充分利用轨检车数据及图纸
- 格式:doc
- 大小:932.00 KB
- 文档页数:7
及时消灭线路病害创建高平顺线路伴随我国铁路第五次提速的顺利完成,我段管内铁路已普遍提速至160km/h。
随着列车速度的提高,原有的管理方式、检测方式、作业方式难以与快速铁路对线路高平顺性的要求相适应。
为适应快速铁路对线路高平顺性的要求,就需要我们提高对轨检车数据及图纸的利用。
我国高速铁路技术已获突破性进展,秦沈客运专线已经建成,试验段时速已达。
伴随我国既有线的继续提速以及新型高速客运专线相继建成,就需要我们及早掌握利用轨检车数据及图纸,及时消灭线路病害作业方式,为将来管理、维修更高运营速度线路作准备。
铁路轨道支承在密实度和弹性都很不均匀的道床和路基上,却要承受很大的随机性列车动荷载的反复作用,轨道不可避免地产生不均匀残余变形。
其几何尺寸、平顺状态是经常变化的,它需要不断进行养护维修,校正轨道不平顺,经常保持轨道的平顺性是一项技术性很强,花费很大,十分繁重的工作。
对平顺性问题不了解,就很难做好线路维修工作。
一、轨道不平顺(一)轨道不平顺的分类1.轨道不平顺按对车辆激扰方向区分⑴.垂向轨道不平顺(高低、水平、三角坑、轨面短波不平顺、新轨垂向周期性不平顺)⑵.横向轨道不平顺(轨向、轨距、新轨横向周期性不平顺)⑶.复合不平顺(方向水平逆向复合、曲线头尾的几何偏差)2.轨道不平顺按波长区分波长类型波长范围幅值范围不平顺种类主要危害短波数毫米至数拾毫米mm 轨面擦伤、剥离、波纹磨耗、焊缝轮轨动作用力、噪声,设备寿命,运营成本数百毫米mm 波浪形磨耗、轨枕间距中波2至米周期性mm 新轨本身不平顺快速、高速车振动舒适性3至30米非周期性mm 高低、轨向、扭曲、水平、轨距安全、平稳、舒适性,运营成本长波30至200米mm 路基道床不均匀沉降,中跨桥梁挠曲变形,桥梁、隧道头尾刚度差异快速、高速列车、振动舒适性(二)轨道不顺特征对行车安全的影响轨道不平顺的幅值、波长、波数、周期性对轮轨相互作用力、机车车辆振动和列车脱轨安全性均有重要影响。
充分利用轨检车数据及图纸及时消灭线路病害创建高平顺线路伴随我国铁路第五次提速的顺利完成,我段管内铁路已普遍提速至160km/h。
随着列车速度的提高,原有的管理方式、检测方式、作业方式难以与快速铁路对线路高平顺性的要求相适应。
为适应快速铁路对线路高平顺性的要求,就需要我们提高对轨检车数据及图纸的利用。
我国高速铁路技术已获突破性进展,秦沈客运专线已经建成,试验段时速已达321.5km/h。
伴随我国既有线的继续提速以及新型高速客运专线相继建成,就需要我们及早掌握利用轨检车数据及图纸,及时消灭线路病害作业方式,为将来管理、维修更高运营速度线路作准备。
铁路轨道支承在密实度和弹性都很不均匀的道床和路基上,却要承受很大的随机性列车动荷载的反复作用,轨道不可避免地产生不均匀残余变形。
其几何尺寸、平顺状态是经常变化的,它需要不断进行养护维修,校正轨道不平顺,经常保持轨道的平顺性是一项技术性很强,花费很大,十分繁重的工作。
对平顺性问题不了解,就很难做好线路维修工作。
一、轨道不平顺(一)轨道不平顺的分类1.轨道不平顺按对车辆激扰方向区分⑴.垂向轨道不平顺(高低、水平、三角坑、轨面短波不平顺、新轨垂向周期性不平顺)⑵.横向轨道不平顺(轨向、轨距、新轨横向周期性不平顺)⑶.复合不平顺(方向水平逆向复合、曲线头尾的几何偏差)(二)轨道不顺特征对行车安全的影响轨道不平顺的幅值、波长、波数、周期性对轮轨相互作用力、机车车辆振动和列车脱轨安全性均有重要影响。
当幅值、速度一定时,波长的不同的病害对行车平稳性的影响大不相同,幅值同时1mm的不平顺,在速度相同情况下,波长为1m 时引起的振动加速度是波长10m的100倍。
