06 - 第六章 神经网络控制技术2014
- 格式:ppt
- 大小:2.51 MB
- 文档页数:62
神经网络控制HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】人工神经网络控制摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。
本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。
关键词: 神经网络控制;控制系统;人工神经网络人工神经网络的发展过程神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。
它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。
是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。
它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。
在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。
神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。
神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。
如神经预测控制、神经逆系统控制等。
生物神经元模型神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与 102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。
每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。
图1生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两种类型,兴奋性突触和抑制性突触。
神经网络控制在现代技术领域中,神经网络控制是一种采用神经网络模型进行系统控制的方法。
神经网络是一种模仿人类大脑神经元之间相互连接的方式构建的计算模型,通过学习和训练,神经网络能够模仿人类的思维方式和决策过程。
神经网络控制的基本原理是利用神经网络的强大学习能力和非线性映射能力,将系统的输入和输出关系建模成一个复杂的非线性函数,通过训练神经网络使其学习到这个函数的映射关系,从而实现对系统的控制。
神经网络控制在各个领域都有着广泛的应用,例如自动驾驶汽车、智能机器人、金融交易系统等。
在自动驾驶汽车中,神经网络控制可以根据传感器信息和环境数据实时调整车辆的速度和方向,使其具备更加智能的驾驶能力。
在工业控制系统中,神经网络控制可以用于优化控制器的参数,提高系统的响应速度和稳定性,从而提高生产效率和降低成本。
在金融领域,神经网络控制可以根据市场数据和交易历史预测股市走势,指导投资决策,提高投资的成功率。
神经网络控制虽然具有很多优势,例如适应复杂非线性系统、具有良好的泛化能力等,但也面临着许多挑战。
神经网络模型的训练需要大量的数据和计算资源,训练时间长、成本高是其中的主要问题。
此外,神经网络模型具有一定的不透明性,难以解释其决策过程和逻辑,这在一些对解释性要求比较高的应用场景中可能会成为障碍。
未来随着人工智能技术的不断发展和应用场景的拓展,神经网络控制将会在更多的领域得到应用和改进。
研究人员将继续探索如何提高神经网络模型的训练效率和泛化能力,以及如何解决神经网络模型的可解释性问题,从而更好地发挥神经网络控制在系统控制领域的作用。
综上所述,神经网络控制作为一种基于神经网络模型的系统控制方法,在现代技术领域具有着广泛的应用前景和发展空间,同时也面临着一些挑战和问题需要不断的研究和改进。
通过持续的努力和创新,相信神经网络控制将会为我们的生活和工作带来更多的便利和效益。