..
(m,n,p,q∈N),那么: an+am=ap+aq
2
问题1:1+2+3+…+100=?