见图1对于货车波长为5~10m的轨道不平顺影响最大,对于客车波长为10~20m的影响最大(20-120km/h)。
提速后因客车速度提高,应将波长上限提高至30m,国外日本新干线(时速210km/h)波长管理上限为50m,欧洲高速线路的管理上限为70m。
浅谈轨检车检测数据的有效运用摘要:近年来,随着铁路维修发展的需要,每月的轨检车检测出大量动态数据,如何利用这些数据去指导线路维修养护,如何预测线路设备变化趋势是至关重要的,本文就轨检车的检测目的、评价标准、检测项目、病害成因等方面进行分析,为线路养护维修工作提供指导,实现动态检测科学管理。
关键词:轨距;轨向;高低;水平;三角坑一、轨检车检测的目的轨检车是检查线路设备病害,指导线路维修的专用车辆,主要目的有:(1)通过轨检车检测,及时监控线路设备变化,合理安排精测精调等维修作业,确保铁路的安全运营。
(2)进行轨道动力学试验、轮轨相互作用的研究,改进轨道部件的设计,探索轨道的整体特性、确定轨道的合理结构,改善轨道、机车相互的协调性,延长轨道部件、机车的使用寿命。
(3)轨检车检测的大量数据,可以建立轨道状态数据库,掌握设备变化规律,编制设备状态图,制订设备养护维修计划,为完善设备养护维修标准提供科学依据。
(4)推动轨检技术的发展,提高轨检车检测水平,促进轨检车的升级改造。
二、动态质量评价与管理轨道动态质量的评价方法分为局部峰值管理和区段均值管理两种评价方法。
1.局部峰值管理局部峰值动态评价采用四级管理标准:I级为日常保养标准,II级为计划维修标准,III级为临时补修标准,IV级为限速标准。
局部峰值评价采用扣分法,具体扣分标准为:I级每处扣1分,II级每处扣5分,III级每处扣100分,IV级每处扣301分。
局部峰值管理以整千米为单元,具体动态评定标准为:优良是扣分总数在50分及以内,合格是扣分总数在51~300分,失格是扣分总数在301分及以上。
2.区段均值管理轨道质量指数(TQI)是衡量区段均值管理动态质量的综合指标。
使用TQI评价和管理轨道状态,是对单一幅值扣分评判轨道的补充,可以提高轨检车检测数据的综合应用水平,为制定线路维修计划提供科学依据。
TQI是从统计学(离散性)、物理学(轨道质量均衡性)的角度反映线路设备状态的恶化程度,TQI值的大小与设备状态平顺性有很大的关系。
如何利用轨检车数据分析打磨地段质量文章通过轨检车检查数据采集、汇总分析,同时收集集中修地段数据,结合两次轨检车跑车检查情况和现场调查,找出下降原因,提出有针对性的整治措施及意见,避免类似问题再次出现,确保线路月检保养后线路质量达到预期目的。
标签:打磨;轨检车;数据分析1 前言为全面提高设备质量,消除设备故障隐患。
每月度,我们均会利用一周左右的时间,开行轨道检测列车(以下简称轨检车),对管内设备进行综合轨检车检查,轨检车检测速度、标准等均较平时正常检测高,对集中修地段有更好的可比性。
尤其是通过一个月度后,更能反应集中修地段线路质量变化状况,本文主要是对钢轨打磨车打磨、月度保养等集中修地段在一个月度左右后的整体质量情况,通过轨检车数据进行对比分析,主要从平均分、TQI值变化进行评价,对磨耗明显区段结合现场调查,找出波磨原因,提出整治意见,确保集中修后质量延续,改善设备质量,确保行车安全。
2 轨检车数据采集及汇总2.1 轨检车数据的采集和对比每月度开行的轨检车检查列车,我们分析人员均全程上车分析,对各工班、各线及集中修区段等进行每日对比分析,并及时收集现场调查情况,建立专门的轨检检查数据库,含车上、地面数据分析及现场调查情况等。
通过对比两次轨检数据,对公司管内设备质量进行整体分析评价,分线、分工班进行排名,对磨耗较明显的线路及工班,指出磨耗原因,提出整改意见,对减少磨耗明显的线路及单位,好的做法通过通报学习。
2.2 集中修地段收集及总体情况对比进行分析收集公司一季度轨检车检测后所有集中修地段数据,并对集中修地段轨检检查的总体情况进行对比分析。
每项分析中,首先对总体情况进行对比,对因集中修导致线路质量有所下降,或其所影响的主要项目未得到明显改善且有所恶化等,我们在对比分析中,需结合现场情况,找准原因。
同时在对比分析过程中,我们必须选取同型、同标准检测波形图进行叠加对比,剔除干扰,真实反应集中修地段质量变化情况。
线路工工长学习完轨检车图纸分析心得体会随着社会科学技术的不断发展和改进,检测技术以及计算机技术也得到了快速发展的机会,从而也推动了轨检车的发展,在进行实际轨道检测的时候其可靠性以及精度也得到了一定程度的提高。
在对线路的维修质量提高的过程当中,轨检车资料能够提供比较科学和合理的依据。
但是在实际的工作当中,轨检车资料在对线路进行维修的时候它的作用还没有能够真正的发挥出来。
人们只关心注重于检测的成绩,而对于利用轨检车资料来对线路进行维修指导还比较的忽视,在对轨检车进行检查的过程当中还存在比较严重的应付现象,这样可能就会浪费很多的人力资源和物力资源。
为了能够去有效的改变这样的局面和现象,本文就针对利用轨检车资料指导线路的维修谈了一些相关的经验,以提高轨道维修水平。
1 对轨道动态质量指标的相关分析在我国铁路运输事业在交通运输行业占有很大的比重,特别是高铁、轻轨等快速交通的发展。
随着各项技术的不断发展,对于轨道质量就提出了更高的要求。
要有效的掌握和控制轨道质量,就需要通过对轨道动态质量指标管理来实现。
轨道动态质量指标即TQI,是对轨道设备使用状态进行全面管理和整体控制的。
在对轨道进行检测的时候,是先将轨道的线路进行分区域,每200米为一个单元区域;在每个单元区域里,对左右轨道的高低、轨向、轨距、水平、三角坑、车体水平方向与垂直方向加速度等七个项目进行检测和数据收集,然后把这些数据输入计算机里,通过数学统计原理等计算出各项指标偏差的标准差;七项标准差求和就得到了轨道质量指标TQI的值。
有了TQI将能够有效的对轨道质量进行管理与控制,这不仅有利于编写轨道维修计划,还能够让工务单位对轨道实施动态的质量管理,从而改变传统的静态管理方式,把各种质量问题提前处理在萌芽状态。
通过这种方式进行管理,从而使工务单位从定性的管理向着定量管理、经验管理向着科学管理转变,提高轨道管理水平。
2 对轨检车资料中的波形图分析轨检车的波形图其实就是对动态情况下的线路设备的真实情况进行反映,通过轨检车波形图能够有效的检查出在静态检测当中出现的一些忽略掉和遗漏掉的问题。
利用轨检车检测数据分析指导线路养护维修摘要:在我国社会不断发展的当下,高铁成为社会最为主要的交通模式。
想要确保高铁交通顺利运行,最为关键的内容便是做好高铁检修。
但是从客观层次上来看,高铁线路较长,并且潜在的质量隐患相对较多,想要做好检修工作,必须要充分借助现代化科学技术手段,及时动态化的对高铁沿线情况进行分析和检测,及时发现问题并解决问题,通过精细养护维修,确保高铁顺利运行。
轨道检查车作为一种具备科学性的轨道质量检查技术手段,可以充分引入信息化技术,对轨道开展动态化检测,帮助日常检修工作人员及时发现问题,确保轨道检修效率。
本文将针对轨检车检测数据分析意义进行详细分析,探究出利用轨检车检测数据分析指导线路养护维修的方法和策略。
关键词:轨检车;轨道检修养护;数据信息分析轨道检查车作为当前铁路日常检修最为常用的技术设备,在社会不断发展之下,轨道检查车的技术水平也不断提升。
结合当前轨道检查车发展情况来看,欧美国家对轨道检查车技术不断更新换代,切实保障了轨道检查的速度,其精准度和功能性不断提升,具备稳定、高效性,为轨道日常检修工作带来了强大的基础设备保障。
轨道检查车每次对线路进行检查之后,可以构建出完整的轨道线路状态波形图,对轨道线路开展全面详细数据分析,借助数据化分析指导日常养护维修工作,确保铁路日常检修工作更加具备针对性与科学性。
本文将针对利用轨检车检测数据分析指导线路养护维修相关内容进行详细分析。
1、轨检车检测数据分析意义轨检车检测数据分析最大的价值便是可以及时动态地发现轨道质量问题,有针对性的发现轨道质量安全问题,确保铁路轨道运行安全稳定性。
轨道检查车相比轨检小车的静态检查来说,更加可以精准地发现铁路轨道真实的偏差情况,并且可以精准的判断评价轨道的安全性能。
结合当前我国铁路检查领域来看,轨道检查车是轨道检查当中最为科学、最为精确的检测系统,在进行铁路轨道项目检查的过程中,轨道检查车可以借助几何参数、车梯轨箱加速参数、钢轨断面参数等诸多内容,对铁路实际情况进行分析。
运用轨检车数据分析提高轨道养护维修质量的探讨摘要:轨道检测车(以下简称轨检车)是检查轨道病害,指导轨道维修,保障行车安全的大型动态检测设备,也是实现轨道科学管理的重要手段。
我们不仅可以将轨检车动态数据和现场核查的静态数据动静结合,对管辖内设备进行从微观到宏观的掌握,指导我们的现场整改,还可以根据轨检车超限数据的级别来合理安排作业和调度人力,使各项资源得到最大化利用。
关键词:轨检车;现场整改;动静结合Abstract: The track inspection car (hereinafter referred to as the track inspection car) is to check the orbital diseases, guide rail repair, large dynamic detection equipment to ensure traffic safety, it is also an important way to realize the track of scientific management. We can not only the static data and dynamic data of track inspection car and on-site verification of binding, within the jurisdiction of equipment from micro to macro control, guiding our on-site rectification, it can also according to the track inspection car overrun data level to rationalize the operation and scheduling of manpower, the resources to obtain the maximum utilization.Key words: rail car; a combination of static and dynamic scene rectification;数据统计分析由于轨检车的检测项目包括了轨距、水平、轨向、三角坑、水平加速度等众多项目,我们在收到轨检车数据之后,有必要对种类繁多的检测项目进行分类统计,再逐一进行分析,方便工班长根据统计分析之后的数据进行合理的分工安排。
应用轨检车数据应用轨检车数据利用轨检车数据可以对管内设备进行从微观到宏观的掌握,在作业上又可以从临时补修、经常保养、综合维修全方位安排。
一、针对较大值的病害,进行重点临时补修。
第一步:里程修正运用已建立的里程核对系统对病害进程进行修正,以方便作业班准确查找病害。
(详细可咨询魏永超)。
第二步:数据统计分析可按病害大小、是否重复等条件对超限数据进行数据统计、分析。
第三步:制定作业方案选择重点病害,结合现场实际,分析病害成因,制定整治方案。
第四步:质量控制和回检尽量避免将一个大病害改成两个小病害,严禁把一个类型病害改成另一个类型病害。
第五步:做好各项现场作业记录,方便下次数据对比二、结合公里扣分,安排重点保养,减少扣分,消灭合格公里。
第一步:按车间或工区进行数据选择,可查看管内的总扣分和平均扣分以及各种病害类型总扣分和平均扣分。
第二步:结合以往数据,选择重点整治区间及病害项目,进行重点保养整治。
三、运用TQI指数,掌握线路状况,安排线路重点综合整治。
TQI指数可以在空间上反映管内设备的优劣状态,运用全年或更长一段时间的TQI数据,可观察管内每200米区段各项TQI指数即线路实际质量状况在时间上的发展趋势和发展速度。
用好TQI,对线路状态可做到有病治病,防患于未然的效果。
四、在轨检车检测周期内合理安排线路维修作业轨检车检测周期一般为15天,可将其充分、合理利用。
时间安排建议如下:一、安排最长的时间进行重点临时补修,确保能够及时彻底消灭重点病害。
二、保证每个周期都有进行重点经常保养和重点综合整治的时间,确保对重点区段进行有计划地逐步整治。
三、重点临时补修重点经常保养重点综合整治5-7天3-4天3-4天葛成举2007-1-10。
怎样利用轨检车成果指导线路维修工作关键词:轨检车成果指导维修0 引言以前我们拿到轨检资料后总是简单的看看成绩,或是将超限大的地方处理一下,很少有人在意轨检资料的重要性,更别说利用了。
其实看懂轨检车资料不但可以准确迅速的帮助我们找到病害,还能给我们的线路维修提供有益的指导和帮助。
1 轨检车对线路的评价方式1.1 线路峰值管理线路峰值管理即线路局部不平顺,I级分保养标准、Ⅱ级分舒适度标准、Ⅲ级分临修标准、Ⅳ级分限速标准。
一个I级分扣1分、一个Ⅱ级分扣5分、Ⅲ级分扣100分、Ⅳ级分扣301分;对每公里也是按照罚分高低来评价的,优良:50分及以下,合格:51-300分,失格:301分及以上。
1.2 线路均值管理(即通常说的TQI) 线路均值管理即线路区段整体不平顺的动态质量管理。
采用计算200m单元轨道区段的单项几何参数的统计特征值——标准差的方法来评价轨道区段的平均质量。
2 轨检车检测成果有哪些2.1 轨检超限报告轨检超限报告包括Ⅰ、Ⅱ、Ⅲ、Ⅳ级分超限报告。
2.2 汇总报告区段总结报告包括区段优良率、各级超限个数、各项目扣分情况等,公里小结报告。
2.3 线路质量报告(TQI报告) TQI报告包括每个单元区段各项TQI值,每个单元区段TQI汇总值。
2.4 曲线报告曲线报告包括曲线起、终点里程,曲线长度、曲线半径、超高、加宽、最高允许速度等。
2.5 检测波形图2.6 检测结果数据库提供给工务段的数据库包括前面五项检测成果。
3 怎样利用这些检测成果3.1 怎样利用超限报告表表1、表2其项目意义相近,要充分利用超限报告表就应明白表中各项目的意义。
“位置”代表的意义:Ⅳ型检查车表示超过I级超限结束里程,Ⅴ型检查车代表峰值所在里程。
现在我局Ⅳ型检查车检测软件已经升级,因此以后超限报告表内位置都表示超限项目的峰值里程。
“长度”是指该项目超过I级以上的长度,轨检车记录超限项目的长度是从该项目值达到超过Ⅰ级开始,到其值回到Ⅰ级以下结束。
轨检车检测数据及波形图的应用轨检车检测数据及波形图的应用随着铁路的不断发展,轨检车的重要性不断得到肯定。
但是,车间和工区对轨检车检测数据及波形图的应用并不十分充分。
本文从影响检测结果的一些因素入手,谈了谈波形与现场病害的对应关系、病害点的补充及监控和病害实际里程的确定等几个方面,以解决轨检车数据在应用中遇到的一些实际问题。
这些方法的运用,在指导工区现场维修和监控管内病害发展上起到了积极的作用。
关键词轨检车数据及波形图应用前言随着铁路向着高速、重载的方向不断发展,动态检测的手段也日趋多样化、精细化。
我们需要利用先进的动态检测手段对线路设备质量进行检查监控;同时需要根据动态检测数据发现线路存在什么样的具体问题,以此指导工区维修。
动态检测的最终目的是应用检测结果对轨道质量状态进行评价,指导维修工作。
为了方便对病害点的查找应利用峰值指标,指导工区手工作业消灭Ⅲ级或Ⅱ级以上超限,关注I级病害是否有所发展,以解决线路局部不平顺问题。
1对检测结果产生影响的一些因素1.1检测方式轨检车对轨道进行的是动态检测,是线路在列车实际动载作用下、轨道几何尺寸存在的偏差,不同于静态测量值。
因此与静态测量值有出入是正常的。
当线路存在较为严重的空吊时,就会发现线路动态高低的测量值非常大。
当曲线钢轨存在磨耗或木枕地段的扣件扣压力不足,就会发生轨距动态检测与静态检测值有较大出入的现象。
1.2偏差等级的确定1.2.1因偏差等级数据采集标准不同而产生的检测差异轨检车每进行一个采样距离时,计算机对轨道的各个几个参数项目的检测结果采样一次,当某个项目的检测结果连续3次采样值都超过某一级病害界限值时,计算机统计为一处病害,并依据病害的最大值确定超限病害的相应级数。
如图所示,一、二、三级为病害界限值,A、B、C、D分别表示4个采样点,则s为一个采样距离,A为病害起点,D为病害终点,L表示超限病害长度。
由轨检车超限等级的定义可知,如果超限级数划定的标准不同,那么对同一病害做检测其检测结果也不一样。
充分利用轨检车数据及图纸
及时消灭线路病害创建高平顺线路
伴随我国铁路第五次提速的顺利完成,我段管内铁路已普遍提速至160km/h。
随着列车速度的提高,原有的管理方式、检测方式、作业方式难以与快速铁路对线路高平顺性的要求相适应。
为适应快速铁路对线路高平顺性的要求,就需要我们提高对轨检车数据及图纸的利用。
我国高速铁路技术已获突破性进展,秦沈客运专线已经建成,试验段时速已达321.5km/h。
伴随我国既有线的继续提速以及新型高速客运专线相继建成,就需要我们及早掌握利用轨检车数据及图纸,及时消灭线路病害作业方式,为将来管理、维修更高运营速度线路作准备。
铁路轨道支承在密实度和弹性都很不均匀的道床和路基上,却要承受很大的随机性列车动荷载的反复作用,轨道不可避免地产生不均匀残余变形。
其几何尺寸、平顺状态是经常变化的,它需要不断进行养护维修,校正轨道不平顺,经常保持轨道的平顺性是一项技术性很强,花费很大,十分繁重的工作。
对平顺性问题不了解,就很难做好线路维修工作。
一、轨道不平顺
(一)轨道不平顺的分类
1.轨道不平顺按对车辆激扰方向区分
⑴.垂向轨道不平顺(高低、水平、三角坑、轨面短波不平顺、新轨垂向周期性不平顺)
⑵.横向轨道不平顺(轨向、轨距、新轨横向周期性不平顺)
⑶.复合不平顺(方向水平逆向复合、曲线头尾的几何偏差)
2.轨道不平顺按波长区分
(二)轨道不顺特征对行车安全的影响
轨道不平顺的幅值、波长、波数、周期性对轮轨相互作用力、机车车辆振动和列车脱轨安全性均有重要影响。
当幅值、速度一定时,波长的不同的病害对行车平稳性的影响大不相同,幅值同时1mm的不平顺,在速度相同情况下,波长为1m时引起的振动加速度是波长10m的100倍。
见图1
对于货车波长为5~10m的轨道不平顺影响最大,对于客车波长为10~20m的影响最大(20-120km/h)。
提速后因客车速度提高,应将波长上限提高至30m,国外日本新干线(时速210km/h)波长管理上限为50m,欧洲高速线路的管理上限为70m。
轨道不平顺的波数也有明显影响。
当幅值和波长一定时,连续的多波不平顺比单波影响大,三波大于两波,两波大于一波,但三波以上与三波差别不大。
(三)《维规》第7.2.7条应引起重视的三种轨道不平顺
1.周期性连续及多波的轨道不平顺中,幅值为10mm的轨向不平顺,12mm的水平不平顺,14mm的高低不平顺。
2.对于50m范围内有3处大于以下幅值的轨道不平顺:12mm的轨向不平顺,12mm的水平不平顺,16mm的高低不平顺。
3.轨向、水平逆向复合不平顺。
连续性的多波不平顺容易引发激振,有导致脱轨系数增大、行车严重不稳甚至脱线的危险。
周期性的连续不平顺引发共振的危险性更大。
轨向、水平逆向复合不平顺,有反超高的特征,这几种不平顺应是脱轨事故的主要诱因。
二、如何利用轨检车图纸及数据查找和消灭病害
(一)轨检车图纸里程的核对
轨检车在实际运行和检测中所测得的里程和现场实际里程存在误差,一般在1~100m范围内,给现场查找带来一定困难。
因此在利用轨检车图纸和数据过程中,首先应进行里程核对。
利用已知某标志里程减去图上的该标志里程(利用铁科院图形查看工具,在计算机上可直接测得图上里程),得出里程差值,即可将轨检车图纸及数据中的里程和现场里程对应起来。
1. 利用轨检车图纸中的地面标志。
(桥上护轨、电容、道岔、道口)
⒉利用轨检车图纸中曲线头尾点及曲中点里程。
如图2所示:
(二)轨道病害在轨检车图纸上分析、现场核对及病害的消除。
对于病害的分析我们可在图纸上测得病害的长度、峰值、里程,也利用铁科院图形查看工具,在计算机上可直接测得长度、峰值、里程。
用轨检车测得的在列车车轮荷载作用下才完全显现出来的轨道不平顺通常称为动态不平顺。
真正对行车安全,轮轨作用力,车辆振动产生实际影响的轨道不平顺是动态不平顺。
需要注意的是,我们在现场调查时要区分动态和静态检测的区别,当我们进行现场核对未发现明显病害,一定要在列车通过时看线路吊板来确定病害位置及大小。
静态与动态检查区别见图3:
⒈高低不平顺可引起车辆剧烈地点头和浮沉振动,会使车轮大幅度减载,甚至悬浮。
如果严重减载的车轮同时又受很大的侧向力作用,可能脱轨。
严重的高低不平顺还可使道床阻力降低,产生空吊,易引起胀轨跑道,导致列车颠覆。
根据高低波形的分析和现场调查,我们就可以确定预备垫板的长度和数量对于高低为正值的小高,可垫起两侧的邻近小坑或在两侧进行垫板顺坡。
高低波形的分析和调查,一定要结合水平、三角坑的波形进行分析,以确定最佳作业方式。
见图4:
⒉方向不平顺会引起车辆的侧摆、摇头振动,连续的方向不平顺将引起车辆蛇行和滚摆。
严重的方向不平顺将产生很大的侧向力,可使轨枕、扣件不良的地段钢轨倾翻或轨排横移,造成列车脱轨倾覆。
幅值大、波长短方向不平顺,可致使无缝线路稳定性降低,产生的很大侧向力可导致动态胀轨跑道的重大事故。
轨向波形的分析,根据图纸可确定需拨道、改道的拨改的方向、长度和数值。
在现场进行核对、确认后,可进行作业。
轨向波形的分析,一定要和轨距和水平相结合,以确认拨或改以及是否为逆向复合不平顺。
见图4:
3. 水平不平顺将使车辆产生侧滚振动,导致一侧车轮增载,一侧减载。
曲线上严重水平不平顺是货车脱轨的重要原因。
尤其需注意的是,轨向、水平逆向复合不平顺引起脱轨的危险性更大。
水平病害可结合左右两股的高低进行分析,并且要和方向相结合,以防止逆向复合不平顺。
当调查确认后,可进行垫板和捣固作业来消除病害。
分析水平病害应参照左右股高低见图5:
4. 曲率是曲线半径的倒数,即1/R
因为50000/R=f,所以有50000×ρ曲率=f
换算单位后有f=50×ρ曲率,R=1000/ρ(曲率)
据此数据可判别曲线圆顺程度见图6:
5. 轨距偏差过大会导致车轮掉道或卡轨,但短距离的轨距变化过大,表明方向不良,并可使钢轨所受的横向力增大。
轨距波形的分析,应叁照轨向波形,以确定改左股或改右股,并可在图纸上确定长度和改道数值。
见图7:
6.三角坑病害同样可产生车轮的减载甚至悬浮,我国圆缓点的脱轨事故大多与三角坑病害有关,同样直线地段的严重三角坑病害也可产生脱轨事故。
对于三角坑病害的现场调查一般可采用套水平的办法查找。
因为三角坑计算采用2.4m的基长,由于翻浆、吊板引起的三角坑波形的现场调查一般比较困难。
对于翻浆和吊板地段,我们一定要观测列车通过吊板情况,掌握住具体地点和数值。
见图7:
7.垂直加速度与我们的车载添乘仪原理基本一致,是衡量车体垂直震动的指标,一般来讲与高低有直接关系,尤其是敏感波长的两波三波连续高低不平顺。
解决垂直加速度病害一般可结合高低病害一同整治。
对于连续的波长短、峰值相对大的高低引起的垂直加速度病害(搓板线路),应与道床板结有关,应进行抬道为主的综合维修或清筛道床。
8.水平加速度与我们的车载添乘仪原理基本一致,是衡量车体水平晃动的指标。
在直线上一般来讲与方向有直接关系,尤其是方向与水平的逆向复合不平顺,以及敏感波长的两波三波连续方向不平顺。
在曲线上水平加速度与未被平衡的欠超高有直接关系。
经推导
15mm未被平衡的欠超高相当于0.01g的水平加速度。
考虑到弹簧系数0.2,则12.5mm未被平衡的欠超高相当于0.01g的水平加速度。
因方向(正矢)对半径有直接对应关系,可改变未被平衡的欠超高的大小,由此可见方向(正矢)对曲线上水平加速度的影响最为直接。
见图8:
三、利用轨检车图纸及数据建立新型管理、作业方式
(一)峰值管理
轨检车数据报表中提供依据峰值管理的Ⅰ、Ⅱ、Ⅲ级超限病害报告,Ⅰ级为保养标准、Ⅱ级为舒适度标准、Ⅲ级为紧急补修标准。
我们应建立制度规定,Ⅲ级超限病害、Ⅱ级重复超限病害由车间主任到现场调查、安排整修,并且Ⅲ级超限病害接到通知后立即到现场调查整修。
Ⅱ级超限病害由工区工长到现场调查、安排整修。
Ⅰ级超限病害由工区带班人员在现场调查、整修。
并要留有文字记录,记明现场调查情况、调查人、整修方式、整修后情况、整修人。
见图9:
(二)均值管理(TQI)
1.TQI既轨道质量指数是衡量线路区段整体不平顺的均值管理
指标。
2.《维规》第7.2.3条规定的主要干线TQI 值如下所示,超出下列值应有计划的安排维修或整修。
在实际运用中TQI指数单项或总和超过上表的数值时应安排有针对性的选择性保养。
见图10:
(三)改变作业方式消灭有害作业
1.一定要把利用轨检车图纸和数据与传统的检查方式相结合。
既不可过分依赖也不可不利用轨检车图纸。
2.每次图纸及超限数据下发后,一定要把超限数据放到轨检车图纸中进行综合分析、判别,避免有害作业、无效劳动。
3.利用图纸在现场进行复核时,一定要利用现有的多种检查手段,眼看、尺量、弦绳拉、过车看相结合,准确掌握病害的数值。
4.通过对历史图形的分析以及对上一次作业效果的检查核对,做到能够掌握线路的变化规律。
通过经验的不断积累,提高我们解决处理各种病害的能力。
有害作业见图11:。